Available at
www.ElsevierMathematics.com

European Journal of Combinatorics

Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra

Paul Terwilliger ${ }^{\text {a }}$, Chih-wen Weng ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison WI 53706, USA
${ }^{\mathrm{b}}$ Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30050, Taiwan, ROC
Dedicated to the memory of Jaap Seidel

Abstract

Let Γ denote a distance-regular graph with diameter $D \geq 3$, intersection numbers a_{i}, b_{i}, c_{i} and Bose-Mesner algebra \mathbf{M}. For $\theta \in \mathbb{C} \cup \infty$ we define a one-dimensional subspace of \mathbf{M} which we call $\mathbf{M}(\theta)$. If $\theta \in \mathbb{C}$ then $\mathbf{M}(\theta)$ consists of those Y in \mathbf{M} such that $(A-\theta I) Y \in \mathbb{C} A_{D}$, where A (resp. A_{D}) is the adjacency matrix (resp. D th distance matrix) of Γ. If $\theta=\infty$ then $\mathbf{M}(\theta)=\mathbb{C} A_{D}$. By a pseudo primitive idempotent for θ we mean a nonzero element of $\mathbf{M}(\theta)$. We use these as follows. Let X denote the vertex set of Γ and fix $x \in X$. Let \mathbf{T} denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by $A, E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}$, where E_{i}^{*} denotes the projection onto the i th subconstituent of Γ with respect to x. \mathbf{T} is called the Terwilliger algebra. Let W denote an irreducible \mathbf{T}-module. By the endpoint of W we mean $\min \left\{i \mid E_{i}^{*} W \neq 0\right\}$. W is called thin whenever $\operatorname{dim}\left(E_{i}^{*} W\right) \leq 1$ for $0 \leq i \leq D$. Let $V=\mathbb{C}^{X}$ denote the standard \mathbf{T}-module. Fix $0 \neq v \in E_{1}^{*} V$ with v orthogonal to the all ones vector. We define $(\mathbf{M} ; v):=\left\{P \in \mathbf{M} \mid P v \in E_{D}^{*} V\right\}$. We show the following are equivalent: (i) $\operatorname{dim}(\mathbf{M} ; v) \geq 2$; (ii) v is contained in a thin irreducible \mathbf{T}-module with endpoint 1 . Suppose (i), (ii) hold. We show $(\mathbf{M} ; v)$ has a basis J, E where J has all entries 1 and E is defined as follows. Let W denote the T-module which satisfies (ii). Observe $E_{1}^{*} W$ is an eigenspace for $E_{1}^{*} A E_{1}^{*}$; let η denote the corresponding eigenvalue. Define $\tilde{\eta}=-1-b_{1}(1+\eta)^{-1}$ if $\eta \neq-1$ and $\widetilde{\eta}=\infty$ if $\eta=-1$. Then E is a pseudo primitive idempotent for $\widetilde{\eta}$. © 2003 Elsevier Ltd. All rights reserved.

MSC: 05E30
Keywords: Distance-regular graph; Pseudo primitive idempotent; Subconstituent algebra; Terwilliger algebra

1. Introduction

Let Γ denote a distance-regular graph with diameter $D \geq 3$, intersection numbers a_{i}, b_{i}, c_{i}, Bose-Mesner algebra \mathbf{M} and path-length distance function ∂ (see Section 2 for

[^0]formal definitions). In order to state our main theorems we make a few comments. Let X denote the vertex set of Γ. Let $V=\mathbb{C}^{X}$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C}. We endow V with the Hermitean inner product \langle,$\rangle satisfying \langle u, v\rangle=u^{t} \bar{v}$ for all $u, v \in V$. For each $y \in X$ let \hat{y} denote the vector in V with a 1 in the y coordinate and 0 in all other coordinates. We observe $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V. Fix $x \in X$. For $0 \leq i \leq D$ let E_{i}^{*} denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{C}$) which has yy entry 1 (resp. 0) whenever $\partial(x, y)=i($ resp. $\partial(x, y) \neq i)$. We observe E_{i}^{*} acts on V as the projection onto the i th subconstituent of Γ with respect to x. For $0 \leq i \leq D$ define $s_{i}=\sum \hat{y}$, where the sum is over all vertices $y \in X$ such that $\partial(x, y)=i$. We observe $s_{i} \in E_{i}^{*} V$. Let v denote a nonzero vector in $E_{1}^{*} V$ which is orthogonal to s_{1}. We define
$$
(\mathbf{M} ; v):=\left\{P \in \mathbf{M} \mid P v \in E_{D}^{*} V\right\}
$$

We observe $(\mathbf{M} ; v)$ is a subspace of \mathbf{M}. We consider the dimension of $(\mathbf{M} ; v)$. We first observe $(\mathbf{M} ; v) \neq 0$. To see this, let J denote the matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ which has all entries 1 . It is known J is contained in $\mathbf{M}[2, \mathrm{p} .64]$. In fact $J \in(\mathbf{M} ; v)$; the reason is $J v=0$ since v is orthogonal to s_{1}. Apparently ($\mathbf{M} ; v$) is nonzero so it has dimension at least 1 . We now consider when does ($\mathbf{M} ; v$) have dimension at least 2 ? To answer this question we recall the Terwilliger algebra. Let \mathbf{T} denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by $A, E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}$, where A denotes the adjacency matrix of Γ. The algebra \mathbf{T} is known as the Terwilliger algebra (or subconstituent algebra) of Γ with respect to x [19-21]. By a T-module we mean a subspace $W \subseteq V$ such that $\mathbf{T} W \subseteq W$. Let W denote a T-module. We say W is irreducible whenever $W \neq 0$ and W does not contain a T-module other than 0 and W. Let W denote an irreducible T-module. By the endpoint of W we mean the minimal integer $i(0 \leq i \leq D)$ such that $E_{i}^{*} W \neq 0$. We say W is thin whenever $E_{i}^{*} W$ has dimension at most 1 for $0 \leq i \leq D$. We now state our main theorem.

Theorem 1.1. Let v denote a nonzero vector in $E_{1}^{*} V$ which is orthogonal to s_{1}. Then the following (i), (ii) are equivalent.
(i) $(\mathbf{M} ; v)$ has dimension at least 2 .
(ii) v is contained in a thin irreducible \mathbf{T}-module with endpoint 1 .

Suppose (i), (ii) hold above. Then ($\mathbf{M} ; v$) has dimension exactly 2.
With reference to Theorem 1.1, suppose for the moment that (i), (ii) hold. We find a basis for $(\mathbf{M} ; v)$. To describe our basis we need some notation. Let $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$ denote the distinct eigenvalues of A, and for $0 \leq i \leq D$ let E_{i} denote the primitive idempotent of \mathbf{M} associated with θ_{i}. We recall E_{i} satisfies $\left(A-\theta_{i} I\right) E_{i}=0$. We introduce a type of element in \mathbf{M} which generalizes the $E_{0}, E_{1}, \ldots, E_{D}$. We call this type of element a pseudo primitive idempotent for Γ. In order to define the pseudo primitive idempotents, we first define for each $\theta \in \mathbb{C} \cup \infty$ a subspace of \mathbf{M} which we call $\mathbf{M}(\theta)$. For $\theta \in \mathbb{C}, \mathbf{M}(\theta)$ consists of those elements Y of \mathbf{M} such that $(A-\theta I) Y \in \mathbb{C} A_{D}$, where A_{D} is the D th distance matrix of Γ. We define $\mathbf{M}(\infty)=\mathbb{C} A_{D}$. We show $\mathbf{M}(\theta)$ has dimension 1 for all $\theta \in \mathbb{C} \cup \infty$. Given distinct θ, θ^{\prime} in $\mathbb{C} \cup \infty$, we show $\mathbf{M}(\theta) \cap \mathbf{M}\left(\theta^{\prime}\right)=0$. For $0 \leq i \leq D$ we show $\mathbf{M}\left(\theta_{i}\right)=\mathbb{C} E_{i}$. Let $\theta \in \mathbb{C} \cup \infty$. By a pseudo primitive idempotent for θ, we mean
a nonzero element of $\mathbf{M}(\theta)$. Before proceeding we define an involution on $\mathbb{C} \cup \infty$. For $\eta \in \mathbb{C} \cup \infty$ we define

$$
\tilde{\eta}= \begin{cases}\infty & \text { if } \eta=-1 \\ -1 & \text { if } \eta=\infty \\ -1-\frac{b_{1}}{1+\eta} & \text { if } \eta \neq-1, \eta \neq \infty\end{cases}
$$

We observe $\widetilde{\widetilde{\eta}}=\eta$ for $\eta \in \mathbb{C} \cup \infty$. Let W denote a thin irreducible T-module with endpoint 1 . Observe $E_{1}^{*} W$ is a one-dimensional eigenspace for $E_{1}^{*} A E_{1}^{*}$; let η denote the corresponding eigenvalue. We call η the local eigenvalue of W.

Theorem 1.2. Let v denote a nonzero vector in $E_{1}^{*} V$ which is orthogonal to s_{1}. Suppose v satisfies the equivalent conditions (i), (ii) in Theorem 1.1. Let W denote the T-module from part (ii) of that theorem and let η denote the local eigenvalue for W. Let E denote a pseudo primitive idempotent for $\widetilde{\eta}$. Then J, E form a basis for $(\mathbf{M} ; v)$.

We comment on when the scalar $\widetilde{\eta}$ from Theorem 1.2 is an eigenvalue of Γ. Let W denote a thin irreducible \mathbf{T}-module with endpoint 1 and local eigenvalue η. It is known $\widetilde{\theta}_{1} \leq \eta \leq \widetilde{\theta}_{D}\left[18\right.$, Theorem 1]. If $\eta=\widetilde{\theta}_{1}$ then $\widetilde{\eta}=\theta_{1}$. If $\eta=\widetilde{\theta}_{D}$ then $\widetilde{\eta}=\theta_{D}$. We show that if $\widetilde{\theta}_{1}<\eta<\widetilde{\theta}_{D}$ then $\widetilde{\eta}$ is not an eigenvalue of Γ.

The paper is organized as follows. In Section 2 we give some preliminaries on distanceregular graphs. In Sections 3 and 4 we review some basic results on the Terwilliger algebra and its modules. We prove Theorem 1.1 in Section 5. In Section 6 we discuss pseudo primitive idempotents. In Section 7 we discuss local eigenvalues. We prove Theorem 1.2 in Section 8.

2. Preliminaries

In this section we review some definitions and basic concepts. See the books by Bannai and Ito [2] or Brouwer et al. [4] for more background information.

Let X denote a nonempty finite set. Let $\operatorname{Mat}_{X}(\mathbb{C})$ denote the \mathbb{C}-algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C}. Let $V=\mathbb{C}^{X}$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C}. We observe Mat ${ }_{X}(\mathbb{C})$ acts on V by left multiplication. We endow V with the Hermitean inner product \langle,$\rangle which$ satisfies $\langle u, v\rangle=u^{t} \bar{v}$ for all $u, v \in V$, where t denotes transpose and - denotes complex conjugation. For all $y \in X$, let \hat{y} denote the element of V with a 1 in the y coordinate and 0 in all other coordinates. We observe $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V.

Let $\Gamma=(X, R)$ denote a finite, undirected, connected graph without loops or multiple edges, with vertex set X, edge set R, path-length distance function ∂ and diameter $D:=\max \{\partial(x, y) \mid x, y \in X\}$. We say Γ is distance-regular whenever for all integers $h, i, j(0 \leq h, i, j \leq D)$ and for all $x, y \in X$ with $\partial(x, y)=h$, the number

$$
\begin{equation*}
p_{i j}^{h}=|\{z \in X \mid \partial(x, z)=i, \partial(z, y)=j\}| \tag{2.1}
\end{equation*}
$$

is independent of x and y. The integers $p_{i j}^{h}$ are called the intersection numbers for Γ.

Observe $p_{i j}^{h}=p_{j i}^{h}(0 \leq h, i, j \leq D)$. We abbreviate $c_{i}:=p_{1 i-1}^{i}(1 \leq i \leq D)$, $a_{i}:=p_{1 i}^{i}(0 \leq i \leq D), b_{i}:=p_{1 i+1}^{i}(0 \leq i \leq D-1), k_{i}:=p_{i i}^{0}(0 \leq i \leq D)$, and for convenience we set $c_{0}:=0$ and $b_{D}:=0$. Note that $b_{i-1} c_{i} \neq 0(1 \leq i \leq D)$.

For the rest of this paper we assume $\Gamma=(X, R)$ is distance-regular with diameter $D \geq 3$. By (2.1) and the triangle inequality,

$$
\begin{array}{ll}
p_{i 1}^{h}=0 & \text { if }|h-i|>1(0 \leq h, i \leq D) \\
p_{i j}^{1}=0 & \text { if }|i-j|>1(0 \leq i, j \leq D) . \tag{2.3}
\end{array}
$$

Observe Γ is regular with valency $k=k_{1}=b_{0}$, and that $k=c_{i}+a_{i}+b_{i}$ for $0 \leq i \leq D$. By [4, p. 127] we have

$$
\begin{equation*}
k_{i-1} b_{i-1}=k_{i} c_{i} \quad(1 \leq i \leq D) \tag{2.4}
\end{equation*}
$$

We recall the Bose-Mesner algebra of Γ. For $0 \leq i \leq D$ let A_{i} denote the matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ which has $y z$ entry

$$
\left(A_{i}\right)_{y z}=\left\{\begin{array}{ll}
1 & \text { if } \partial(y, z)=i \\
0 & \text { if } \partial(y, z) \neq i
\end{array} \quad(y, z \in X)\right.
$$

We call A_{i} the i th distance matrix of Γ. For notational convenience we define $A_{i}=0$ for $i<0$ and $i>D$. Observe (ai) $A_{0}=I$; (aii) $\sum_{i=0}^{D} A_{i}=J$; (aiii) $\overline{A_{i}}=A_{i}(0 \leq i \leq D)$; (aiv) $A_{i}^{t}=A_{i}(0 \leq i \leq D)$; (av) $A_{i} A_{j}=\sum_{h=0}^{D} p_{i j}^{h} A_{h}(0 \leq i, j \leq D)$, where I denotes the identity matrix and J denotes the all ones matrix. We abbreviate $A:=A_{1}$ and call this the adjacency matrix of Γ. Let \mathbf{M} denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by A. Using (ai)-(av) we find $A_{0}, A_{1}, \ldots, A_{D}$ form a basis of \mathbf{M}. We call \mathbf{M} the Bose-Mesner algebra of Γ. By [2, p. 59, 64], \mathbf{M} has a second basis $E_{0}, E_{1}, \ldots, E_{D}$ such that (ei) $E_{0}=|X|^{-1} J$; (eii) $\sum_{i=0}^{D} E_{i}=I$; (eiii) $\overline{E_{i}}=E_{i}(0 \leq i \leq D)$; (eiv) $E_{i}^{t}=E_{i}(0 \leq i \leq D)$; (ev) $E_{i} E_{j}=\delta_{i j} E_{i}(0 \leq i, j \leq D)$. We call $E_{0}, E_{1}, \ldots, E_{D}$ the primitive idempotents for Γ. Since $E_{0}, E_{1}, \ldots, E_{D}$ form a basis for \mathbf{M} there exists complex scalars $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ such that $A=\sum_{i=0}^{D} \theta_{i} E_{i}$. By this and (ev) we find $A E_{i}=\theta_{i} E_{i}$ for $0 \leq i \leq D$. Using (aiii) and (eiii) we find each of $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ is a real number. Observe $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ are mutually distinct since A generates M. By [2, p. 197] we have $\theta_{0}=k$ and $-k \leq \theta_{i} \leq k$ for $0 \leq i \leq D$. Throughout this paper, we assume $E_{0}, E_{1}, \ldots, E_{D}$ are indexed so that $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$. We call θ_{i} the i th eigenvalue of Γ.

We recall some polynomials. To motivate these we make a comment. Setting $i=1$ in (av) and using (2.2),

$$
\begin{equation*}
A A_{j}=b_{j-1} A_{j-1}+a_{j} A_{j}+c_{j+1} A_{j+1} \quad(0 \leq j \leq D-1) \tag{2.5}
\end{equation*}
$$

where $b_{-1}=0$. Let λ denote an indeterminate and let $\mathbb{C}[\lambda]$ denote the \mathbb{C}-algebra consisting of all polynomials in λ which have coefficients in \mathbb{C}. Let $f_{0}, f_{1}, \ldots, f_{D}$ denote the polynomials in $\mathbb{C}[\lambda]$ which satisfy $f_{0}=1$ and

$$
\begin{equation*}
\lambda f_{j}=b_{j-1} f_{j-1}+a_{j} f_{j}+c_{j+1} f_{j+1} \quad(0 \leq j \leq D-1) \tag{2.6}
\end{equation*}
$$

where $f_{-1}=0$. For $0 \leq j \leq D$ the degree of f_{j} is exactly j. Comparing (2.5) and (2.6) we find $A_{j}=f_{j}(A)$.

3. The Terwilliger algebra

For the remainder of this paper we fix $x \in X$. For $0 \leq i \leq D$ let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ which has $y y$ entry

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=i \tag{3.1}\\
0 & \text { if } \partial(x, y) \neq i
\end{array} \quad(y \in X)\right.
$$

We call E_{i}^{*} the i th dual idempotent of Γ with respect to x. For convenience we define $E_{i}^{*}=0$ for $i<0$ and $i>D$. We observe (i) $\sum_{i=0}^{D} E_{i}^{*}=I$; (ii) $\overline{E_{i}^{*}}=E_{i}^{*}(0 \leq i \leq D)$; (iii) $E_{i}^{* t}=E_{i}^{*}(0 \leq i \leq D)$; (iv) $E_{i}^{*} E_{j}^{*}=\delta_{i j} E_{i}^{*}(0 \leq i, j \leq D)$. The E_{i}^{*} have the following interpretation. Using (3.1) we find

$$
E_{i}^{*} V=\operatorname{span}\{\hat{y} \mid y \in X, \partial(x, y)=i\} \quad(0 \leq i \leq D)
$$

By this and since $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V,

$$
V=E_{0}^{*} V+E_{1}^{*} V+\cdots+E_{D}^{*} V \quad \text { (orthogonal direct sum). }
$$

For $0 \leq i \leq D, E_{i}^{*}$ acts on V as the projection onto $E_{i}^{*} V$. We call $E_{i}^{*} V$ the i th subconstituent of Γ with respect to x. For $0 \leq i \leq D$ we define $s_{i}=\sum \hat{y}$, where the sum is over all vertices $y \in X$ such that $\partial(x, y)=i$. We observe $s_{i} \in E_{i}^{*} V$. Let $\mathbf{T}=\mathbf{T}(x)$ denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by $A, E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}$. The algebra \mathbf{T} is semisimple but not commutative in general [19, Lemma 3.4]. We call \mathbf{T} the Terwilliger algebra (or subconstituent algebra) of Γ with respect to x. We refer the reader to [1, 3, 5-17, 19-24] for more information on the Terwilliger algebra. We will use the following facts. Pick any integers $h, i, j(0 \leq h, i, j \leq D)$. By [19, Lemma 3.2] we have $E_{i}^{*} A_{h} E_{j}^{*}=0$ if and only if $p_{i j}^{h}=0$. By this and (2.2), (2.3) we find

$$
\begin{array}{ll}
E_{i}^{*} A_{h} E_{1}^{*}=0 & \text { if }|h-i|>1(0 \leq h, i \leq D) \\
E_{i}^{*} A E_{j}^{*}=0 & \text { if }|i-j|>1(0 \leq i, j \leq D) \tag{3.3}
\end{array}
$$

Lemma 3.1. The following (i), (ii) hold for $0 \leq i \leq D$.
(i) $E_{i}^{*} J E_{1}^{*}=E_{i}^{*} A_{i-1} E_{1}^{*}+E_{i}^{*} A_{i} E_{1}^{*}+E_{i}^{*} A_{i+1} E_{1}^{*}$.
(ii) $A_{i} E_{1}^{*}=E_{i-1}^{*} A_{i} E_{1}^{*}+E_{i}^{*} A_{i} E_{1}^{*}+E_{i+1}^{*} A_{i} E_{1}^{*}$.

Proof. (i) Recall $J=\sum_{h=0}^{D} A_{h}$ so $E_{i}^{*} J E_{1}^{*}=\sum_{h=0}^{D} E_{i}^{*} A_{h} E_{1}^{*}$. Evaluating this using (3.2) we obtain the result.
(ii) Recall $I=\sum_{h=0}^{D} E_{h}^{*}$ so $A_{i} E_{1}^{*}=\sum_{h=0}^{D} E_{h}^{*} A_{i} E_{1}^{*}$. Evaluating this using (3.2) we obtain the result.

Lemma 3.2. For $0 \leq i \leq D-1$ we have

$$
\begin{equation*}
E_{i+1}^{*} A_{i} E_{1}^{*}-E_{i}^{*} A_{i+1} E_{1}^{*}=\sum_{h=0}^{i} A_{h} E_{1}^{*}-\sum_{h=0}^{i} E_{h}^{*} J E_{1}^{*} . \tag{3.4}
\end{equation*}
$$

Proof. Evaluate each term in the right-hand side of (3.4) using Lemma 3.1 and simplify the result.

Corollary 3.3. Let v denote a vector in $E_{1}^{*} V$ which is orthogonal to s_{1}. Then for $0 \leq i \leq$ $D-1$ we have

$$
\begin{equation*}
E_{i+1}^{*} A_{i} v-E_{i}^{*} A_{i+1} v=\sum_{h=0}^{i} A_{h} v \tag{3.5}
\end{equation*}
$$

Moreover $E_{0}^{*} A v=0$.
Proof. To obtain (3.5) apply all terms of (3.4) to v and evaluate the result using $E_{1}^{*} v=v$ and $J v=0$. Setting $i=0$ in (3.5) we find $v-E_{0}^{*} A v=v$ so $E_{0}^{*} A v=0$.

Lemma 3.4. The following (i), (ii) hold for $1 \leq i \leq D-1$.
(i) $E_{i+1}^{*} A E_{i}^{*} A_{i-1} E_{1}^{*}=c_{i} E_{i+1}^{*} A_{i} E_{1}^{*}$
(ii) $E_{i-1}^{*} A E_{i}^{*} A_{i+1} E_{1}^{*}=b_{i} E_{i-1}^{*} A_{i} E_{1}^{*}$.

Proof. (i) For all $y, z \in X$, on either side the $y z$ entry is equal to c_{i} if $\partial(x, y)=i+1$, $\partial(x, z)=1, \partial(y, z)=i$, and zero otherwise.
(ii) For all $y, z \in X$, on either side the $y z$ entry is equal to b_{i} if $\partial(x, y)=i-1$, $\partial(x, z)=1, \partial(y, z)=i$, and zero otherwise.

Corollary 3.5. Let v denote a vector in $E_{1}^{*} V$. Then the following (i), (ii) hold for $1 \leq i \leq$ D-1.
(i) Suppose $E_{i}^{*} A_{i-1} v=0$. Then $E_{i+1}^{*} A_{i} v=0$.
(ii) Suppose $E_{i}^{*} A_{i+1} v=0$. Then $E_{i-1}^{*} A_{i} v=0$.

Proof. In Lemma 3.4(i), (ii) apply both sides to v and use $E_{1}^{*} v=v$.

4. The modules of the Terwilliger algebra

Let \mathbf{T} denote the Terwilliger algebra of Γ with respect to x. By a T-module we mean a subspace $W \subseteq V$ such that $B W \subseteq W$ for all $B \in \mathbf{T}$. Let W denote a T-module. Then W is said to be irreducible whenever W is nonzero and W contains no T-modules other than 0 and W. Let W denote an irreducible T-module. Then W is the orthogonal direct sum of the nonzero spaces among $E_{0}^{*} W, E_{1}^{*} W, \ldots, E_{D}^{*} W$ [19, Lemma 3.4]. By the endpoint of W we mean $\min \left\{i \mid 0 \leq i \leq D, E_{i}^{*} W \neq 0\right\}$. By the diameter of W we mean $\left|\left\{i \mid 0 \leq i \leq D, E_{i}^{*} W \neq 0\right\}\right|-1$. We say W is thin whenever $E_{i}^{*} W$ has dimension at most 1 for $0 \leq i \leq D$. There exists a unique irreducible T-module which has endpoint 0 [10, Proposition 8.4]. This module is called V_{0}. For $0 \leq i \leq D$ the vector s_{i} is a basis for $E_{i}^{*} V_{0}\left[19\right.$, Lemma 3.6]. Therefore V_{0} is thin with diameter D. The module V_{0} is orthogonal to each irreducible T-module other than V_{0} [6, Lemma 3.3]. For more information on V_{0} see $[6,10]$. We will use the following facts.

Lemma 4.1 ([19, Lemma 3.9]). Let W denote an irreducible \mathbf{T}-module with endpoint r and diameter d. Then

$$
\begin{equation*}
E_{i}^{*} W \neq 0 \quad(r \leq i \leq r+d) \tag{4.1}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
E_{i}^{*} A E_{j}^{*} W \neq 0 \quad \text { if }|i-j|=1,(r \leq i, j \leq r+d) \tag{4.2}
\end{equation*}
$$

Lemma 4.2 ([6, Lemma 3.4]). Let W denote a \mathbf{T}-module. Suppose there exists an integer $i(0 \leq i \leq D)$ such that $\operatorname{dim}\left(E_{i}^{*} W\right)=1$ and $W=\mathbf{T} E_{i}^{*} W$. Then W is irreducible.
Theorem 4.3 ([12, Lemma 10.1], [22, Theorem 11.1]). Let W denote a thin irreducible \mathbf{T}-module with endpoint one, and let v denote a nonzero vector in $E_{1}^{*} W$. Then $W=\mathbf{M} v$. Moreover the diameter of W is $D-2$ or $D-1$.

Theorem 4.4 ([12, Corollary 8.6, Theorem 9.8]). Let v denote a nonzero vector in $E_{1}^{*} V$ which is orthogonal to s_{1}. Then the dimension of $\mathbf{M} v$ is $D-1$ or D. Suppose the dimension of $\mathbf{M} v$ is $D-1$. Then $\mathbf{M} v$ is a thin irreducible \mathbf{T}-module with endpoint 1 and diameter $D-2$.

5. The proof of Theorem 1.1

We now give a proof of Theorem 1.1.
Proof $((\mathrm{i}) \Longrightarrow(\mathrm{ii})$). We show $\mathbf{M} v$ is a thin irreducible \mathbf{T}-module with endpoint 1. By Theorem 4.4 the dimension of $\mathbf{M} v$ is either $D-1$ or D. First assume the dimension of $\mathbf{M} v$ is equal to $D-1$. Then by Theorem 4.4, $\mathbf{M} v$ is a thin irreducible T-module with endpoint 1 . Next assume the dimension of $\mathbf{M} v$ is equal to D. The space ($\mathbf{M} ; v$) contains J and has dimension at least 2 , so there exists $P \in(\mathbf{M} ; v)$ such that J, P are linearly independent. From the construction $P v \in E_{D}^{*} V$. Observe $P v \neq 0$; otherwise the dimension of $\mathbf{M} v$ is not D. The elements $A_{0}, A_{1}, \ldots, A_{D}$ form a basis for \mathbf{M}. Therefore the elements $A_{0}+A_{1}+\cdots+A_{i}(0 \leq i \leq D)$ form a basis for \mathbf{M}. Apparently there exist complex scalars $\rho_{i}(0 \leq i \leq D)$ such that $P=\sum_{i=0}^{D} \rho_{i}\left(A_{0}+A_{1}+\cdots+A_{i}\right)$. Recall $J=\sum_{h=0}^{D} A_{h}$. Subtracting a scalar multiple of J from P if necessary, we may assume $\rho_{D}=0$. We consider $P v$ from two points of view. On one hand we have $P v \in E_{D}^{*} V$. Therefore $E_{D}^{*} P v=P v$ and $E_{i}^{*} P v=0$ for $0 \leq i \leq D-1$. On the other hand using (3.5),

$$
P v=\sum_{i=0}^{D-1} \rho_{i}\left(E_{i+1}^{*} A_{i} v-E_{i}^{*} A_{i+1} v\right)
$$

Combining these two points of view we find $P v=\rho_{D-1} E_{D}^{*} A_{D-1} v, \rho_{0} E_{0}^{*} A v=0$, and

$$
\begin{equation*}
\rho_{i-1} E_{i}^{*} A_{i-1} v=\rho_{i} E_{i}^{*} A_{i+1} v \quad(1 \leq i \leq D-1) \tag{5.1}
\end{equation*}
$$

We mentioned $P v \neq 0$; therefore $\rho_{D-1} \neq 0$ and $E_{D}^{*} A_{D-1} v \neq 0$. Applying Corollary 3.5(i) we find $E_{i}^{*} A_{i-1} v \neq 0$ for $1 \leq i \leq D$. We claim $E_{i}^{*} A_{i+1} v$ and $E_{i}^{*} A_{i-1} v$ are linearly dependent for $1 \leq i \leq D-1$. Suppose there exists an integer $i(1 \leq i \leq D-1)$ such that $E_{i}^{*} A_{i+1} v$ and $E_{i}^{*} A_{i-1} v$ are linearly independent. Then $E_{i}^{*} A_{i+1} v \neq 0$. Applying Corollary 3.5(ii) we find $E_{j}^{*} A_{j+1} v \neq 0$ for $i \leq j \leq D-1$. Using these facts and (5.1) we routinely find $\rho_{j}=0$ for $i \leq j \leq D-1$. In particular $\rho_{D-1}=0$ for a contradiction. We have now shown $E_{i}^{*} A_{i+1} v$ and $E_{i}^{*} A_{i-1} v$ are linearly dependent for $1 \leq i \leq D-1$.

Observe $\mathbf{M} v$ is spanned by the vectors

$$
\left(A_{0}+A_{1}+\cdots+A_{i}\right) v \quad(0 \leq i \leq D-1) .
$$

By Corollary 3.3 and our above comments we find $\mathbf{M} v$ is contained in the span of

$$
\begin{equation*}
E_{i+1}^{*} A_{i} v \quad(0 \leq i \leq D-1) . \tag{5.2}
\end{equation*}
$$

Since $\mathbf{M} v$ has dimension D we find $\mathbf{M} v$ is equal to the span of (5.2). Apparently $\mathbf{M} v$ is a \mathbf{T}-module. Moreover $\mathbf{M} v$ is irreducible by Lemma 4.2. Apparently $\mathbf{M} v$ is thin with endpoint 1.
$(($ ii $) \Longrightarrow($ i) $)$. We show $(\mathbf{M} ; v)$ has dimension at least 2. Since $J \in(\mathbf{M} ; v)$ it suffices to exhibit an element $P \in(\mathbf{M} ; v)$ such that J, P are linearly independent. Let W denote a thin irreducible T-module which has endpoint 1 and contains v. By Theorem 4.3 we have $W=\mathbf{M} v$; also by Theorem 4.3 the diameter of W is $D-2$ or $D-1$. First suppose W has diameter $D-2$. Then W has dimension $D-1$. Consider the map $\sigma: \mathbf{M} \rightarrow V$ which sends each element P to $P v$. The image of \mathbf{M} under σ is $\mathbf{M} v$ and the kernel of σ is contained in $(\mathbf{M} ; v)$. The image has dimension $D-1$ and \mathbf{M} has dimension $D+1$ so the kernel has dimension 2. It follows ($\mathbf{M} ; v$) has dimension at least 2 . Next assume W has diameter $D-1$. In this case $E_{D}^{*} W \neq 0$ by (4.1). Since $W=\mathbf{M} v$ there exists $P \in \mathbf{M}$ such that $P v$ is a nonzero element in $E_{D}^{*} W$. Now $P \in(\mathbf{M} ; v)$. Observe P, J are linearly independent since $P v \neq 0$ and $J v=0$. Apparently the dimension of $(\mathbf{M} ; v)$ is at least 2 .

Now assume (i), (ii) hold. We show the dimension of ($\mathbf{M} ; v$) is 2 . To do this, we show the dimension of $(\mathbf{M} ; v)$ is at most 2 . Let H denote the subspace of \mathbf{M} spanned by $A_{0}, A_{1}, \ldots, A_{D-2}$. We show H has 0 intersection with $(\mathbf{M} ; v)$. By Theorem 4.4 the dimension of $\mathbf{M} v$ is at least $D-1$. Recall \mathbf{M} is generated by A so the vectors $A^{i} v(0 \leq i \leq D-2)$ are linearly independent. Apparently the vectors $A_{i} v(0 \leq i \leq D-2)$ are linearly independent. For $0 \leq i \leq D-2$ the vector $A_{i} v$ is contained in $\sum_{h=0}^{D-1} E_{h}^{*} V$ by Lemma 3.1(ii); therefore $A_{i} v$ is orthogonal to $E_{D}^{*} V$. We now see the vectors $A_{i} v(0 \leq i \leq$ $D-2$) are linearly independent and orthogonal to $E_{D}^{*} V$. It follows H has 0 intersection with $(\mathbf{M} ; v)$. Observe H is codimension 2 in \mathbf{M} so the dimension of $(\mathbf{M} ; v)$ is at most 2 . We conclude the dimension of $(\mathbf{M} ; v)$ is 2 .

6. Pseudo primitive idempotents

In this section we introduce the notion of a pseudo primitive idempotent.
Definition 6.1. For each $\theta \in \mathbb{C} \cup \infty$ we define a subspace of \mathbf{M} which we call $\mathbf{M}(\theta)$. For $\theta \in \mathbb{C}, \mathbf{M}(\theta)$ consists of those elements Y of \mathbf{M} such that $(A-\theta I) Y \in \mathbb{C} A_{D}$. We define $\mathbf{M}(\infty)=\mathbb{C} A_{D}$.

With reference to Definition 6.1, we will show each $\mathbf{M}(\theta)$ has dimension 1. To establish this we display a basis for $\mathbf{M}(\theta)$. We will use the following result.
Lemma 6.2. Let Y denote an element of \mathbf{M} and write $Y=\sum_{i=0}^{D} \rho_{i} A_{i}$. Let θ denote a complex number. Then the following (i), (ii) are equivalent.
(i) $(A-\theta I) Y \in \mathbb{C} A_{D}$.
(ii) $\rho_{i}=\rho_{0} f_{i}(\theta) k_{i}^{-1}$ for $0 \leq i \leq D$.

Proof. Evaluating $(A-\theta I) Y$ using $Y=\sum_{i=0}^{D} \rho_{i} A_{i}$ and simplifying the result using (2.5) we obtain

$$
(A-\theta I) Y=\sum_{i=0}^{D} A_{i}\left(c_{i} \rho_{i-1}+a_{i} \rho_{i}+b_{i} \rho_{i+1}-\theta \rho_{i}\right)
$$

where $\rho_{-1}=0$ and $\rho_{D+1}=0$. Observe by (2.4), (2.6) that $\rho_{i}=\rho_{0} f_{i}(\theta) k_{i}^{-1}$ for $0 \leq i \leq D$ if and only if $c_{i} \rho_{i-1}+a_{i} \rho_{i}+b_{i} \rho_{i+1}=\theta \rho_{i}$ for $0 \leq i \leq D-1$. The result follows.
Corollary 6.3. For $\theta \in \mathbb{C}$ the following is a basis for $\mathbf{M}(\theta)$.

$$
\begin{equation*}
\sum_{i=0}^{D} f_{i}(\theta) k_{i}^{-1} A_{i} \tag{6.1}
\end{equation*}
$$

Proof. Immediate from Lemma 6.2.
Corollary 6.4. The space $\mathbf{M}(\theta)$ has dimension 1 for all $\theta \in \mathbb{C} \cup \infty$.
Proof. Suppose $\theta=\infty$. Then $\mathbf{M}(\theta)$ has basis A_{D} and therefore has dimension 1. Suppose $\theta \in \mathbb{C}$. Then $\mathbf{M}(\theta)$ has dimension 1 by Corollary 6.3.
Lemma 6.5. Let θ and θ^{\prime} denote distinct elements of $\mathbb{C} \cup \infty$. Then $\mathbf{M}(\theta) \cap \mathbf{M}\left(\theta^{\prime}\right)=0$.
Proof. This is a routine consequence of Corollary 6.3 and the fact that $\mathbf{M}(\infty)=$ $\mathbb{C} A_{D}$.

Corollary 6.6. For $0 \leq i \leq D$ we have $\mathbf{M}\left(\theta_{i}\right)=\mathbb{C} E_{i}$.
Proof. Observe $\left(A-\theta_{i} I\right) E_{i}=0$ so $E_{i} \in \mathbf{M}\left(\theta_{i}\right)$. The space $\mathbf{M}\left(\theta_{i}\right)$ has dimension 1 by Corollary 6.4 and E_{i} is nonzero so E_{i} is a basis for $\mathbf{M}\left(\theta_{i}\right)$.

Remark 6.7 ([2, p. 63]). For $0 \leq j \leq D$ we have

$$
E_{j}=m_{j}|X|^{-1} \sum_{i=0}^{D} f_{i}\left(\theta_{j}\right) k_{i}^{-1} A_{i}
$$

where m_{j} denotes the rank of E_{j}.
Definition 6.8. Let $\theta \in \mathbb{C} \cup \infty$. By a pseudo primitive idempotent for θ we mean a nonzero element of $\mathbf{M}(\theta)$, where $\mathbf{M}(\theta)$ is from Definition 6.1.

7. The local eigenvalues

Definition 7.1. Define a function ${ }^{\sim}: \mathbb{C} \cup \infty \longrightarrow \mathbb{C} \cup \infty$ by

$$
\tilde{\eta}= \begin{cases}\infty & \text { if } \eta=-1 \\ -1 & \text { if } \eta=\infty, \\ -1-\frac{b_{1}}{1+\eta} & \text { if } \eta \neq-1, \eta \neq \infty\end{cases}
$$

Observe $\widetilde{\widetilde{\eta}}=\eta$ for all $\eta \in \mathbb{C} \cup \infty$.

Let v denote a nonzero vector in $E_{1}^{*} V$ which is orthogonal to s_{1}. Assume v is an eigenvector for $E_{1}^{*} A E_{1}^{*}$ and let η denote the corresponding eigenvalue. We recall a few facts concerning η and $\widetilde{\eta}$. We have $\widetilde{\theta}_{1} \leq \eta \leq \widetilde{\theta}_{D}$ [18, Theorem 1]. If $\eta=\widetilde{\theta}_{1}$ then $\widetilde{\eta}=\theta_{1}$. If $\eta=\widetilde{\theta}_{D}$ then $\widetilde{\eta}=\theta_{D}$. We have $\theta_{D}<-1<\theta_{1}$ by [18, Lemma 3] so $\widetilde{\theta}_{1}<-1<\widetilde{\theta}_{D}$. If $\widetilde{\theta}_{1}<\eta<-1$ then $\theta_{1}<\widetilde{\eta}$. If $-1<\eta<\widetilde{\theta}_{D}$ then $\widetilde{\eta}<\theta_{D}$. We will show that if $\widetilde{\theta}_{1}<\eta<\widetilde{\theta}_{D}$ then $\widetilde{\eta}$ is not an eigenvalue of Γ. Given the above inequalities, to prove this it suffices to prove the following result.

Proposition 7.2. Let v denote a nonzero vector in $E_{1}^{*} V$. Assume v is an eigenvector for $E_{1}^{*} A E_{1}^{*}$ and let η denote the corresponding eigenvalue. Then $\tilde{\eta} \neq k$.
Proof. Suppose $\tilde{\eta}=k$. Then $\eta=\widetilde{k}$ so by Definition 7.1,

$$
\eta=-1-\frac{b_{1}}{k+1}
$$

By this and since $b_{1}<k$ we see η is a rational number such that $-2<\eta<-1$. In particular η is not an integer. Observe η is an eigenvalue of the subgraph of Γ induced on the set of vertices adjacent to x; therefore η is an algebraic integer. A rational algebraic integer is an integer so we have a contradiction. We conclude $\tilde{\eta} \neq k$.

Corollary 7.3. Let v denote a nonzero vector in $E_{1}^{*} V$ which is orthogonal to s_{1}. Assume $\underset{\sim}{v}$ is an eigenvector for $E_{1}^{*} A E_{1}^{*}$ and let η denote the corresponding eigenvalue. Suppose $\widetilde{\theta}_{1}<\eta<\widetilde{\theta}_{D}$. Then $\widetilde{\eta}$ is not an eigenvalue of Γ.

8. The proof of Theorem 1.2

We now give a proof of Theorem 1.2.
Proof. We first show E is contained in $(\mathbf{M} ; v)$. To do this we show $E v \in E_{D}^{*} V$. First suppose $\eta \neq-1$. Then $\tilde{\eta} \in \mathbb{C}$ by Definition 7.1. By Definition 6.1 there exists $\epsilon \in \mathbb{C}$ such that $(A-\tilde{\eta} I) E=\epsilon A_{D}$. By this and Lemma 3.1(ii),

$$
\begin{equation*}
A E v=\widetilde{\eta} E v+\epsilon A_{D} v \in \mathbb{C} E v+E_{D-1}^{*} W+E_{D}^{*} W \tag{8.1}
\end{equation*}
$$

In order to show $E v \in E_{D}^{*} V$ we show $E_{i}^{*} E v=0$ for $0 \leq i \leq D-1$. Observe $E_{0}^{*} E v=0$ since $E_{0}^{*} E v \in E_{0}^{*} W$ and W has endpoint 1 . We show $E_{1}^{*} E v=0$. By Corollary 6.3 there exists a nonzero $m \in \mathbb{C}$ such that

$$
E=m \sum_{h=0}^{D} f_{h}(\widetilde{\eta}) k_{h}^{-1} A_{h}
$$

Let us abbreviate

$$
\begin{equation*}
\rho_{h}=m f_{h}(\widetilde{\eta}) k_{h}^{-1} \quad(0 \leq h \leq D), \tag{8.2}
\end{equation*}
$$

so that $E=\sum_{h=0}^{D} \rho_{h} A_{h}$. By this and (3.2) we find $E_{1}^{*} E E_{1}^{*}=\sum_{h=0}^{2} \rho_{h} E_{1}^{*} A_{h} E_{1}^{*}$.

Applying this to v we find

$$
\begin{equation*}
E_{1}^{*} E v=\sum_{h=0}^{2} \rho_{h} E_{1}^{*} A_{h} v \tag{8.3}
\end{equation*}
$$

Setting $i=1$ in Lemma 3.1(i), applying each term to v, and using $J v=0$ we find

$$
\begin{equation*}
0=\sum_{h=0}^{2} E_{1}^{*} A_{h} v \tag{8.4}
\end{equation*}
$$

By (8.3), (8.4), and since $E_{1}^{*} A v=\eta v$ we find $E_{1}^{*} E v=\gamma v$ where $\gamma=\rho_{0}-\rho_{2}+$ $\eta\left(\rho_{1}-\rho_{2}\right)$. Evaluating γ using (2.6), (8.2), and Definition 7.1 we routinely find $\gamma=0$. Apparently $E_{1}^{*} E v=0$. We now show $E_{i}^{*} E v=0$ for $2 \leq i \leq D-1$. Suppose there exists an integer $j(2 \leq j \leq D-1)$ such that $E_{j}^{*} E v \neq 0$. We choose j minimal so that

$$
\begin{equation*}
E_{i}^{*} E v=0 \quad(0 \leq i \leq j-1) \tag{8.5}
\end{equation*}
$$

Combining this with (8.1) we find

$$
\begin{equation*}
E_{i}^{*} A E v=0 \quad(0 \leq i \leq j-1) \tag{8.6}
\end{equation*}
$$

Since W is thin and since $E_{j}^{*} E v \neq 0$ we find $E_{j}^{*} E v$ is a basis for $E_{j}^{*} W$. Apparently $E_{j-1}^{*} A E_{j}^{*} E v$ spans $E_{j-1}^{*} A E_{j}^{*} W$. The space $E_{j-1}^{*} A E_{j}^{*} W$ is nonzero by (4.2) and since the diameter of W is at least $D-2$. Therefore $E_{j-1}^{*} A E_{j}^{*} E v \neq 0$. We may now argue

$$
\begin{aligned}
E_{j-1}^{*} A E v & =\sum_{i=0}^{D} E_{j-1}^{*} A E_{i}^{*} E v \\
& =E_{j-1}^{*} A E_{j}^{*} E v \quad \text { by (3.3), (8.5) } \\
& \neq 0
\end{aligned}
$$

which contradicts (8.6). We conclude $E_{i}^{*} E v=0$ for $2 \leq i \leq D-1$. We have now shown $E_{i}^{*} E v=0$ for $0 \leq i \leq D-1$ so $E v \in E_{D}^{*} V$ in the case $\eta \neq-1$. Next suppose $\eta=-1$, so that $\tilde{\eta}=\infty$. By Definition 6.1 there exists a nonzero $t \in \mathbb{C}$ such that $E=t A_{D}$. In order to show $E v \in E_{D}^{*} V$ we show $A_{D} v \in E_{D}^{*} V$. Since $A_{D} v$ is contained in $E_{D-1}^{*} V+E_{D}^{*} V$ by Lemma 3.1(ii), it suffices to show $E_{D-1}^{*} A_{D} v=0$. To do this it is convenient to prove a bit more, that $E_{i}^{*} A_{i+1} v=0$ for $1 \leq i \leq D-1$. We prove this by induction on i. First assume $i=1$. Setting $i=1$ in Lemma 3.1(i), applying each term to v and using $J v=0, E_{1}^{*} A v=-v$, we obtain $E_{1}^{*} A_{2} v=0$. Next suppose $2 \leq i \leq D-1$ and assume by induction that $E_{i-1}^{*} A_{i} v=0$. We show $E_{i}^{*} A_{i+1} v=0$. To do this we assume $E_{i}^{*} A_{i+1} v \neq 0$ and get a contradiction. Note that $E_{i}^{*} A_{i+1} v$ spans $E_{i}^{*} W$ since W is thin. Then $E_{i-1}^{*} A E_{i}^{*} A_{i+1} v \neq 0$ by (4.2). But $E_{i-1}^{*} A E_{i}^{*} A_{i+1} v=b_{i} E_{i-1}^{*} A_{i} v$ by Lemma 3.4(ii). Of course $b_{i} \neq 0$ so $E_{i-1}^{*} A_{i} v \neq 0$, a contradiction. Therefore $E_{i}^{*} A_{i+1} v=0$. We have now shown $E_{i}^{*} A_{i+1} v=0$ for $1 \leq i \leq D-1$ and in particular $E_{D-1}^{*} A_{D} v=0$. It follows $E v \in E_{D}^{*} V$ for the case $\eta=-1$. We have now shown $E v \in E_{D}^{*} V$ for all cases so $E \in(\mathbf{M} ; v)$. We now prove E, J form a basis for $(\mathbf{M} ; v)$. By Theorem $1.1(\mathbf{M} ; v)$ has dimension 2. We mentioned earlier $J \in(\mathbf{M} ; v)$. We show E, J are linearly independent.

Recall E, J are pseudo primitive idempotents for $\tilde{\eta}, k$ respectively. We have $\tilde{\eta} \neq k$ by Proposition 7.2 so E, J are linearly independent in view of Lemma 6.5.

Acknowledgement

The initial work for this paper was done when the second author was an Honorary Fellow at the University of Wisconsin-Madison (July-December 2000) supported by the National Science Council, Taiwan, ROC.

References

[1] J.M. Balmaceda, M. Oura, The Terwilliger algebras of the group association schemes of S_{5} and A_{5}, Kyushu J. Math. 48 (2) (1994) 221-231.
[2] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.
[3] E. Bannai, A. Munemasa, The Terwilliger algebras of group association schemes, Kyushu J. Math. 49 (1) (1995) 93-102.
[4] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
[5] J. Caughman, The Terwilliger algebras of bipartite P - and Q-polynomial association schemes, Discrete Math. 196 (1999) 65-95.
[6] B. Curtin, Bipartite distance-regular graphs I, Graphs Combin. 15 (2) (1999) 143-158.
[7] B. Curtin, Bipartite distance-regular graphs II, Graphs Combin. 15 (4) (1999) 377-391.
[8] B. Curtin, Distance-regular graphs which support a spin model are thin in: 16th British Combinatorial Conference, London, 1997, Discrete Math. 197-198 (1999) 205-216.
[9] B. Curtin, K. Nomura, Spin models and strongly hyper-self-dual Bose-Mesner algebras, J. Algebraic Combin. 13 (2) (2001) 173-186.
[10] E. Egge, A generalization of the Terwilliger algebra, J. Algebra 233 (2000) 213-252.
[11] E. Egge, The generalized Terwilliger algebra and its finite dimensional modules when $d=2$, J. Algebra 250 (2002) 178-216.
[12] J.T. Go, P. Terwilliger, Tight distance-regular graphs and the subconstituent algebra, European J. Combin. 23 (2002) 793-816.
[13] S.A. Hobart, T. Ito, The structure of nonthin irreducible T-modules: ladder bases and classical parameters, J. Algebraic Combin. 7 (1998) 53-75.
[14] H. Ishibashi, T. Ito, M. Yamada, Terwilliger algebras of cyclotomic schemes and Jacobi sums, European J. Combin. 20 (5) (1999) 397-410.
[15] H. Ishibashi, The Terwilliger algebras of certain association schemes over the Galois rings of characteristic 4, Graphs Combin. 12 (1) (1996) 39-54.
[16] B. Sagan, J.S. Caughman, The multiplicities of a dual-thin Q-polynomial association scheme, Electron. J. Combin. 8 (1) (2001) (electronic).
[17] K. Tanabe, The irreducible modules of the Terwilliger algebras of Doob schemes, J. Algebraic Combin. 6 (1997) 173-195.
[18] P. Terwilliger, A new feasibility condition for distance-regular graphs, Discrete Math. 61 (1986) 311-315.
[19] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebraic Combin. 1 (4) (1992) 363-388.
[20] P. Terwilliger, The subconstituent algebra of an association scheme II, J. Algebraic Combin. 2 (1) (1993) 73-103.
[21] P. Terwilliger, The subconstituent algebra of an association scheme III, J. Algebraic Combin. 2 (2) (1993) 177-210.
[22] P. Terwilliger, The subconstituent algebra of a distance-regular graph; thin modules with endpoint one, Linear Algebra Appl. 356 (2002) 157-187.
[23] P. Terwilliger, An inequality involving the local eigenvalues of a distance-regular graph J. Algebraic Combin. (2003).
[24] M. Tomiyama, N. Yamazaki, The subconstituent algebra of a strongly regular graph, Kyushu J. Math. 48 (2) (1994) 323-334.

[^0]: E-mail addresses: terwilli@math.wisc.edu (P. Terwilliger), weng@math.nctu.edu.tw (Chih-wen Weng).

