
C. R. Acad. Sci. Paris, Ser. I 354 (2016) 510–516
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Harmonic analysis

Lp harmonic analysis for differential-reflection operators

Salem Ben Saïd a, Asma Boussen b, Mohamed Sifi b

a Institut Élie Cartan de Lorraine, Université de Lorraine, BP 239, 54506 Vandœuvre-Lès-Nancy, France
b Université de Tunis El Manar, Faculté des sciences de Tunis, LR11ES11 Laboratoire d’analyse mathématiques et applications, 2092 Tunis, 
Tunisia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 July 2015
Accepted after revision 26 January 2016

Presented by the Editorial Board

We introduce and study differential-reflection operators �A,ε acting on smooth functions 
defined on R. Here A is a Sturm–Liouville function with additional hypotheses and ε ∈ R. 
For special pairs (A, ε), we recover Dunkl’s, Heckman’s and Cherednik’s operators (in one 
dimension).
As, by construction, the operators �A,ε are mixture of d/dx and reflection operators, we 
prove the existence of an operator V A,ε so that �A,ε ◦ V A,ε = V A,ε ◦ d/dx. The positivity of 
the intertwining operator V A,ε is also established.
Via the eigenfunctions of �A,ε , we introduce a generalized Fourier transform FA,ε . For 
−1 ≤ ε ≤ 1 and 0 < p ≤ 2

1+
√

1−ε2
, we develop an Lp-Fourier analysis for FA,ε , and then 

we prove an Lp-Schwartz space isomorphism theorem for FA,ε .
Details of this paper will be given in other articles [3] and [4].

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous introduisons et étudions des opérateurs différentiels aux différences �A,ε agissant 
sur les fonctions régulières définies sur R. Ici A est une fonction de Sturm–Liouville avec 
des hypothèses supplémentaires et ε ∈ R. Pour des cas particuliers de paires (A, ε), nous 
obtenons les opérateurs de Dunkl, de Heckman et de Cherednik (unidimensionnels).
Comme, par construction, les opérateurs �A,ε entremêlent d/dx et des opérateurs de 
réflexion, nous prouvons qu’il existe un opérateur V A,ε tel que �A,ε ◦ V A,ε = V A,ε ◦ d/dx. 
La positivité de l’opérateur V A,ε a été établie.
À l’aide des fonctions propres de �A,ε , nous introduisons une transformée de Fourier 
généralisée FA,ε . Nous développons de l’analyse de Fourier de type Lp pour FA,ε quand 
−1 ≤ ε ≤ 1 et 0 < p ≤ 2

1+
√

1−ε2
, et nous caractérisons l’image des p-espaces de Schwartz 

par FA,ε .
Les détails seront publiés dans d’autres articles [3] et [4].

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. A family of differential-reflection operators

It became apparent long ago that radial Fourier analysis on real-rank-one symmetric spaces is closely connected to 
certain classes of special functions in one variable:

– Bessel functions in connection with radial Fourier analysis on Euclidean spaces,
– Jacobi functions in connection with radial Fourier analysis on hyperbolic spaces.

We refer to [12] for a detailed exposition.
In the late 80’s/early 90’s Dunkl [10] found a remarkable family of commuting operators that now bear his name. In one 

dimension, this reads

Dα f (x) = f ′(x) + 2α + 1

x

(
f (x) − f (−x)

2

)
α ≥ −1/2. (1.1)

The eigenfunctions of Dunkl’s operators, known as the Dunkl kernel, are the nonsymmetric version of Bessel functions.
Some years after [10], in [8] Cherednik wrote down a trigonometric variant of the Dunkl operator. In one dimension, this 

reads

Tα,β f (x) = f ′(x) +
{
(2α + 1) coth x + (2β + 1) tanh x

}(
f (x) − f (−x)

2

)
− � f (−x), (1.2)

where α ≥ β ≥ −1/2, α �= −1/2, and � = α + β + 1. The eigenfunctions of Cherednik’s operators, known as the Opdam 
functions [14], are the nonsymmetric version of the Jacobi functions. We mention that the trigonometric Dunkl operators 
were originally introduced by Heckman [11] in a different form. In one dimension, his operator reads:

Sα,β f (x) = f ′(x) +
{
(2α + 1) coth x + (2β + 1) tanh x

}(
f (x) − f (−x)

2

)
.

This paper gives some aspects of harmonic analysis associated with the following family of one dimensional 
(A, ε)-operators

�A,ε f (x) = f ′(x) + A′(x)

A(x)

(
f (x) − f (−x)

2

)
− ε� f (−x),

where ε ∈ R and A :R →R
+ satisfies the following conditions (cf. [5,6,16]):

(C1) A(x) = |x|2α+1 B(x), where α > − 1
2 and B ∈ C∞(R) is even, positive, and B(0) = 1.

(C2) On R+ \ {0}, A is increasing, whereas A′/A is decreasing. This condition implies that the limit � := lim
x→+∞ A′(x)/

2A(x) ≥ 0 exists.
(C3) There exists a constant δ > 0 such that for x 
 0,

A′(x)

A(x)
=

⎧⎨
⎩

2� + e−δx D(x) if � > 0,

2α + 1

x
+ e−δx D(x) if � = 0,

(1.3)

with |D(k)(x)| ≤ ck for all x 
 0 and k ∈ N.

The function A and the real number ε are the deformation parameters giving back the above three operators (as special 
examples) when:

(1) A(x) = Aα(x) = |x|2α+1 and ε arbitrary (Dunkl’s operators Dα ),
(2) A(x) = Aα,β(x) = | sinh x|2α+1(cosh x)2β+1 and ε = 0 (Heckman’s operators Sα,β ),
(3) A(x) = Aα,β(x) = | sinh x|2α+1(cosh x)2β+1 and ε = 1 (Cherednik’s operators Tα,β ).

Let λ ∈C and consider the initial data problem

�A,ε f (x) = iλ f (x), f (0) = 1, (1.4)

where f :R →C. We prove that:

Theorem 1.1.

I) For λ ∈ C, there exists a unique solution 	A,ε(λ, ·) to the problem (1.4). Further, for every x ∈ R, the function λ �→ 	A,ε(λ, x) is 
analytic on C.
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II) Under the restriction −1 ≤ ε ≤ 1, for all x ∈R we have:
1) for λ ∈R, we have |	A,ε(λ, x)| ≤ √

2.
2) for λ ∈ iR, we have 	A,ε(λ, x) > 0.
3) Assume that λ ∈C and |x| ≥ x0 with x0 > 0. Then∣∣∣∂N

x 	A,ε(λ, x)
∣∣∣ ≤ c(|λ| + 1)N(|x| + 1)e(| Im λ|−�(1−

√
1−ε2)) |x|.

4) Assume that λ ∈C and x ∈R. Then∣∣∣∂M
λ 	A,ε(λ, x)

∣∣∣ ≤ c|x|M(|x| + 1)e(| Im λ|−�(1−
√

1−ε2)) |x|.

Sketch of Proof. I) The proof is based on the following facts:

Fact 1) Under the conditions (C1) and (C2), the Cauchy problem{
h′′(x) + A′(x)

A(x) h′(x) = −(μ2 + �2)h(x)

h(0) = 1, h′(0) = 0,
(1.5)

with μ ∈C, admits a unique solution, which we denote by ϕμ (see [6,7]).
Fact 2) Define με so that μ2

ε = λ2 + (ε2 − 1)�2. For iλ �= ε�, the function

	A,ε(λ, x) := ϕμε (x) + 1

iλ − ε�
ϕ′

με
(x), (1.6)

satisfies the problem (1.4).
Fact 3) We may rewrite (1.6) as

	A,ε(λ, x) = ϕμε (x) + (iλ + ε�)
sg(x)

A(x)

|x|∫
0

ϕμε (t)A(t)dt, (1.7)

which implies that λ �→ 	A,ε(λ, x) is analytic, and therefore the restriction on λ can be dropped. The uniqueness 
follows by standard arguments.

II.1) The proof is inspired by Opdam’s proof of Proposition 6.1 in [14]. Using the fact that 	A,ε satisfies

	 ′
A,ε(λ, x) = − A′(x)

2A(x)

(
	A,ε(λ, x) − 	A,ε(λ,−x)

)
+ ε�	A,ε(λ,−x) + iλ	A,ε(λ, x), (1.8)

we prove that for all x ∈ R
+ , the derivative 

{|	A,ε(λ, −x)|2 + |	A,ε(λ, x)|2}′ ≤ 0. This implies that for x ∈ R
+ , we have 

|	A,ε(λ, −x)|2 + |	A,ε(λ, x)|2 ≤ |	A,ε(λ, 0)|2 + |	A,ε(λ, 0)|2 = 2.
II.2) Assume that 	A,ε(λ, ·) is not strictly positive. Since 	A,ε(λ, 0) = 1 > 0, it follows that 	A,ε(λ, ·) vanishes. Let x0 be a 
zero of 	A,ε(λ, ·) so that |x0| = inf

{|x| : 	A,ε(λ, x) = 0
}

. We prove that 	A,ε(λ, ±x0) = 0 and 	 ′
A,ε(λ, ±x0) = 0. Differen-

tiating (1.8), we see that the second derivative of 	A,ε(λ, ·) vanishes at ±x0. Repeating the same argument over and over 
again to get 	(k)

A,ε(λ, ±x0) = 0 for all k ∈ N. Since 	A,ε(λ, ·) is a real analytic function, we deduce that 	A,ε(λ, x) = 0 for all 
x ∈R. This contradicts 	A,ε(λ, 0) = 1.
II.3) If N = 0 we show that for λ ∈ C we have

|	A,ε(λ, x)| ≤ 	A,ε(0, x) e| Im λ| |x|, (1.9)

where 	A,ε(0, x) = 1 for ε = 0, and 	A,ε(0, x) ≤ cε(|x| + 1) e−�(1−
√

1−ε2)|x| for ε �= 0. So assume N ≥ 1. The identity (1.8)
allows us to express the derivatives of 	A,ε(λ, ·) in terms of lower-order derivatives. On the other hand, since A′/(2A)

satisfies the condition (C3), it follows that∣∣∣∣∣
(

A′(x)

2A(x)

)(N)
∣∣∣∣∣ ≤ C, ∀ |x| ≥ x0 with x0 > 0.

II.4) If M = 0 this is just (1.9). So assume M ≥ 1. If x = 0, the statement follows from Liouville’s theorem. If x �= 0, apply 
Cauchy’s integral formula for 	A,ε(λ, x) over a circle with radius proportional to 1

|x| , centered at λ in the complex plane. �
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2. The existence and the positivity of an intertwining operator

Recall from the (sketch of) proof of Theorem 1.1.I the function ϕμ which is the unique solution to the Cauchy problem 
(1.5). By [6] we have the following Laplace type representation

ϕμ(x) =
|x|∫

0

K (|x|, y) cos(μy)dy x ∈R
∗, (2.1)

where K (|x|, ·) is a non-negative even continuous function supported in [−|x|, |x|]. Using a Delsarte type operator introduced 
in [15, Proposition 2.1] (see also Theorem 5.1 in [13]), we prove that the integral representation (2.1) can be rewritten as

ϕμε (x) =
|x|∫

0

Kε(|x|, y) cos(λy)dy x ∈R
∗, (2.2)

where the relationship between με and λ is given by μ2
ε = λ2 +(ε2 −1)�2. Here Kε(|x|, ·) is even, continuous and supported 

in [−|x|, |x|]. Now, in view of the expression (1.7) of the eigenfunction 	A,ε(λ, x), we deduce that

	A,ε(λ, x) =
∫

|y|<|x|
Kε(x, y)eiλydy x ∈ R

∗, (2.3)

where Kε(x, ·) is a continuous function supported in [−|x|, |x|]. This integral representation of 	A,ε(λ, x) is the starting 
point for obtaining an intertwining operator between the operator �A,ε and the ordinary derivative d/dx. More precisely, 
for f ∈ C∞(R), we define V A,ε f by

V A,ε f (x) =

⎧⎪⎪⎨
⎪⎪⎩

∫
|y|<|x|

Kε(x, y) f (y)dy x �= 0

f (0) x = 0,

(2.4)

where the kernel Kε(x, y) is as in (2.3).

Theorem 2.1.

1) The operator V A,ε is the unique automorphism of C∞(R) such that

�A,ε ◦ V A,ε = V A,ε ◦ d

dx
. (2.5)

2) For all (x, y) ∈ R
∗ ×R, the kernel Kε(x, y) is positive.

The positivity of V A,ε played a fundamental role in [2] in establishing an analogue of Beurling’s theorem, and its relatives 
such as theorems of type Gelfand–Shilov, Morgan’s, Hardy’s, and Cowling–Price in the setting of this paper.

For ε = 0 and 1, the positivity of Kε(x, y) can be found in [17] and [18].

Sketch of Proof of Theorem 2.1. 1) Write f as the superposition f = fe + fo of an even function fe and an odd function fo. 
We prove that V A,ε can be expressed as

V A,ε f (x) =
(

id+ε�M
)

◦Aε fe(x) +M ◦Aε f ′
o(x), (2.6)

where

Mh(x) := sg(x)

A(x)

|x|∫
0

h(t)A(t)dt

and

Aε f (x) := 1

2

∫
Kε(|x|, y) f (y)dy,
|y|<|x|
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with Kε(|x|, y) is as in (2.2). The transform M is an isomorphism from C∞
e (R) to C∞

o (R) and its inverse is given by 
M

−1 = d
dx + A′(x)

A(x) id, while Aε is an automorphism of C∞
e (R). Further, (d2/dx2 + (A′/A)(x)d/dx) ◦Aε = Aε ◦ (d2/dx2 − ε2�2)

and �A,ε ◦ M = id+ε�M. Now, the first statement follows from (2.6). The uniqueness of V A,ε is due to the fact that the 
unique solution 	A,ε to the problem (1.4) can be written as 	A,ε(λ, x) = V A,ε( eiλ ·)(x) (see (2.3)).

2) For a linear operator L on D(R) we denote by t L its dual operator in the sense that 
∫
R

L f (x)g(x)A(x)dx =∫
R

f (y) t Lg(y)dy.
It is more convenient to deal with the dual operator t V A,ε than with V A,ε . For g ∈ D(R), we have t V A,ε g(y) =∫

|x|>|y| Kε(x, y)g(x)A(x) dx. We shall prove that if g ≥ 0 then t V A,ε g ≥ 0. For s > 0 and u, v ∈ R, let ps(u, v) := e− (u−v)2
4s

2
√

π s
be the Euclidean heat kernel. The key observation is that∫

R

g(x)V A,ε(ps(u, .))(x)A(x)dx =
∫
R

t V A,ε g(x)ps(x, u)dx = (t V A,ε g ∗ qs)(u) → t V A,ε g(u)

as s → 0, where qs(r) := ps(r, 0) and ∗ is the Euclidean convolution product. Thus, the positivity of t V A,ε g reduces to the 
positivity of V A,ε(ps(u, ·)). Now, by (2.4) and (2.3) we prove that for every s > 0 and u, x ∈ R, we have

V A,ε(ps(u, ·))(x) = 1

2π

∫
R

	A,ε(−λ, x)e−sλ2
eiλu dλ,

which allowed us to show that V A,ε(ps(u, ·))(x) ≥ 0. �
3. L p-Fourier analysis

For f ∈ L1(R, A(x) dx) put

FA,ε f (λ) =
∫
R

f (x)	ε(λ,−x)A(x)dx, (3.1)

which is well defined by Theorem 1.1.II.1
For −1 ≤ ε ≤ 1 and 0 < p ≤ 2

1+
√

1−ε2
, set ϑp,ε := 2

p − 1 −√
1 − ε2. Observe that 1 ≤ 2

1+
√

1−ε2
≤ 2. We introduce the tube 

domain

Cp,ε := {λ ∈C | | Im λ| ≤ � ϑp,ε}.

Theorem 3.1. Let f ∈ Lp(R, A(x) dx) with 1 ≤ p ≤ 2
1+

√
1−ε2

. Then the following properties hold.

1) For p > 1, the Fourier transform FA,ε( f )(λ) is well defined for all λ in C̊p,ε , the interior of Cp,ε . Moreover, for all λ ∈ C̊p,ε , we 
have |FA,ε( f )(λ)| ≤ c‖ f ‖p . For p = 1, we may replace above the open domain C̊p,ε by Cp,ε .

2) The function FA,ε( f ) is holomorphic on C̊p,ε .
3) (Riemann–Lebesgue lemma) We have lim

λ∈C̊p,ε ,|λ|→∞
|FA,ε( f )(λ)| = 0.

4) The Fourier transform FA,ε is injective on Lp(R, A(x) dx) for 1 ≤ p ≤ 2
1+

√
1−ε2

.

Sketch of Proof. The first two statements follow from the estimate of 	A,ε(λ, x) given in Theorem 1.1.II.4 (with N = 0), 
the fact that A(x) ≤ c|x|β e2�|x| (a consequence of the hypothesis (C3) on the function A), the fact that 	A,ε(λ, ·) is holo-
morphic in λ, and Morera’s theorem. To extend the first statement from C̊p,ε to Cp,ε when p = 1, in addition, we show 
that |	A,ε(λ, x)| ≤ 2 for all λ ∈ C1,ε and for all x ∈ R. The proof uses the maximum modulus principle and the fact that 
|	A,ε(λ, x)| ≤ 	A,ε(i Imλ, x). For the Riemann–Lebesgue lemma, a classical proof for the Euclidean Fourier transform carries 
over. The forth statement is based on the following steps:

Step 1) For f ∈ Lp(R, A(x) dx) et g ∈ D(R), we show, by means of Hölder’s inequality and the first statement, that the 
mappings f �→ ( f , g)A := ∫

R
f (x)g(−x)A(x) dx and f �→ (FA,ε( f ), FA,ε(g))πε := ∫

R
FA,ε( f )(λ)FA,ε(g)(λ)

(
1 −

ε�
iλ

)
πε( dλ) are continuous functionals on Lp(R, A(x) dx). Here πε is a positive measure with support R \

]−√
1 − ε2�, 

√
1 − ε2�[.

Step 2) We show that ( f , g)A = (FA,ε( f ), FA,ε(g))πε for all f , g ∈ D(R). Thus, by Step 1), ( f , g)A = (FA,ε( f ), FA,ε(g))πε

for all f ∈ Lp(R, A(x) dx).
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Hence, if we assume that f ∈ Lp(R, A(x) dx) and that FA,ε( f ) = 0, then for all g ∈ D(R), we have ( f , g)A = 0 and therefore 
f = 0. �

For −1 ≤ ε ≤ 1 and 0 < p ≤ 2
1+

√
1−ε2

, denote by Sp(R) the space consisting of all functions f ∈ C∞(R) such that

σ
(p)

s,k ( f ) := sup
x∈R

(|x| + 1)s e
2
p �|x| | f (k)(x)| < ∞ (3.2)

for any s, k ∈ N. The topology of Sp(R) is defined by the seminorms σ (p)

s,k . The space D(R) of smooth functions with 
compact support on R is a dense subspace of Sp(R); see for instance [9, Appendix A].

Let S (Cp,ε) be the Schwartz space consisting of all complex valued functions h that are analytic in the interior of Cp,ε , 
and such that h together with all its derivatives extend continuously to Cp,ε and satisfy

τ
(ϑp,ε)

t,� (h) := sup
λ∈Cp,ε

(|λ| + 1)t |h(�)(λ)| < ∞ (3.3)

for any t, � ∈N. The topology of S (Cp,ε) is defined by the seminorms τ (ϑp,ε )

t,� .
Using Anker’s approach [1], we prove the following result:

Theorem 3.2. Let −1 ≤ ε ≤ 1 and 0 < p ≤ 2
1+

√
1−ε2

. Then the Fourier transform FA,ε is a topological isomorphism between Sp(R)

and S (Cp,ε).

Sketch of Proof. The proof is based on the following steps:

Step 1) The transform FA,ε maps Sp(R) continuously into S (Cp,ε) and is injective.
Step 2) The inverse Fourier transform F−1

A,ε : P W (C) −→ D(R) given by

F−1
A,εh(x) = c

∫
R

h(λ)	A,ε(λ, x)
(

1 − ε�

iλ

)
πε(dλ)

is continuous for the topologies induced by S (Cp,ε) and Sp(R). Here P W (C) is the space of entire func-
tions on C which are of exponential type and rapidly decreasing, and πε is a positive measure with support 
R \ ]−√

1 − ε2�, 
√

1 − ε2�[. We pin down that P W (C) is dense in S (Cp,ε).

For Step 1), we prove that FA,ε( f ) is well defined for all f ∈ Sp(R). This is due to the growth estimates for 	A,ε(λ, x)
stated in Theorem 1.1.II.4. Moreover, since the map λ �→ 	A,ε(λ, x) is holomorphic on C, it follows that for all f ∈ Sp(R), 
the function FA,ε( f ) is analytic in the interior of Cp,ε , and continuous on Cp,ε . Finally, we prove that given a continuous 
seminorm τ on S (Cp,ε), there exists a continuous seminorm σ on Sp(R) such that τ (FA,ε( f )) ≤ cσ( f ) for all f ∈ Sp(R). 
Indeed, by means of the growth estimates for ∂�

λ	A,ε(λ, x) stated in Theorem 1.1.II.4, we show first that∣∣∣{(iλ)rFA,ε( f )(λ)
}(�)∣∣∣ ≤ c

∫
R

|�r
A,ε f (x)| (|x| + 1)�+1 e(| Im λ|−�(1−

√
1−ε2)) |x| A(x)dx,

and then we prove that |�r
A,ε f (x)| is bounded by finite sums of the derivatives of f . Thus τ (FA,ε( f )) ≤ c

∑
finite σ( f ) for 

all f ∈ Sp(R). The injectivity of FA,ε on Sp(R) follows from Theorem 3.1.4 and the fact that Sp(R) ⊂ Lq(R, A(x) dx) for 
all q < ∞ so that p ≤ q.

For Step 2), we start by proving a Paley–Wiener theorem for FA,ε , i.e. we prove that FA,ε is a linear isomorphism 
between the space DR(R) of smooth compactly supported functions with support inside [−R, R] and the space P W R(C) of 
entire functions that are of R-exponential type and rapidly decreasing. We note that P W (C) = ∪R>0 P W R(C).

Next, we take f ∈ D(R) and h ∈ P W (C) so that f = F−1
A,ε(h). Denote by g the image of h by the inverse Euclidean 

Fourier transform F−1
euc . Making use of the Paley–Wiener theorem for FA,ε and the classical Paley–Wiener theorem for 

Feuc, we have the following support conservation property: supp( f ) ⊂ I R := [−R, R] ⇔ supp(g) ⊂ I R .
For j ∈ N≥1, let ω j ∈ C∞(R) with ω j = 0 on I j−1 and ω j = 1 outside of I j . Assume that ω j and all its derivatives are 

bounded, uniformly in j. We write g j = ω j g , and define h j := Feuc(g j) and f j := F−1
A,ε(h j). Note that g j = g outside I j . 

Hence, by the above support property, f j = f outside I j .
In view of the growth estimate for ∂k

x 	A,ε(λ, x) stated in Theorem 1.1.II.3, we prove that for all j ∈ N≥1,

sup
x∈I j+1\I j

(|x| + 1)s e
2
p �|x| | f (k)

j (x)| ≤ c
s+3∑

τ
(ϑp,ε)

t,r (h),
r=0
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for some integer t > 0. For I1, we show first that there exists an integer mk ≥ 1 such that

|∂k
x 	A,ε(λ, x)| ≤ c(|λ| + 1)mk (|x| + 1)e−�|x|, (3.4)

for λ ∈R such that |λ| ≥ √
1 − ε2�. Then, using the compactness of I1, we prove that

sup
x∈I1

(|x| + 1)s e
2
p �|x| | f (k)(x)| ≤ cτ (0)

t,0 (h),

for some integer t > 0. �
Details of this paper will be given in other articles [3] and [4].
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