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Abstract

We prove that a majorization-type relation among the root sets of three polynomials implies that
the same relation holds for the root sets of their derivatives. We then use this result to give a unified
derivation of the classical results due to Sz.-Nagy, Robinson, Meir and Sharma which relate the span
of a polynomial to the spans of its first or higher derivatives. We also show how this relation can be
generated by interlacing polynomials.
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1. Anordering

Whenever roots or eigenvalues are listed in this paper, any root or eigenvalue of multi-
plicity m > 1 will always be listedn times.

We begin with a brief review of majorization, a key topic in the theory of inequalities
and matrix analysis which has recently been playing an increasing role in the geometry
of polynomials ([1] and [7] are good examples of this). [4] is the standard reference for
majorization and contains a wealth of information about this subject.
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Definition 1.1. Let (a1, az,...,a,) and (b1, b, ..., b,) be twon-tuples of real numbers
arranged in descending order. Then we@ayay, ..., a,) is majorized by(bs, ba, ..., by,)
(and we write(a1, az, . .., ay) < (b1, ba, ..., by)) if

1) Zgzlai < Z;‘zlbi for vk, 1<k <n—1, and
(2) Zi:lai = Zi:lbi'

We note that we could replace condition (1) with the equivalent condition
X)) ¢ pai =Y " biforVk, 2<k <n.

Roughly speakingfazi, az, ...,a,) is majorized by(b1, b», ..., b,) means that the
n-tuple (a1, az, ..., ay) is less spread out thah, bo, ..., by,).
In what follows, S, is the group of permutations enelements.

Proposition 1.2 [4]. Let ! be any interval irR and let(as, a, ..., a,) and(by, bo, . .., by)
be twon-tuples of real numbers ih. Then the following are equivalent

Q) (a1,az,...,ay) < _(bl, bo, ..., by).
(2) (a1, a2, ...,a,) isinthe convex hull O{(bg(l), bs2), ... bsm))}oes, -
(B) Yoi_id(ai) <D 74 ¢(b;) forall convex functiong : I — R.

Definition 1.3. Let x = (x1, x2, ..., x,) be ann-tuple of real numbers, and lét< n — 2.
Thenx® = (y1, yo, ..., yu—i), where{yi};’:‘f are the roots of théth derivative of the
polynomial p(x) = []/_1(x — x;) listed in descending order.

We are now ready to state the main theorem of our paper.

Theorem 1.4. Letx, y andz be threen-tuples of real numbers listed in descending order,
and letk <n — 2. If x < y + z, thenx® < y® 4 0

We defer proof of this result to section three of this paper. We note that=if
(0,0,...,0), this theorem reduces to a result of Borcea [1, Corollary 1.3]. We will also
need the following result which shows that the ordering in Theorem 1.4 can be used to
prove some seminorm inequalities. We recall that a seminjortinon R” is permutation-
invariant if || Px|| = ||x|| for all n by n permutation matrice® and allx € R”.

Proposition 1.5. Let x, y and z be threen-tuples of real numbers listed in descending
order and let|| - || be a permutation-invariant seminorm @#. If x < y + z, then|jx| <

I+ Izl

Proof. Let {Ps}ses, be the set ofi by n permutation matrices. By Proposition 12<
y + z if and only if there exists non-negative real numbgts},ecs, with ZaeSn Ao =1
such thatx = Y, cs Ao Po(y +2). Hencellx|| < Ypes Aol Pe(y + )l = Iy + zll <
Iyl +1lzll. O
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2. Spansof hyperbolic polynomials

We say that a polynomiah is hyperbolic if all of its roots are real. For amyh degree
hyperbolic polynomialp, Z(p) denotes the-tuple consisting of the roots gf listed in
descending order.

The span of a hyperbolic polynomial is the difference between the largest root of
p and the smallest root gf. Equivalently, the span of a hyperbolic polynomjalis the
length of the smallest interval which contains all the rootg afhich immediately gives us
spar(p’) < spar{p). Some (less trivial) classical results on the spans of hyperbolic poly-
nomials can be easily derived from Theorem 1.4. (See [8, Chapter 6] for a compilation of
these and many other results on hyperbolic polynomials.)

We can use our machinery to prove the following result of Sz.-Nagy [10] (independently
rediscovered by Meir and Sharma [6]) which relates the span of a hyperbolic polynomial
to that of its first derivative.

Proposition 2.1. Let p be annth degree hyperbolic polynomial where > 2, then
\ 52 sparip) < spar(p).

Proof. We first note that spamp(x + ¢)) = spar{p(x)). So without loss of generality, we
may assume that=x1 > x» > --- > x, = —k are the roots op wherek = % spar(p). Let
w1 = w2 > -+ - > wy—1 be the roots of the derivative gf. We note that

(2k1 Os 07 LR} Oa 01 _Zk) < (ks X2, X35 ..., Xp—1, _k)
+ (k, —xp—1, —Xp—2, ..., —x2, —k).

We now can use Theorem 1.4 and the fact tRat0, 0, ..., 0, 0, —2k) are the roots of the
polynomial (x? — 4k%)x"~2 to obtain

-2 -2
(2,/”—k,o, 0,...,0,0, —2,/”—k> < (W1, W2 - .+, Wn1)
n n
+ (_wnflv —Wp—-2,..., _wl)
Hence spafp’) = w1 — w,—1 >,/ =2 sparp). O

Definition 2.2. Let x = (x1, x2, ..., x,,) be ann-tuple of real numbers listed in descending
order, and let < n — 2. Then|x | «) = sparp®) wherep(x) = [T/_; (x — x;).

We now justify our use of the norm symbol.

Theorem 2.3. Let W be the one-dimensional vector space generateed y(1,1,...,1)
andk < n — 2. Then||x|| k) is a norm on the quotient spa@&/ W.

Proof. It is clear that| - ||) is a well-defined function oiR" /W, since|lx + ae|lx) =
lx]lx) for all « € R. Itis also clear thaflx||x) > O, [|0]x) =0 and|lcx|l&) = Iclllx|lk)-
Let x, y ben-tuples. Then sincéx + y);, < x, + y, (x, denotes the:-tuple formed by
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rearranging the entries of in descending order.), Theorem 1.4 and Proposition 1.5 to-
gether imply the triangle inequalityx + y|lx) < llxll) + lyll«). Finally, repeated use of
Proposition 2.1 shows us thit|| ) = 0 implies thatt =0. O

Corollary 2.4. Let K be any compact convex subsetlSf/ W, then || x|/, achieves its
maximum ork at an extreme point of .

This corollary includes some known results about the spans of derivatives as special
cases. If we tak& =[—1, 1]" in the above corollary, we get the following result of Robin-
son [9].

Corollary 2.5. Let P, be the set of alkth degree polynomials having all of their roots in
the interval[—1, 1]. Then any polynomigh which maximizespar(p*) overP, for some
k <n — 2 must be of the formix — 1) (x + 1)” wherea + b = n.

If we let K instead be the unit ball at norm, we get the following strengthening of a
result of Meir and Sharma [5].

Corollary 2.6. Let P} be the set of alkth degree polynomials whose roatg x2, . . ., x,
are all real and satisfy the inequality"_, |x;| < 1 and letg(x) = x"~1(x — 1). Then
spar(p®) < sparig®) for all p € P2.

We note that we can use the method of proof of Theorem 2.3 to generate an entire class
of permutation-invariant norms dr’.

Proposition 2.7. Letk < n—2and|| - || be a permutation-invariant norm di" . Let|| - ||’
be defined as followg x|’ = ||x®| for all x € R”. Then| - ||’ is a permutation-invariant
norm onR”.

3. Proof of the main theorem

We begin this paper by reviewing a key concept discussed in [2,7]. (Readers unfamiliar
with some of the terminology may wish to refer to [7, Section 2].)

Definition 3.1. Let H be ann-dimensional Hilbert spaced € L(H) and P a projection

from H onto a subspace 6f having co-dimension one, sBt= PAP|py. Let po(x) =

detx! — A) andpp(x) =det(xI — B). Then we shall say that is a differentiator ofA if
_14d

pB(x) =375 pa(x).

In particular, the eigenvalues @& are the roots of the derivative of the characteristic
polynomial of A. We can use [7, Theorem 2.5] to construct a differentiator.

Proposition 3.2. Letv = (1, 1, ..., 1) be the all ones vector iR" and P be the orthogonal
projection onto the orthogonal complement of the span. @henP is a differentiator for
anyn by n diagonal matrix.
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We also need the following result of Ky Fan [3]:

Proposition 3.3. Let{A,-}i.‘:l be a set oz by n Hermitian matrices and lei = Zf-‘zl A;.
Let A(A) and A(A;) be n-tuples whose roots are the eigenvaluesdo@ind A; listed in
descending order. Ther(A) < Y¥_, A(A)).

Now we can prove Theorem 1.4. We only need to proveihe 1 case. Letx =
(X1, %2, .., X0), y = (b1, ¥2, ..., Yn), @Ndz = (z1, 22, - . ., Zn) be threen-tuples who en-
tries are listed in descending order.

Let X =diag(x1, x2, ..., x,) and for eacty € S, letY, = diad(ys (1), Yo 2)s - - - » Yo (n))
andZ, = diad(zs (1), Z6(2)s - - - » Zo () -

Supposer < y + z, thenx is in the convex hull of (s (1) + 261)» Yo 2) + 26(2) - - - »
Yo ) +2om)}ses, DY Proposition 1.2. Which means there exists> 0 with Zaes,, Ao =
1 such thatX = des,, A (Ys + Z5). Now let P be as in Proposition 3.2. Then
PXP|pr =Y secs, ko (PYo Plpy + PZs P|py). Ky Fan's result now gives us® <

YD 4@

4. Linear combinations of interlacing polynomials

We begin this section by introducing the well-known concept of interlacing polynomi-
als.

Definition 4.1. Let p, g be two hyperbolic polynomials and lei = degp) + deqq).
Recall thatZ (pq) = (x1, x2, ..., x;y) are the roots opq listed in descending order. Then

p andgq are said to be interlacing j# is some non-zero multiple of one ]5[,.[:71J (x — x2;)

L7]
and]_[l.jl (x —x2i+1)-

In other words, two hyperbolic polynomials are interlacing iff their roots alternage. If
andg are interlacing and have no zeros in common, tpeandg are said to be strictly
interlacing. It is obvious that any two interlacing polynomials either have the same degree
or have degrees which differ by one.

Given any two hyperbolic polynomials andg, we would like to investigate any pos-
sible majorization inequalities betwegn ¢ and p + ¢. One immediate problem is that
p + ¢ may have non-real roots. (Consider, for instanee;) = x2 — x andg(x) = 2x.)
However, this never happens whgrandg are interlacing as the following result shows.

Proposition 4.2. Let p andg be two interlacing hyperbolic polynomials. Thep + B¢ is
a hyperbolic polynomial for all reak and g such thai? + g2 0.

Proof. If p andqg are strictly interlacing, this result is simply one direction of the Hermite—
Kakeya theorem [8, Theorem 6.3.8]. By dividing out any common factoysaridg, we
can always reduce the general case to the strictly interlacing case.
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We will be working with companion matrices. The companion matrix of a polynomial
p(x) =x" +ay_1x""1 4+ - + arx + ag is the followingn by n matrix:

00 --- 0 —ap
10 -0 -a
c,=|0 1 0 -a
00 -+ 1 —a1

The eigenvalues of a companion matrix are the roots of its associated polynomial.
Companion matrices have an affine structure in the sense thatip = 1 andr(x) =
ap(x) + Bq(x), thenC, = aC, + BC,. Unfortunately, companion matrices are not Her-
mitian. We can get around this using the following generalization of a result of Lax.

Proposition 4.3[4, Theorem 9.G.3]Let A and B be two matrices such thatA + 8B has
no non-real eigenvalues for all, 8 € R. LetA(A), A(B) andA(A + B) be the eigenvalues
of A, B and A + B respectively listed in descending order. Thgd + B) < A(A) + A(B).

Now let p andg be two interlacing:th degree monic hyperbolic polynomials. Let
andpg be two real constants which sum to one. By setting: «C, and B = BC, in the
previous proposition, we obtain the following result:

Theorem 4.4. Let p and ¢ be two interlacing:th degree monic hyperbolic polynomials.
Leta, 8 e Rwitha + g =1 and letr(x) = ap(x) + Bq(x), thenZ(r) < (@ Z(p)), +
(BZ(q))y-

The | s signify that the:-tuples are written in descending order even after multiplication
by a possibly negative constant.

So, for instance, withe, 8, p,q,r as in previous theorem, we have span<
la| sparip) + || spang).

We may also consider the case of two interlacing polynomials whose degrees dif-
fer by one. In what follows, lep(x) = x" + a,_1x" 1 + -+« + a1x + ap and g(x) =
x" 14 b, 1x" 14 ... + bix + by be two interlacing hyperbolic polynomials. The fol-
lowing matrix will also be useful:

0 0 0 —bo

0 0 0 -~

0 0 0 —b
M=1. . . .

0 0 -+ 0 —by

00 .- 0 -1

Leta be an arbitrary real number angv) = p(x) —ag(x), thenCy; = C, —aM. Using
the same reasoning as before, we get the following result.

Theorem 4.5. Let p andg be two interlacing monic hyperbolic polynomials witbg p) =
degg) + 1. Leta be an arbitrary real number and(x) = p(x) — ag(x), thenZ(s) <
Z(p) + (max«, 0),0,0,...,0,0, min(«, 0)).
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