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Abstract

We prove that a majorization-type relation among the root sets of three polynomials implie
the same relation holds for the root sets of their derivatives. We then use this result to give a
derivation of the classical results due to Sz.-Nagy, Robinson, Meir and Sharma which relate th
of a polynomial to the spans of its first or higher derivatives. We also show how this relation c
generated by interlacing polynomials.
 2005 Elsevier Inc. All rights reserved.
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1. An ordering

Whenever roots or eigenvalues are listed in this paper, any root or eigenvalue of
plicity m > 1 will always be listedm times.

We begin with a brief review of majorization, a key topic in the theory of inequal
and matrix analysis which has recently been playing an increasing role in the geo
of polynomials ([1] and [7] are good examples of this). [4] is the standard referenc
majorization and contains a wealth of information about this subject.
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Definition 1.1. Let (a1, a2, . . . , an) and(b1, b2, . . . , bn) be twon-tuples of real number
arranged in descending order. Then we say(a1, a2, . . . , an) is majorized by(b1, b2, . . . , bn)

(and we write(a1, a2, . . . , an) ≺ (b1, b2, . . . , bn)) if

(1)
∑k

i=1 ai �
∑k

i=1 bi for ∀k, 1� k � n − 1, and
(2)

∑n
i=1 ai = ∑n

i=1 bi .

We note that we could replace condition (1) with the equivalent condition

(1′)
∑n

i=k ai �
∑n

i=k bi for ∀k, 2� k � n.

Roughly speaking,(a1, a2, . . . , an) is majorized by(b1, b2, . . . , bn) means that the
n-tuple(a1, a2, . . . , an) is less spread out than(b1, b2, . . . , bn).

In what follows,Sn is the group of permutations onn elements.

Proposition 1.2 [4]. LetI be any interval inR and let(a1, a2, . . . , an) and(b1, b2, . . . , bn)

be twon-tuples of real numbers inI . Then the following are equivalent:

(1) (a1, a2, . . . , an) ≺ (b1, b2, . . . , bn).
(2) (a1, a2, . . . , an) is in the convex hull of{(bσ(1), bσ(2), . . . , bσ(n))}σ∈Sn .
(3)

∑n
i=1 φ(ai) �

∑n
i=1 φ(bi) for all convex functionsφ : I → R.

Definition 1.3. Let x = (x1, x2, . . . , xn) be ann-tuple of real numbers, and letk � n − 2.
Thenx(k) = (y1, y2, . . . , yn−k), where{yi}n−k

i=1 are the roots of thekth derivative of the
polynomialp(x) = ∏n

i=1(x − xi) listed in descending order.

We are now ready to state the main theorem of our paper.

Theorem 1.4. Let x, y andz be threen-tuples of real numbers listed in descending ord
and letk � n − 2. If x ≺ y + z, thenx(k) ≺ y(k) + z(k).

We defer proof of this result to section three of this paper. We note that ifz =
(0,0, . . . ,0), this theorem reduces to a result of Borcea [1, Corollary 1.3]. We will
need the following result which shows that the ordering in Theorem 1.4 can be u
prove some seminorm inequalities. We recall that a seminorm‖ · ‖ on R

n is permutation-
invariant if‖Px‖ = ‖x‖ for all n by n permutation matricesP and allx ∈ R

n.

Proposition 1.5. Let x, y and z be threen-tuples of real numbers listed in descendi
order and let‖ · ‖ be a permutation-invariant seminorm onRn. If x ≺ y + z, then‖x‖ �
‖y‖ + ‖z‖.

Proof. Let {Pσ }σ∈Sn be the set ofn by n permutation matrices. By Proposition 1.2,x ≺
y + z if and only if there exists non-negative real numbers{λσ }σ∈Sn with

∑
σ∈Sn

λσ = 1
such thatx = ∑

σ∈Sn
λσ Pσ (y + z). Hence‖x‖ �

∑
σ∈Sn

λσ ‖Pσ (y + z)‖ = ‖y + z‖ �

‖y‖ + ‖z‖. �
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2. Spans of hyperbolic polynomials

We say that a polynomialp is hyperbolic if all of its roots are real. For anynth degree
hyperbolic polynomialp, Z(p) denotes then-tuple consisting of the roots ofp listed in
descending order.

The span of a hyperbolic polynomialp is the difference between the largest root
p and the smallest root ofp. Equivalently, the span of a hyperbolic polynomialp is the
length of the smallest interval which contains all the roots ofp which immediately gives u
span(p′) � span(p). Some (less trivial) classical results on the spans of hyperbolic p
nomials can be easily derived from Theorem 1.4. (See [8, Chapter 6] for a compilat
these and many other results on hyperbolic polynomials.)

We can use our machinery to prove the following result of Sz.-Nagy [10] (independ
rediscovered by Meir and Sharma [6]) which relates the span of a hyperbolic polyn
to that of its first derivative.

Proposition 2.1. Let p be an nth degree hyperbolic polynomial wheren � 2, then√
n−2
n

span(p) � span(p′).

Proof. We first note that span(p(x + c)) = span(p(x)). So without loss of generality, w
may assume thatk = x1 � x2 � · · · � xn = −k are the roots ofp wherek = 1

2 span(p). Let
w1 � w2 � · · · � wn−1 be the roots of the derivative ofp. We note that

(2k,0,0, . . . ,0,0,−2k) ≺ (k, x2, x3, . . . , xn−1,−k)

+ (k,−xn−1,−xn−2, . . . ,−x2,−k).

We now can use Theorem 1.4 and the fact that(2k,0,0, . . . ,0,0,−2k) are the roots of the
polynomial(x2 − 4k2)xn−2 to obtain

(
2

√
n − 2

n
k,0,0, . . . ,0,0,−2

√
n − 2

n
k

)
≺ (w1,w2, . . . ,wn−1)

+ (−wn−1,−wn−2, . . . ,−w1).

Hence span(p′) = w1 − wn−1 �
√

n−2
n

span(p). �
Definition 2.2. Let x = (x1, x2, . . . , xn) be ann-tuple of real numbers listed in descendi
order, and letk � n − 2. Then‖x‖(k) = span(p(k)) wherep(x) = ∏n

i=1(x − xi).

We now justify our use of the norm symbol.

Theorem 2.3. Let W be the one-dimensional vector space generated bye = (1,1, . . . ,1)

andk � n − 2. Then‖x‖(k) is a norm on the quotient spaceRn/W .

Proof. It is clear that‖ · ‖(k) is a well-defined function onRn/W , since‖x + αe‖(k) =
‖x‖(k) for all α ∈ R. It is also clear that‖x‖(k) � 0, ‖0‖(k) = 0 and‖cx‖(k) = |c‖|x‖(k).

Let x, y be n-tuples. Then since(x + y)↓ ≺ x↓ + y↓ (x↓ denotes then-tuple formed by
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rearranging the entries ofx in descending order.), Theorem 1.4 and Proposition 1.5
gether imply the triangle inequality‖x + y‖(k) � ‖x‖(k) + ‖y‖(k). Finally, repeated use o
Proposition 2.1 shows us that‖x‖(k) = 0 implies thatx = 0. �
Corollary 2.4. Let K be any compact convex subset ofR

n/W , then‖x‖(k) achieves its
maximum onK at an extreme point ofK .

This corollary includes some known results about the spans of derivatives as s
cases. If we takeK = [−1,1]n in the above corollary, we get the following result of Rob
son [9].

Corollary 2.5. LetPn be the set of allnth degree polynomials having all of their roots
the interval[−1,1]. Then any polynomialp which maximizesspan(p(k)) overPn for some
k � n − 2 must be of the form(x − 1)a(x + 1)b wherea + b = n.

If we let K instead be the unit ball ofl1 norm, we get the following strengthening of
result of Meir and Sharma [5].

Corollary 2.6. LetP1
n be the set of allnth degree polynomials whose rootsx1, x2, . . . , xn

are all real and satisfy the inequality
∑n

i=1 |xi | � 1 and letq(x) = xn−1(x − 1). Then
span(p(k)) � span(q(k)) for all p ∈ P1

n .

We note that we can use the method of proof of Theorem 2.3 to generate an entir
of permutation-invariant norms onRn.

Proposition 2.7. Letk � n−2 and‖·‖ be a permutation-invariant norm onRn−k . Let‖·‖′
be defined as follows: ‖x‖′ = ‖x(k)‖ for all x ∈ R

n. Then‖ · ‖′ is a permutation-invarian
norm onR

n.

3. Proof of the main theorem

We begin this paper by reviewing a key concept discussed in [2,7]. (Readers unfa
with some of the terminology may wish to refer to [7, Section 2].)

Definition 3.1. Let H be ann-dimensional Hilbert space,A ∈ L(H) andP a projection
from H onto a subspace ofH having co-dimension one, setB = PAP |PH. Let pA(x) =
det(xI − A) andpB(x) = det(xI − B). Then we shall say thatP is a differentiator ofA if
pB(x) = 1

n
d
dx

pA(x).

In particular, the eigenvalues ofB are the roots of the derivative of the characteris
polynomial ofA. We can use [7, Theorem 2.5] to construct a differentiator.

Proposition 3.2. Letv = (1,1, . . . ,1) be the all ones vector inRn andP be the orthogona
projection onto the orthogonal complement of the span ofv. ThenP is a differentiator for

anyn byn diagonal matrix.
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We also need the following result of Ky Fan [3]:

Proposition 3.3. Let {Ai}ki=1 be a set ofn by n Hermitian matrices and letA = ∑k
i=1 Ai .

Let λ(A) and λ(Ai) be n-tuples whose roots are the eigenvalues ofA and Ai listed in
descending order. Thenλ(A) ≺ ∑k

i=1 λ(Ai).

Now we can prove Theorem 1.4. We only need to prove thek = 1 case. Letx =
(x1, x2, . . . , xn), y = (y1, y2, . . . , yn), andz = (z1, z2, . . . , zn) be threen-tuples who en-
tries are listed in descending order.

Let X = diag(x1, x2, . . . , xn) and for eachσ ∈ Sn, let Yσ = diag(yσ(1), yσ(2), . . . , yσ(n))

andZσ = diag(zσ(1), zσ(2), . . . , zσ(n)).
Supposex ≺ y + z, thenx is in the convex hull of{(yσ(1) + zσ(1), yσ(2) + zσ(2), . . . ,

yσ(n) +zσ(n))}σ∈Sn by Proposition 1.2. Which means there existsλσ � 0 with
∑

σ∈Sn
λσ =

1 such thatX = ∑
σ∈Sn

λσ (Yσ + Zσ ). Now let P be as in Proposition 3.2. The

PXP |PH = ∑
σ∈Sn

λσ (PYσ P |PH + PZσ P |PH). Ky Fan’s result now gives usx(1) ≺
y(1) + z(1).

4. Linear combinations of interlacing polynomials

We begin this section by introducing the well-known concept of interlacing polyn
als.

Definition 4.1. Let p,q be two hyperbolic polynomials and letm = deg(p) + deg(q).
Recall thatZ(pq) = (x1, x2, . . . , xm) are the roots ofpq listed in descending order. The

p andq are said to be interlacing ifp is some non-zero multiple of one of
∏� m

2 	
i=1 (x − x2i )

and
∏� m

2 	
i=1 (x − x2i+1).

In other words, two hyperbolic polynomials are interlacing iff their roots alternate.p

andq are interlacing and have no zeros in common, thenp andq are said to be strictly
interlacing. It is obvious that any two interlacing polynomials either have the same d
or have degrees which differ by one.

Given any two hyperbolic polynomialsp andq, we would like to investigate any po
sible majorization inequalities betweenp, q andp + q. One immediate problem is th
p + q may have non-real roots. (Consider, for instance,p(x) = x3 − x andq(x) = 2x.)
However, this never happens whenp andq are interlacing as the following result shows

Proposition 4.2. Letp andq be two interlacing hyperbolic polynomials. Thenαp + βq is
a hyperbolic polynomial for all realα andβ such thatα2 + β2 
= 0.

Proof. If p andq are strictly interlacing, this result is simply one direction of the Herm
Kakeya theorem [8, Theorem 6.3.8]. By dividing out any common factors ofp andq, we

can always reduce the general case to the strictly interlacing case.�
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We will be working with companion matrices. The companion matrix of a polyno
p(x) = xn + an−1x

n−1 + · · · + a1x + a0 is the followingn by n matrix:

Cp =




0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1


 .

The eigenvalues of a companion matrix are the roots of its associated polyn
Companion matrices have an affine structure in the sense that ifα + β = 1 andr(x) =
αp(x) + βq(x), thenCr = αCp + βCq . Unfortunately, companion matrices are not H
mitian. We can get around this using the following generalization of a result of Lax.

Proposition 4.3 [4, Theorem 9.G.3].LetA andB be two matrices such thatαA + βB has
no non-real eigenvalues for allα,β ∈ R. Letλ(A), λ(B) andλ(A + B) be the eigenvalue
of A, B andA+B respectively listed in descending order. Thenλ(A+B) ≺ λ(A)+λ(B).

Now let p andq be two interlacingnth degree monic hyperbolic polynomials. Letα

andβ be two real constants which sum to one. By settingA = αCp andB = βCq in the
previous proposition, we obtain the following result:

Theorem 4.4. Let p andq be two interlacingnth degree monic hyperbolic polynomia
Let α,β ∈ R with α + β = 1 and let r(x) = αp(x) + βq(x), thenZ(r) ≺ (αZ(p))↓ +
(βZ(q))↓.

The↓s signify that then-tuples are written in descending order even after multiplica
by a possibly negative constant.

So, for instance, withα,β,p, q, r as in previous theorem, we have span(r) �
|α|span(p) + |β|span(q).

We may also consider the case of two interlacing polynomials whose degree
fer by one. In what follows, letp(x) = xn + an−1x

n−1 + · · · + a1x + a0 and q(x) =
xn−1 + bn−1x

n−1 + · · · + b1x + b0 be two interlacing hyperbolic polynomials. The fo
lowing matrix will also be useful:

M =




0 0 · · · 0 −b0
0 0 · · · 0 −b1
0 0 · · · 0 −b2
...

...
. . .

...
...

0 0 · · · 0 −bn−1
0 0 · · · 0 −1




.

Let α be an arbitrary real number ands(x) = p(x)−αq(x), thenCs = Cp −αM . Using
the same reasoning as before, we get the following result.

Theorem 4.5. Letp andq be two interlacing monic hyperbolic polynomials withdeg(p) =
deg(q) + 1. Let α be an arbitrary real number ands(x) = p(x) − αq(x), thenZ(s) ≺

Z(p) + (max(α,0),0,0, . . . ,0,0,min(α,0)).
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