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Abstract In this paper, we propose a heuristic algorithm, named the Lotto-Meta heuristic, to solve small
instances of the lottery problem, using its set covering formulation. The algorithm uses a randomized
method, allotting a priority to each column to be included in the solution. A neighborhood search strategy
is fused with the algorithm to enhance the search and to balance the exploration and exploitation
procedures. Computational results show that our method outperforms the best known solutions for a
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1. Introduction

In a lottery problem, p numbers are randomly drawn from a
n-set. These p numbers are lottery winning numbers of which
we are not aware. We write k numbers out of the n numbers
on each ticket. We wish to know how many tickets have
to be bought, and what numbers should be written on each
ticket, so that we will have at least one ticket which has, at
least, t numbers in common with the p numbers of the lottery
winning numbers. The objective is minimizing the number
of tickets that have to be purchased. We call this problem a
(n, k, p, t) lottery problem, with n > k,p and k,p > t.
Since the first research into the lottery problem proposed by
Sterboul [ 1], this problem has been an interesting subject, such
that many companies and researchers have dealt with it. An
overview of the lottery problem can be found in [2]. They list
the known lower and upper bounds of the problem. There
are many theorems and results regarding lower and upper
bounds concerning the lottery problem in [3-5]. A number of
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algorithms are proposed for solving the lottery problem by
Li and van Rees [2,5]. In spite of the simplicity of the lottery
model, its solution is very hard. Therefore, these algorithms
can only deal with problems with small instances of n, p and k
[2,5].]Jans and Degraeve formulated the lottery problem as a set
covering problem for a special case (p = k) and solved it by
CPLEX [6]. They did not consider the case p # k [6]; this case
is discussed in this paper. To the best of our knowledge, only
small instances of lottery problems can be solved. Currently,
nobody in the literature has solved realistically sized problems
[2,6].

The set covering problem is an applied classic problem in
combinatorial optimization [7-17]. The current work encour-
ages people to solve entertaining puzzles through integer pro-
gramming. To the best of our knowledge, the lottery problem
with p # k has not been discussed in set covering literature.
Furthermore, to the best of our knowledge, no heuristic ap-
proach is proposed for the lottery problem as the set cover-
ing framework. Based on the limited available research into the
lottery problem, we are motivated to develop the Lotto-Meta
heuristic algorithm to solve the lottery problem as a set cover-
ing formulation.

Each implementation of the Lotto-Meta heuristic is made
up of two phases; constructive and improvement phases.
During the constructive phase, the algorithm uses a randomized
greedy heuristic to obtain an initial solution to the problem.
Then, the improvement phase permits exploration of the
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generated solution neighborhood in an attempt to find a better
solution. After the improvement phase, the best solution found
during this phase is compared to the best-known solution,
and substitutes it if the objective value is better than the
one previously known. These steps are continued once a
stopping criterion is met; the best solution obtained during this
procedure is returned.

This paper is organized as follows: In Section 2, the lottery
problem, as a set covering problem, will be described. The
proposed algorithm is presented in Section 3. In Section 4,
experimental results and comparisons are reported, and
conclusions are presented in Section 5.

2. Lottery problem as set covering problem

For a (n, k, p, t) lottery problem, a specific ticket is
characterized by the choice of the k numbers that are filled out
of n numbers. A specific draw is characterized by the set of p
numbers out of n numbers that are lottery winning numbers.
Suppose S as the set of all possible tickets, and D as the set of all
possible draws. Then, a binary variable for each possible ticket
is defined as follows:

vies:x= {1 if ticket j is filled out

I 0 otherwise.
Define S; as the set of all tickets which have at least t numbers
in common with draw i, and define D; as the set of all draws
which have at least t numbers in common with ticket j. Finally,
we define the parameters of the coefficient matrix as follows:

. . . |1 ifticketj e S;

VieD. VjesS:a= {0 otherwise.

The objective function is to minimize the number of tickets
that have to be filled out. There is only one set of constraints
imposed, so that, for each possible draw, there must be at least
one ticket filled out which has at least t numbers in common
with that draw. The variables for the tickets must be binary. The
resulted formulation is a set covering problem:

Mianj, (1)

jes
subject to
> =1 VieD, )
jes
x;€{0,1} Vjes. (3)

The number of tickets is equal to the number of combina-
tions of k elements out of n:

)

The number of constraints of the problem is equal to:

a-(3)

Suppose that a specific outcome is drawn with p numbers. We
wish to know how many tickets have at least t numbers in
common with this particular draw. This will give us the number
of variables with a non-zero coefficient per constraint. First,
we find how many tickets have exactly t numbers in common.
This is the number of combinations of t out of the p selected

numbers, multiplied by the number of combinations of the k—t
numbers on a ticket out of the pool of the n — p numbers that

were not part of the outcome: (f) (Z B f) .The number of tickets

with exactly t + 1 numbers in common is (t ? 1) (kf:f ]>. By

the same reasoning, it can be found that the number of variables
per constraint is:

Min{k,p} n—
VieD |sl= Y. <,f’1)(k_,f1).

m=t
Similarly, the number of draws out of D which have at least
t numbers in common with a specific ticket is equal to the
number of non zeros in each column of the coefficient matrix,
which is equal to:

. Miatkp) k n—k
e b5 ()G

m=t

2.1. Characteristics of the SCP formulation of the lottery problem

e The obtained set covering problem is unicost.

e The number of non zeroes is the same for each column.
Similarly, the number of non zeroes is the same in each row.
These properties increase the hardness of the problem.

e There is equivalence between a draw and a ticket in the
problem, when p = k.

e When p = k, the set of all possible tickets and the set of
all possible draws are equal, and the coefficient matrix is
symmetric.

2.2. The LP solution of the problem

Theorem. If p = k, then in the optimal LP solution, each variable,
X;, has the value ) and the optimal LP

[ S B
ISl K k\(n—k
L=t (m) (k —-m
(&)
N k

objective value is S = W
m=t\m

Nurmela and Ostergard [18] acquired this bound founded
on covering designs, and Li and van Rees [4] generalized it for
the lottery problem. Burger et al. [19] verified this bound also
using the graph theory. Jans and Degraeve [6] proved the bound
using a Linear Programming set covering approach. However,
the knowledge of the structure of an optimal LP solution is not
very helpful in finding the optimal IP solution, and it can be used
as a lower bound.

2.3. Symmetry

Due to symmetry, it can be concluded that there exist
many alternative optimal solutions. Sherali and Smith [20]
show that the existence of alternative optimal solutions has
a bad effect on solution times for solving IP problems. The
branch-and-bound method cannot cut a node that leads to any
of the alternative optimal solutions and must evaluate them
all. In this case, to exclude some alternative solutions, one
specific variable can be fixed as one. This fixing partly breaks
the symmetry and decreases solution time significantly. Jans
and Degraeve [6] show that fixing one variable still allows an
optimal solution to be found, because an optimal solution can
be obtained with a specific variable fixed to one. Problems,
(n,k,p,t) and (n,p, k, t), are symmetric and their optimal
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solutions are not necessarily the same. For example, the optimal
solution of (9, 6, 5, 4) is 3, and the optimal solution of (9, 5, 6, 4)
is 4.

3. Heuristic approach

Because of the rare characteristics of the problem described
in Section 2, exact algorithms are not able to solve large
instances of the problem. As will be seen in computational
results, a powerful optimizer, such as CPLEX, is not able to solve
some problems. A brief review of the set covering problem
literature shows that the proposed procedures do not produce
good solutions for unicost problems, and heuristics are not
excluded. The reason is that columns can no longer be compared
with each other based on column cost and, thus, the problem is
harder to solve.

In this paper, a two-phase heuristic is proposed for the
lottery problem, which consists of a neighborhood search,
randomness and a priority of selection for each column. The
following notations are adopted by the authors:

I = {ili € D, row iis uncovered} ;

x=|jlies, x=1};

d;: The number of currently uncovered rows that could be
covered by column j; d; = card (I N Dj);

J=5S=-X;

v;: The number of selected columns that can cover row i; v; =
card (X N'S;)

3.1. Constructive phase: creating initial solution

Initially, d; is the same for all columns, and I = D. Therefore,
in the beginning, no row is covered. A column, w, is randomly
chosen and is placed in X. All rows covered by w are removed
fromI, and d; is changed for each column. Let f = max{d;|j € J}.
A column is randomly selected from the set {j|d; = f, j € J};
it is placed in X and the set of all rows that are covered by this
column are removed from I. This is the greedy heuristic for set
covering problems [13]. Again, d; is updated for all columns in .
By performing these steps, all rows are covered and redundant
columns are deleted at the end. The pseudo codes for this phase
are summarized in Figures 1 and 2.

3.2. Improvement phase: improving the initial solution

The number of columns which is dependent on the

card(X)
90 | 4 1),

number of selected columns, (approximately L

are randomly removed from the given feasible solution and is
called X’, which is now an infeasible solution because there are
some uncovered rows. Let D* = D — Ujex Dj be the set of
all uncovered rows after deletion and let S* = Ujcp= S; be the
columns that could cover these rows. Consider a reduced SCP
of covering the set of rows, D*, using the set of columns, S$*, as
follows:

Min ZX]', (4)
s. t.
Y =1 VieD, (5)
jes*

x; €{0,1} Vjes* (6)

Constructive (D, S):
Let the solution set be empty: X =0
for each j € S :d; = |D;|
Let I=D,J=S8
w= RND(S)
add element w to the solution; X = X U {w}
I=1—-Dy,J=J—{w}
For each i € D,,: For each 7 € S;: d_.,' = dJ -1
while T # 0
f=max{d;|j € J}
w = RND({jld; = f,j € J})
add element w to the solution: X = X U {w}
I=1—-D,,J=J-{w}
For each 2 € D,,: For each j € §;: d; =d; —1
End while
Remove redundant columns from X
Return X

Figure 1: Constructive procedure.

Redundant(X):
Foreachi1€ D: v; =0
For each j € X: For each ¢ € D;: Update the number of
selected columns for each row i:v; = v; +1
For each 5 € X
If (min-ieDJ- {vi}) >1
Remove j from X
For each i1 € Dj: vi = v; — 1
End if
End for

Figure 2: Pseudo-code for removing the redundant columns.

Improvement(D, S, X, Remove-col):
z= objective function value of X
X'= Randomly remove Remove-col columns from X
Formulate a reduced-size SCP:
D* =D — UjeX’D}'
S* =Uue pnSi
X™*= construction(D*, S$*)
Construct the neighboring solution: X' U X*
Remove redundant columns from X' U X*
If (objective function value of X' U X*) < z then
X=X uXx*
z= objective function value of X
End if
Return X

Figure 3: Improvement procedure.

By applying the constructive phase for the reduced SCP
problem, a solution, X*, is created. Then, combining the
solutions of the reduced SCP (X*) and the partial solution
(X’), a new solution is generated called a neighboring solution.
The redundant columns from X* U X’ are removed. If this
neighboring solution (X* U X’) improves, solution X will be
replaced by it. The pseudo code for the improvement phase is
presented in Figure 3.
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Table 1: Computational results for the lottery problems with k = 3 and t = 2.

Lottery S| |Si| LP Jans and Degraeve [6] Lotto-Meta heuristic Li and van Rees [2]
1P Time I (s) Time II (s) 1P Time (s) LB UP

(5,3,3,2) 10 7 1.43 2 0.00 0.00 2 0.00 2 2
(6,3,3,2) 20 10 2.00 2 0.00 0.00 2 0.00 2 2
(7,3,3,2) 35 13 2.69 4 0.01 0.00 4 0.00 4 4
(8,3,3,2) 56 16 3.5 5 0.30 0.01 5 0.00 5 5
(9,3,3,2) 84 19 4.42 7 4.56 0.47 7 0.04 7 7
(10,3,3,2) 120 22 5.45 8 11.81 1.56 8 0.05 8 8
(11,3,3,2) 165 25 6.6 10 635 33.70 10 0.20 10 10
(12,3,3,2) 220 28 7.86 11 626 45.69 11 0.21 11 11
(13,3,3,2) 286 31 9.23 13 18523 1004 13 0.61 13 13
(14,3,3,2) 364 34 10.71 14 4170 623 14 0.16 14 14
(15,3,3,2) 455 37 12.30 n.a. 43200° 43200° 18 0.41 18 18
(16,3,3,2) 560 40 14.00 n.a. 43200° 43200°¢ 19 0.56 19 19

2 Discontinued before optimality; upper bound: 18, lower bound: 15.
b Discontinued before optimality; upper bound: 19, lower bound: 16.
¢ Discontinued before optimality; upper bound: 19, lower bound: 17.

Table 2: Computational results for the lottery problems with k = 4 and t = 2.

Lottery S| |Si| LP Jans and Degraeve [6] Lotto-Meta heuristic Li and van Ree [2]
IP Time I (s) Time II (s) IP Time (s) LB UP
(5,4,4,2) 5 5 1.00 1 0.00 0.00 1 0.00 1 1
(6,4,4,2) 15 15 1.00 1 0.00 0.02 1 0.00 1 1
(7,4,4,2) 35 31 1.13 2 0.02 0.00 2 0.00 2 2
(8,4,4,2) 70 53 1.32 2 0.03 0.02 2 0.00 2 2
(9,4,4,2) 126 81 1.56 2 0.11 0.02 2 0.00 2 2
(10,4, 4,2) 210 115 1.83 3 0.55 0.05 3 0.00 3 3
(11,4,4,2) 330 155 2.13 3 7.00 0.09 3 0.01 3 3
(12,4,4,2) 495 201 2.46 3 15.22 0.14 3 0.03 3 3
(13,4,4,2) 715 253 2.83 5 43200* 170 5 0.06 5 5
(14,4,4,2) 1001 311 3.22 5 18575 14.00 5 0.11 5 5
(15,4, 4,2) 1365 375 3.64 n.a. 43200° 43200° 7 0.17 7 7
(16,4, 4,2) 1820 445 4.09 n.a. 432001 43200° 7 3.60 7 7

2 Discontinued before optimality; upper bound: 5, lower bound: 4.
b Discontinued before optimality; upper bound: 7, lower bound: 4.
¢ Discontinued before optimality; upper bound: 7, lower bound: 5.
4 Discontinued before optimality; upper bound: 8, lower bound: 5.
€ Discontinued before optimality; upper bound: 7, lower bound: 6.

The following parameters are used:

e Max-constructive: the number of times that the constructive
phase is executed.

e Max-improvement: the number of times that the improve-
ment phase is executed.

e Remove-col: the number of columns that are removed in the
improvement phase.

e Max-total: the number of times that total steps are executed
(both constructive and improvement phases).

The constructive phase is performed Max-constructive times,
and a solution is generated each time. The best solution
is considered as input for the improvement phase. The
improvement phase is applied Max-improvement times and, for
each time, the best improved solution is considered as the input
to the next improvement iteration. This process is performed
Max-total times, and the best solution found during these Max-
total times is the solution to the lottery problem.

To choose the parameters that are used in the Lotto-Meta
heuristic, a trial and error procedure was used. In this research,
the Max-constructive parameter is chosen from {1, 3, 10}, Max-
improvement is chosen from {0, 1, 3, 10, 30, 80, 100, 200, 1000}
and, in most replications, Max-total is assumed to be one. Thus,
very different combinations of parameter setting are tested.

4. Computational result

Jans and Degraeve solved the lottery problem for a special
case, (p = k), on a Pentium 4, 2.8 GHz computer with 512 MB
RAM, under Windows XP [6]. They used CPLEX 9.1.3 to solve
the IP problems. They performed two experiments and reported
on the CPU times, which are given in seconds and hundreds of
seconds. In the first setting (Time I), they solved the problem as
given by Relations (1)-(3). In the second setting (Time II), they
fix the first variable as one [6]. Their computational results are
presented in Tables 1-6 [6]. It is indicated, for some instances,
that the IP for Jans and Deraeve is ‘n.a.’, in case they could
not prove optimality within 12 h [6]. In Tables 1-6, we list
the lower and upper bounds found by Jans and Degraeve for
which optimality could not be proven [6]. Furthermore, the best
known lower and upper bounds for the problems obtained by Li
and van Rees appear in all tables [2]. The Lotto-Meta heuristic
was coded by the authors in MATLAB 2007 and run on a Pentium
4, 2.8 GHz computer, with 512 MB RAM, under Windows XP.
In case the time is greater than one hundred seconds, we do
not report the hundreds of seconds. A time limit of 12 h was
constrained. As seen in Table 7, the bounds obtained by Li and
van Rees are outperformed for problems (12, 7, 5, 4), (14, 7, 5,
4),(14,8,5,4),(15,9,5,4),(14,7,6,4),(12,5,7,4), (14,6, 7, 4).
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Table 3: Computational results for the lottery problems with k = 4 and t = 3.

Lottery |S] Si] LP Jans and Degraeve [6] Lotto-Meta heuristic Li and van Rees [2]
1P Time [ (s) Time II (s) IP Time (s) LB UP

(5,4,4,3) 5 5 1.00 1 0.00 0.00 1 0.00 1 1
(6,4,4,3) 15 9 1.67 3 0.02 0.00 3 0.00 3 3
(7,4,4,3) 35 13 2.69 4 0.01 0.00 4 0.00 4 4
(8,4,4,3) 70 17 4.12 6 1.48 0.09 6 0.02 6 6
(9,4,4,3) 126 21 6.00 9 53.67 3.81 9 0.07 9 9
(10,4,4,3) 210 25 8.40 n.a. 43200° 43200° 14 19.01 12 14
(11,4,4,3) 330 29 11.38 n.a 43200°¢ 432004 19 24.07 16 19

¢ Discontinued before optimality; upper bound: 14; lower bound: 12.
b Discontinued before optimality; upper bound: 14; lower bound: 13.
¢ Discontinued before optimality; upper bound: 19; lower bound: 14.
4 Discontinued before optimality; upper bound: 19; lower bound: 15.

Table 4: Computational results for the lottery problems with k = 5 and t = 2.

Lottery |S] M LP Jans and Degraeve [6] Lotto-Meta heuristic Li and van Rees [2]
1P Time I (s) Time II (s) IP Time (s) LB upP
(6,5,5,2) 6 6 1.00 1 0.00 0.00 1 0.00 1 1
(7,5,5,2) 21 21 1.00 1 0.02 0.00 1 0.00 1 1
(8,5,5,2) 56 56 1.00 1 0.00 0.00 1 0.00 1 1
(9,5,5,2) 126 121 1.04 2 0.20 0.02 2 0.00 2 2
(10,5,5,2) 252 226 1.12 2 0.97 0.02 2 0.01 2 2
(11,5,5,2) 462 381 1.21 2 7.42 0.09 2 0.04 2 2
(12,5,5,2) 792 596 1.33 2 32.50 0.36 2 0.09 2 2
(13,5,5,2) 1287 881 1.46 3 43200° 1.81 3 0.21 3 3
(14,5,5,2) 2002 1264 1.61 3 43200 7.38 3 0.45 3 3
(15,5,5,2) 3003 1701 1.77 3 43200°¢ 17.75 3 0.94 3 3

2 Discontinued before optimality; upper bound: 3, lower bound: 2.
b Discontinued before optimality; upper bound: 3, lower bound: 2.
¢ Discontinued before optimality; upper bound: 4, lower bound: 2.

Table 5: Computational results for the lottery problems with k =5 and t = 3.

Lottery |S] |Si| LP Jans and Degraeve [6] Lotto-Meta heuristic Li and van Rees [2]
IP Time I (s) Time II (s) IP Time (s) LB UP

(6,5,5,3) 6 6 1.00 1 0.00 0.00 1 0.00 1 1
(7,5,5,3) 21 21 1.00 1 0.00 0.00 1 0.00 1 1
(8,5,5,3) 56 46 1.22 2 0.02 0.00 2 0.00 2 2
(9,5,5,3) 126 81 1.56 2 0.09 0.02 2 0.00 2 2
(10,5,5,3) 252 126 2.00 2 0.05 0.01 2 0.01 2 2
(11,5,5,3) 462 181 2.55 5 43200° 222 5 0.03 5 5
(12,5,5,3) 792 246 3.22 6 43200° 1757 6 0.08 6 6
(13,5,5,3) 1287 321 4.01 na. 43200° 43200¢ 8 9.50 8 8
(14,5,5,3) 2002 406 493 na. 43200°¢ 43200f 10 497.41 8 10

¢ Discontinued before optimality; upper bound: 5, lower bound: 4.
b Discontinued before optimality; upper bound: 6, lower bound: 5.
¢ Discontinued before optimality; upper bound: 8, lower bound: 5.
4 Discontinued before optimality; upper bound: 8, lower bound: 6.
¢ Discontinued before optimality; upper bound: 12, lower bound: 5.
f Discontinued before optimality; upper bound: 11, lower bound: 6.

When we increase the value of t for fixed values of n, k
and p, we acquire a set covering problem with the same
number of variables and constraints, but with fewer variables
per constraint. The results show that the problems become
more difficult to solve with an increasing value of t. This is
revealed from the Jans and Degraeve results [6]. Also, this is
revealed from the bounds found by Li and van Rees, as the gap
between the lower and upper bounds gets wider [2].

5. Conclusion

The inherent symmetry of the lottery problem leads to
many alternative optimal solutions for this problem. For

this reason, exact algorithms are unable to solve some lot-
tery problems, but some heuristic approaches are success-
ful. In this paper, the SCP model of the lottery problem
is solved by the Lotto-Meta heuristic, incorporating ran-
domness and a neighborhood search, and a priority for
each column included in the solution. In the Lotto-Meta
heuristic algorithm, constructive heuristics are used once
again to generate neighboring solutions in the improvement
phase.

This algorithm has proved to be very fast, and capa-
ble of producing good solutions. It can solve some prob-
lems that CPLEX cannot solve in 12 h, and has outperformed
Li and van Rees bounds in some problems [2,6]. Further-
more, another important attractiveness of this method is



900

Table 6: Computational results for the lottery problems with k = 5 and t = 4.

A. Mohammadi, 1. Nakhaei Kamal Abadi / Scientia Iranica, Transactions E: Industrial Engineering 19 (2012) 895-901

Lottery S| |Si| LP Jans and Degraeve [6] Lotto-Meta heuristic Li and van Rees [2]
1P Time I (s) Time II (s) IP Time (s) LB UP

(6,5,5,4) 6 6 1.00 1 0.00 0.00 1 0.00 1 1
(7,5,5,4) 21 11 191 3 0.00 0.00 3 0.00 3 3
(8,5,5,4) 56 16 3.50 5 0.33 0.02 5 0.00 5 5
(9,5,5,4) 126 21 6.00 9 54.45 3.88 9 0.05 9 9
(10,5,5,4) 252 26 9.69 14 43200° 5965 14 8.74 10 14
(11,5,5,4) 492 31 14.90 n.a. 43200° 43200° 22 36.22 17 22
(12,5,5,4) 792 36 22.00 na. 432004 43200°¢ 35 478.29 25 35

¢ Discontinued before optimality; upper bound: 14, lower bound: 13.
b Discontinued before optimality; upper bound: 24, lower bound: 17.
¢ Discontinued before optimality; upper bound: 23, lower bound: 18.
4 Discontinued before optimality; upper bound: 35, lower bound: 23.
¢ Discontinued before optimality; upper bound: 36, lower bound: 24.

Table 7: Computational results for the lottery problems.

Lottery S| |D| |Si| |Dj| Lotto-Meta heuristic Li and van Rees [2]

IP Time (s) LB UP

(17,5,4,2) 6188 2380 2041 785 5 2.29 5 5
(17,4,5,2) 2380 6188 785 2041 6 1.56 6 6
(14,7,6,2) 3432 3003 3256 2849 2 1.61 2 2
(11,5, 4,3) 462 330 91 65 9 3.17 9 9
(14,5, 4,3) 1287 1001 153 85 16 129 11 16
(13,6,4,3) 1716 715 372 155 9 5.45 8 9
(13,7,4,3) 1716 715 588 245 6 0.14 6 6
(13,4,5,3) 715 1287 85 153 13 1.44 13 13
(13,4,6,3) 715 1716 155 372 10 3.72 10 10
(13,4,7,3) 715 1716 245 588 6 0.14 6 6
(9,6,5,4) 84 126 34 51 3 0.00 3 3
(12,7,5,4) 792 792 196 196 8 0.55 6 9
(12,8,5,4) 495 792 210 336 3 0.05 3 3
(13,8,5,4) 1287 1287 406 406 6 1.31 6 6
(14,7,5,4) 3432 2002 456 266 16 699.37 8 18
(14,8,5,4) 3003 2002 714 476 7 155.12 6 9
(15,9,5,4) 5005 3003 1470 882 7 43.10 6 8
(9,5,6,4) 126 84 51 34 4 0.00 4 4
(14,7,6,4) 3432 3003 1016 889 7 3.26 6 8
(12,5,7,4) 792 792 196 196 8 0.87 6 9
(14,6,7,4) 3003 3432 889 1016 6 26.96 5 8
(14,8,7,4) 3003 3432 2114 2416 2 1.29 2 2
(15,5,9,4) 3003 5005 882 1470 8 160.23 5 8

its outstanding performance in solving unicost set covering
problems.
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