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We introduce and study differential-reflection operators A4 . acting on smooth functions
defined on R. Here A is a Sturm-Liouville function with additional hypotheses and ¢ € R.
For special pairs (A, €), we recover Dunkl’s, Heckman’s and Cherednik’s operators (in one
dimension).

As, by construction, the operators Aa . are mixture of d/dx and reflection operators, we
prove the existence of an operator V4 ¢ so that Ag ¢ oV e =Va ¢ od/dx. The positivity of
the intertwining operator V4 ¢ is also established.

Via the eigenfunctions of A4, we introduce a generalized Fourier transform .%#4 .. For

2

—1<e<landO0<p< Pt we develop an LP-Fourier analysis for %4 ¢, and then
—&

we prove an LP-Schwartz space isomorphism theorem for .%4 ;.
Details of this paper will be given in other articles [3] and [4].
© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access
article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

RESUME

Nous introduisons et étudions des opérateurs différentiels aux différences A, . agissant
sur les fonctions réguliéres définies sur R. Ici A est une fonction de Sturm-Liouville avec
des hypothéses supplémentaires et & € R. Pour des cas particuliers de paires (A, ), nous
obtenons les opérateurs de Dunkl, de Heckman et de Cherednik (unidimensionnels).
Comme, par construction, les opérateurs A4 entremélent d/dx et des opérateurs de
réflexion, nous prouvons qu'il existe un opérateur V4 tel que ApgoVae=Vaeod/dx.
La positivité de I'opérateur V4 . a été établie.

A Tl'aide des fonctions propres de A4 e, nous introduisons une transformée de Fourier
généralisée %4 .. Nous développons de I'analyse de Fourier de type LP pour %4 . quand
—l1<e<letO<p< ; 2 , et nous caractérisons lI'image des p-espaces de Schwartz

par Fae.
Les détails seront publiés dans d’autres articles [3] et [4].
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1. A family of differential-reflection operators

It became apparent long ago that radial Fourier analysis on real-rank-one symmetric spaces is closely connected to
certain classes of special functions in one variable:

- Bessel functions in connection with radial Fourier analysis on Euclidean spaces,
- Jacobi functions in connection with radial Fourier analysis on hyperbolic spaces.

We refer to [12] for a detailed exposition.
In the late 80’s/early 90’s Dunkl [10] found a remarkable family of commuting operators that now bear his name. In one
dimension, this reads

Do f(x) = f'(0) + 5
The eigenfunctions of Dunkl’s operators, known as the Dunkl kernel, are the nonsymmetric version of Bessel functions.
Some years after [10], in [8] Cherednik wrote down a trigonometric variant of the Dunkl operator. In one dimension, this
reads

f&®) = f(=x
2

where a > 8 > —1/2, « # —1/2, and o = o + B + 1. The eigenfunctions of Cherednik’s operators, known as the Opdam
functions [14], are the nonsymmetric version of the Jacobi functions. We mention that the trigonometric Dunkl operators
were originally introduced by Heckman [11] in a different form. In one dimension, his operator reads:

fx) - f(—X)>
— )

This paper gives some aspects of harmonic analysis associated with the following family of one dimensional
(A, g)-operators

Topfx)= e+ {(20{ + 1) cothx+ 28 + 1)tanhx} ( ) —of(—x), (1.2)

SapfX) = o)+ {(20{ + 1)cothx+ 28 + l)tanhx} <

A s
Apefx)=f'(x)+ ) <f(") f(=%)

A(x) 2
where ¢ e R and A : R — R™ satisfies the following conditions (cf. [5,6,16]):

) —e0f(=x),

(C1) A(x) = |x|2@*1B(x), where o > —% and B € C*°(R) is even, positive, and B(0) = 1.

(C2) On R* \ {0}, A is increasing, whereas A’/A is decreasing. This condition implies that the limit ¢ := “T A'(x)/
X—+00

2A(x) > 0 exists.
(C3) There exists a constant § > 0 such that for x > 0,

_8x .
A _ 220+el D(x) if 0 >0, (13
AX) ot +e D) if o=0,

X

with [D® (x)| < ¢ for all x>>0 and k € N.

The function A and the real number ¢ are the deformation parameters giving back the above three operators (as special
examples) when:

(1) A(x) = Aq(x) = |x|2**! and & arbitrary (Dunkl’s operators Dy ),
(2) A(%) = Aw,p(®) = | sinh x|?**1(coshx)?#*! and & =0 (Heckman'’s operators Sq g),
(3) A(%) = Agp(x) = | sinhx|>**1(coshx)?#*1 and & =1 (Cherednik’s operators Ty g).

Let A € C and consider the initial data problem

Apef)=irfx),  fO)=1, (14)
where f:R — C. We prove that:

Theorem 1.1.

I) For A € C, there exists a unique solution W4 ¢ (A, -) to the problem (1.4). Further, for every x € R, the function A > Wa ¢ (A, X) is
analytic on C.
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I1) Under the restriction —1 < & <1, for all x € R we have:
1) for » € R, we have |Wy ¢ (A, X)| < /2.
2) for A € iR, we have W4 ¢ (A, x) > 0.
3) Assume that 1 € C and |x| > xg with xg > 0. Then

O Wpe 00| = cCaf + DN (x| + el mH—e 11D
4) Assume that A € C and x € R. Then

01w, 01, 0] < €lxM (1 + DyellimH-e( VI

Sketch of Proof. 1) The proof is based on the following facts:

Fact 1) Under the conditions (C1) and (C2), the Cauchy problem

{ B0+ 58 0 = —(1? + 02)h(X) )

h()=1, R (0)=0,

with @ € C, admits a unique solution, which we denote by ¢, (see [6,7]).
Fact 2) Define . so that u2 =22 + (62 — 1)g2. For iA # gg, the function

1

W (A, X) = X))+ —o, (%), 1.6

e 0= 0, 00 1, () (16)
satisfies the problem (1.4).

Fact 3) We may rewrite (1.6) as

x|

Wae(h, X) = @u, () + (L +£0) % Pu. (A dt, (1.7)
0

which implies that A +— W4 (X, x) is analytic, and therefore the restriction on A can be dropped. The uniqueness
follows by standard arguments.

I1.1) The proof is inspired by Opdam’s proof of Proposition 6.1 in [14]. Using the fact that W4 . satisfies

A'(x)
2A(x)

Wh O = =2 (Wa e G X) = Wa s =) ) + £0Wa e (hs —X) + MW e (1, ), (18)

we prove that for all x e R, the derivative {|\IlA,€()L, )2 + |\IJA,8(A,X)|2}' < 0. This implies that for x e RT, we have
[Wae(, =012+ Wa e, 0)|? < [Wae(h, 0 + [Wa e, 0)]* =2.

11.2) Assume that Wa ¢ (A, -) is not strictly positive. Since W4 ¢(A,0) =1 > 0, it follows that W4 ¢ (A, -) vanishes. Let xo be a
zero of Wa (1, ) so that [xo| =inf{|x| : Wa(%,x) =0}. We prove that W4 (%, £x0) =0 and W (%, +xo) = 0. Differen-
tiating (1.8), we see that the second derivative of W4 (A, -) vanishes at +xo. Repeating the same argument over and over
again to get \I//E‘k?S (A, £x0) =0 for all k € N. Since W4 (%, ) is a real analytic function, we deduce that W4 ¢ (A, x) =0 for all
x € R. This contradicts W4 ¢(%,0) =1.

I1.3) If N =0 we show that for A € C we have

[Wae(h, X)| < Wa (0, x) el MAIX (1.9)

where W4 ¢(0,%) =1 for £ =0, and Wy ¢(0,x) < e (Jx| + 1) e @1=V1=e)lXl for ¢ £ 0, So assume N > 1. The identity (1.8)
allows us to express the derivatives of W4 (1, -) in terms of lower-order derivatives. On the other hand, since A’/(2A)
satisfies the condition (C3), it follows that

A'(X) (N)
<2A(X))
I1.4) If M =0 this is just (1.9). So assume M > 1. If x =0, the statement follows from Liouville’s theorem. If x # 0, apply

Cauchy’s integral formula for W4 (X, x) over a circle with radius proportional to I:lc_l centered at A in the complex plane. O

<C, Y |x| > xo with xg > 0.
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2. The existence and the positivity of an intertwining operator
Recall from the (sketch of) proof of Theorem 1.1.I the function ¢, which is the unique solution to the Cauchy problem
(1.5). By [6] we have the following Laplace type representation
x|
Pux) = / K(xl, y)cos(uy)dy — xeR*, (21)
0

where K(|x|,-) is a non-negative even continuous function supported in [—|x|, |x|]. Using a Delsarte type operator introduced
in [15, Proposition 2.1] (see also Theorem 5.1 in [13]), we prove that the integral representation (2.1) can be rewritten as

]
(p,Ls(x):fl(E(lxl,y)cos(Ay)dy x e R*, (2.2)
0

where the relationship between i, and A is given by u2 = A2+ (g2 —1)0?. Here K.(|x|, -) is even, continuous and supported
in [—|x[, |x|]. Now, in view of the expression (1.7) of the eigenfunction W4 ¢ (1, x), we deduce that

Wae(h,x)= [ Ke(x, y)e*dy  xeR*, (2.3)
lyl<Ix

where K¢ (x,-) is a continuous function supported in [—|x|, |x|]. This integral representation of W4 ¢(,x) is the starting
point for obtaining an intertwining operator between the operator A, . and the ordinary derivative d/dx. More precisely,
for f € C*°(R), we define V4 ¢ f by

Ke(x, ) f(y)dy x#0
Vaef @)= qy<x (2.4)

f©) x=0,

where the kernel K¢ (x, y) is as in (2.3).

Theorem 2.1.

1) The operator V 4 ¢ is the unique automorphism of C*°(R) such that
d
ApegoVae=Vago—. (2.5)
dx
2) Forall (x, y) € R* x R, the kernel K¢ (x, y) is positive.
The positivity of V4 . played a fundamental role in [2] in establishing an analogue of Beurling’s theorem, and its relatives

such as theorems of type Gelfand-Shilov, Morgan’s, Hardy’s, and Cowling-Price in the setting of this paper.
For € =0 and 1, the positivity of K. (x, y) can be found in [17] and [18].

Sketch of Proof of Theorem 2.1. 1) Write f as the superposition f = fe + f, of an even function f. and an odd function f,.
We prove that V4 ¢ can be expressed as

Vaef(o) = (id +egM) o Ag fe(X) + Mo Ag fL(x), (2.6)
where
® x|
. 58
Mh) = [ hOA@
0
and

1
Acf) =5 f Ke(Ixl, y) f(y)dy,
Iyl <Ix]
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with K¢(|x], y) is as in (2.2). The transform M is an isomorphism from C°(R) to CJ°(R) and its inverse is given by

M1=44 ’:/((;‘)) id, while A, is an automorphism of C3°(R). Further, (d?/dx? + (A’/A)(x)d/dx) o A = A, o (d?/dx* — £20?)
and Aa e o M =id+eoM. Now, the first statement follows from (2.6). The uniqueness of V4 ¢ is due to the fact that the
unique solution W4 . to the problem (1.4) can be written as Wa ¢ (X, X) = VA,S(e“')(x) (see (2.3)).
2) For a linear operator L on 2(R) we denote by ‘L its dual operator in the sense that fR Lf(x)g(x)A(x)dx =
Jr F() 'Lg(y)dy.
It is more convenient to deal with the dual operator 'V, . than with Va.. For g € 2(R), we have 'V .g(y) =
-2

f‘xl>|y|K£(X, ¥)g(x)A(x) dx. We shall prove that if g >0 then 'V, .g > 0. For s >0 and u,v € R, let ps(u,v) := &—— 2\/%

be the Euclidean heat kernel. The key observation is that

fg(X)VA,s(Ps(u, )X AX) dx Z/tVA,ag(X)Ps(X, wWdx=("Vaeg* g) ) > Varg)
R R

as s — 0, where ¢s(r) := ps(r,0) and * is the Euclidean convolution product. Thus, the positivity of 'V 4 . g reduces to the
positivity of V4 ¢(ps(u, -)). Now, by (2.4) and (2.3) we prove that for every s > 0 and u, x € R, we have

1 .
Vaspsi D0 = 5= [(Was-a0e s das,
R
which allowed us to show that V4 ¢(ps(u,-))(x) >0. O

3. LP-Fourier analysis
For f e LI(R, A(x)dx) put

Faef)= / FEOWe (1, —x)A(x) dx, (3.1)
R

which is well defined by Theorem 1.1.IL.1

— 2 =2 _1_./1—¢2 2 .
For —-1<e¢<landO<p=< et set ¥p e = 5 1 1 —&4. Observe that 1 < o < 2. We introduce the tube

domain

Cpe={reC||ImA| <0 Vp.}.

p . 2 . .
Theorem 3.1. Let f € LP(R, A(x)dx) with1 <p < el Then the following properties hold.

1) For p > 1, the Fourier transform %4 ¢(f)(%) is well defined for all A in (f?p,s, the interior of Cp .. Moreover, for all 1 € @p,g, we
have | 4. (f)(M)| < cl| fllp. For p =1, we may replace above the open domain CP,S by Cp e.
2) The function #4 ¢ (f) is holomorphic on Cp,g.
3) (Riemann-Lebesgue lemma) We have  lim | Fae(fHW)|=0.
reCp e, |A[—00

4) The Fourier transform %4  is injective on LP(R, A(x)dx) for 1 <p < 2

14+v/1-62"

Sketch of Proof. The first two statements follow from the estimate of W4 ¢(A,x) given in Theorem 1.1.IL.4 (with N =0),
the fact that A(x) < c|x|? e22¥! (a consequence of the hypothesis (C3) on the function A), the fact that W, . (,-) is holo-
morphic in A, and Morera’s theorem. To extend the first statement from C, . to Cp . when p = 1, in addition, we show
that [Wa ¢(X,x)| <2 for all A € Cq¢ and for all x € R. The proof uses the maximum modulus principle and the fact that
[Wae(X,X)| <Wa(iImA, x). For the Riemann-Lebesgue lemma, a classical proof for the Euclidean Fourier transform carries
over. The forth statement is based on the following steps:

Step 1) For f € LP(R, A(x)dx) et g € Z2(R), we show, by means of Holder’s inequality and the first statement, that the
mappings f > (f, 84 = [ fFOg(—0)AX dx and f > (Fae(f), Fae(@)n, = [p egA,a(f)(A)ng,e(g)(k)(l -

%’)ﬂg(dk) are continuous functionals on LP(R, A(x)dx). Here m. is a positive measure with support R \

1-v1—¢g20,v/1—¢&29l.
Step 2) We show that (f, 8)a = (Fa.e(f). Fa.e(@)r, forall f,ge P(R). Thus, by Step 1), (f, 8)a = (Fa.e(f), Fa.e(@)r,
for all f € LP(R, A(x) dx).
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Hence, if we assume that f € LP(R, A(x)dx) and that %4 (f) =0, then for all g € Z(R), we have (f, g)a =0 and therefore
f=0. O

For —-1<e¢<landO<p< , denote by ., (R) the space consisting of all functions f € C*°(R) such that

1\/

oD (f) = sup(x| + 1)° €7 | F 9 ()] < 00 (3.2)
xeR

for any s,k € N. The topology of .#,(R) is defined by the seminorms cr(p ). The space Z(R) of smooth functions with
compact support on R is a dense subspace of ., (R); see for instance [9, Appendlx Al.
Let (Cp.¢) be the Schwartz space consisting of all complex valued functions h that are analytic in the interior of Cp ¢,
and such that h together with all its derivatives extend continuously to Cp . and satisfy
»
o () = sup (A1 + D ROG)] < 00 (33)

reCp e

for any t, ¢ € N. The topology of .”(C, ) is defined by the seminorms 1:( pe),

Using Anker’s approach [1], we prove the following result:

Theorem 3.2. et —1 <e<1landO0<p < 1+/%' Then the Fourier transform .7 ¢ is a topological isomorphism between .7, (R)
=&

and 7 (Cp ¢).

Sketch of Proof. The proof is based on the following steps:

Step 1) The transform .#4  maps .%;(R) continuously into .#(C, ¢) and is injective.
Step 2) The inverse Fourier transform EA‘}; :PW(C) — 2(R) given by

e _¢te
Fplheo = cf hGIWae (k0 (1 = ) e (dh)
R

is continuous for the topologies induced by .(Cp.) and .#»(R). Here PW(C) is the space of entire func-
tions on C which are of exponential type and rapidly decreasing, and m; is a positive measure with support
R\ ]-v1—¢20,+/1 —g2p[. We pin down that PW (C) is dense in .#(Cp ¢).

For Step 1), we prove that .#4 ¢(f) is well defined for all f € .#)(R). This is due to the growth estimates for W4 . (%, x)
stated in Theorem 1.1.IL4. Moreover, since the map A = W4 ¢ (1, x) is holomorphic on C, it follows that for all f € ., (R),
the function .%4 ¢(f) is analytic in the interior of C, ¢, and continuous on C, .. Finally, we prove that given a continuous
seminorm 7 on .*(Cp ), there exists a continuous seminorm o on .#, (R) such that (%4 ¢(f)) <co (f) for all f € .#,(R).
Indeed, by means of the growth estimates for af W4 (A, x) stated in Theorem 1.1.IL.4, we show first that

H(ix)f@,g(f)(x)}“)( < c/ ATy FGO (] & 1) e mal=e0=VT=) 4 4y d,
R

and then we prove that |qu’6f(x)| is bounded by finite sums of the derivatives of f. Thus 7(F4¢(f)) <€) fnite @ (f) for
all f € .#p(R). The injectivity of .#4 ¢ on .#»(R) follows from Theorem 3.1.4 and the fact that .%,(R) C LY(R, A(x)dx) for
all g < oo so that p <q.

For Step 2), we start by proving a Paley-Wiener theorem for .74 ¢, i.e. we prove that %, is a linear isomorphism
between the space Zg(R) of smooth compactly supported functions with support inside [—R, R] and the space PWg(C) of
entire functions that are of R-exponential type and rapidly decreasing. We note that PW (C) = Ug-oPWRg(C).

Next, we take f € Z(R) and h € PW(C) so that f = fil(h). Denote by g the image of h by the inverse Euclidean
Fourier transform 9‘;11. Making use of the Paley-Wiener theorem for .%#4 . and the classical Paley-Wiener theorem for
Zeuc» We have the following support conservation property: supp(f) C Ig :=[—R, R] < supp(g) C Ig.

For j e N1, let wj e C*°(R) with w; =0 on Ij_; and w;j =1 outside of I;. Assume that w; and all its derivatives are
bounded, uniformly in j. We write g; = wjg, and define hj := .Feyc(g;) and f; := ﬂA‘;(hj). Note that g;j = g outside ;.
Hence, by the above support property, f; = f outside ;.

In view of the growth estimate for aff\l/Aqg()L,x) stated in Theorem 1.1.IL.3, we prove that for all j € N>q,

(Dp.e)

sup (x| +1)° ¢ If(")(X)I<CZf ().

xelj\Ij —0
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for some integer t > 0. For I, we show first that there exists an integer my > 1 such that
|05 Wae (k. 0] < (Al + D™ (Ix] + 1) e 0N, (34)

for A € R such that |A| > /1 — g2p. Then, using the compactness of I;, we prove that

sup(lx| +1)° 72 | 1 )] < et Q)

xely

for some integer t > 0. O

Details of this paper will be given in other articles [3] and [4].
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