# On 3-colorable plane graphs without 5- and 7-cycles ${ }^{\text {* }}$ 

Baogang Xu<br>School of Mathematics and Computer Science, Nanjing Normal University, Ninghai Road 122, Nanjing 210097, PR China<br>Received 1 October 2003<br>Available online 24 March 2006


#### Abstract

In this note, it is proved that every plane graph without 5- and 7-cycles and without adjacent triangles is 3 -colorable. This improves the result of [O.V. Borodin, A.N. Glebov, A. Raspaud, M.R. Salavatipour, Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B 93 (2005) 303-311], and offers a partial solution for a conjecture of Borodin and Raspaud [O.V. Borodin, A. Raspaud, A sufficient condition for planar graphs to be 3-colorable, J. Combin. Theory Ser. B 88 (2003) 17-27]. © 2006 Elsevier Inc. All rights reserved.


Keywords: Plane graph; Cycle; Coloring

In [1], Borodin et al. proved that every plane graph $G$ without cycles of length from 4 to 7 is 3-colorable that provides a new upper bound to Steinberg's conjecture (see [3, p. 229]). In [2], Borodin and Raspaud proved that every plane graph with neither 5-cycles nor triangles of distance less than four is 3 -colorable, and they conjectured that every plane graph with neither 5 -cycles nor adjacent triangles is 3-colorable, where the distance between triangles is the length of the shortest path between vertices of different triangles, and two triangles are said to be adjacent if they have an edge in common. In [4], Xu improved Borodin and Raspaud's result by showing that every plane graph with neither 5-cycles nor triangles of distance less than three is 3-colorable.

In this note, it is proved that every plane graph without 5- and 7-cycles and without adjacent triangles is 3-colorable. This improves the result of [1], and offers a partial solution for Borodin and Raspaud's conjecture [2].

[^0]Let $G=(V, E, F)$ be a plane graph, where $V, E$ and $F$ denote the sets of vertices, edges and faces of $G$, respectively. The neighbor set and degree of a vertex $v$ are denoted by $N(v)$ and $d(v)$, respectively. Let $f$ be a face of $G$. We use $b(f), V(f)$ and $N(f)$ to denote the boundary of $f$, the set of vertices on $b(f)$, and the set of faces adjacent to $f$, respectively. The degree of $f$, denoted by $d(f)$, is the length of the facial walk of $f$. A $k$-vertex ( $k$-face) is a vertex (face) of degree $k$.

Let $C$ be a cycle of $G$. We use $\operatorname{int}(C)$ and $\operatorname{ext}(C)$ to denote the sets of vertices located inside and outside $C$, respectively. $C$ is called a separating cycle if both $\operatorname{int}(C) \neq \emptyset$ and $\operatorname{ext}(C) \neq \emptyset$, and is called a facial cycle otherwise. For convenience, we still use $C$ to denote the set of vertices of $C$.

An 11-face $f$ of $G$ is called a special face if the following hold:
(1) $b(f)$ is a cycle;
(2) $f$ is adjacent to a triangle;
(3) every vertex $x \notin V(f)$ has at most two neighbors on $b(f)$; and
(4) for every edge $u v$ of $G \backslash V(f), \mid(N(u) \cap V(f)|+|N(v) \cap V(f)| \leqslant 3$.

A vertex in $G \backslash V(f)$ that violates (3) is called a claw-center of $b(f)$, and a pair of adjacent vertices in $G \backslash V(f)$ that violates (4) is called a $d$-claw-center of $b(f)$.

A separating 11-cycle $C$ is called a special cycle if in $G \backslash \operatorname{ext}(C), C$ is the boundary of a special face. We use $\mathcal{G}$ to denote the set of plane graphs without 5 - and 7-cycles and without adjacent triangles. Following is our main theorem.

Theorem 1. Let $G$ be a graph in $\mathcal{G}$ that contains cycles of length 4 or 6 , $f$ an arbitrary face that is a special face, or a 3-face, or a 9-face with $b(f)$ being a cycle. Then, any 3-coloring of $f$ can be extended to $G$.

As a corollary of Theorem 1, every plane graph in $\mathcal{G}$ is 3-colorable. To see this, let $G$ be a plane graph in $\mathcal{G}$. By Grötzsch's theorem, we may assume that $G$ contains triangles. If $G$ contains neither 4 -cycles nor 6 -cycles, then by [1, Theorem 1.2], $G$ is 3-colorable. Otherwise, for an arbitrary triangle $T$, any 3-coloring of $T$ can be extended to $\operatorname{int}(T)$ and $\operatorname{ext}(T)$, that yields a 3-coloring of $G$.

Proof of Theorem 1. Assume that $G$ is a counterexample to Theorem 1 with minimum $\sigma(G)=$ $|V(G)|+|E(G)|$. Without loss of generality, assume that the unbounded face $f_{o}$ is a special face, or a 3-face or a 9 -face with $b(f)$ being a cycle, such that a 3-coloring $\phi$ of $f_{o}$ cannot be extended to $G$. Let $C=b\left(f_{o}\right)$ and let $p=|C|$. Then, every vertex not in $C$ has degree at least 3 .

By our choice of $G$, neither 4-cycle nor 6-cycle is adjacent to triangles. Since $G \backslash \operatorname{int}\left(C^{\prime}\right)$ is still in $\mathcal{G}$ for any separating cycle $C^{\prime}$ of $G$.

Lemma 1. $G$ contains neither special cycles, nor separating $k$-cycles, $k=3,9$.

Lemma 2. $G$ is 2-connected. That is, the boundary of every face of $G$ is a cycle.

Interested readers may find the proof of Lemma 2 in [1] (see that of Lemma 2.2).

Let $C^{\prime}$ be a cycle of $G$, and $u$ and $v$ two vertices on $C^{\prime}$. We use $C^{\prime}[u, v]$ to denote the path of $C^{\prime}$ clockwisely from $u$ to $v$, and let $C^{\prime}(u, v)=C^{\prime}[u, v] \backslash\{u, v\}$. Unless specified particularly, we always write a cycle on its vertices sequence clockwisely.

## Lemma 3. $C$ is chordless.

Proof. Assume to the contrary that $C$ has a chord $u v$. Let $S_{1}=V(C(u, v)), S_{2}=V(C(v, u))$, and assume that $\left|S_{1}\right|<\left|S_{2}\right|$. It is certain that $p=9$ or 11 , and $\left|S_{1}\right| \leqslant 4$. Since $\left|S_{1}\right|=3$ provides $C[u, v]+u v$ is a 5 -cycle, and $\left|S_{1}\right|=4$ provides $C[v, u]+u v$ is a $(p-4)$-cycle, we assume that $\left|S_{1}\right|=1$ or 2 .

If $\left|S_{1}\right|=1$, say $S_{1}=\{w\}$, then $u v w u$ bounds a 3-face by Lemma 1. Let $G^{\prime}$ be the graph obtained from $G-w$ by inserting a new vertex into $u v$. Then, $G^{\prime} \in \mathcal{G}, \sigma\left(G^{\prime}\right)=\sigma(G)-1$. We can extend $\phi$ to a 3-coloring $\phi^{\prime}$ of $G^{\prime}$. This produces a contradiction because $\phi^{\prime}$ and $\phi(w)$ yield a 3-coloring of $G$ that extends $\phi$.

Assume $\left|S_{1}\right|=2$. Since $C[v, u]+u v$ is a $(p-2)$-cycle, $p=11$ and $C[v, u]+u v$ bounds a 9 -face by Lemma 1. Let $G^{\prime}$ be the graph obtained from $G \backslash S_{2}$ by inserting five vertices into $u v$. Then, $G^{\prime} \in \mathcal{G}, \sigma\left(G^{\prime}\right)<\sigma(G)$. By assigning appropriate colors to the new added vertices, the restriction of $\phi$ on $C[u, v]$ can be extended to a 3-coloring $\phi^{\prime}$ of $G^{\prime}$. The restriction of $\phi^{\prime}$ on $G \backslash C(v, u)$ and $\phi$ again yield a 3-coloring of $G$ that extends $\phi$, a contradiction.

Lemma 4. $N(u) \cap N(v) \cap \operatorname{int}\left(C_{1}\right)=\emptyset$ for separating 11-cycle $C_{1}$ and $u v \in E\left(C_{1}\right)$.
Proof. Assume to the contrary that $x \in N(u) \cap N(v) \cap \operatorname{int}\left(C_{1}\right)$. By Lemma 1, xuvx bounds a 3-face. We will show that $C_{1}$ has neither claw-center nor d-claw-center. Then, $C_{1}$ is a special cycle that contradicts Lemma 1.

If $x w \in E(G)$ for some $w \in C_{1} \backslash\{u, v\}$, assume that $u, v$ and $w$ clockwisely lie on $C_{1}$, then $\left|V\left(C_{1}(v, w)\right)\right| \geqslant 5$ and $\left|V\left(C_{1}(w, u)\right)\right| \geqslant 5$ since $G \in \mathcal{G}$, and hence $\left|C_{1}\right| \geqslant 13$, a contradiction. If a vertex $y \in \operatorname{int}\left(C_{1}\right) \backslash\{x\}$ has three neighbors $z_{1}, z_{2}$ and $z_{3}$ on $C_{1}$, then by simply counting the number of vertices in $C_{1} \backslash\left\{z_{1}, z_{2}, z_{3}\right\}, G$ must contain a 9 -cycle $C_{2}$ with $x \in \operatorname{int}\left(C_{2}\right)$, a contradiction to Lemma 1 because $C_{2}$ is a separating 9 -cycle.

Assume that $\{a, b\}$ is a d-claw-center of $C_{1}$. Since $G$ has no adjacent triangles, $\mid(N(a) \cup$ $N(b)) \cap C_{1} \mid \geqslant 3$. If $(N(a) \cup N(b)) \cap C_{1}$ has exactly three vertices, say $a_{1}, a_{2}$ and $a_{3}$ clockwisely on $C_{1}$, we may assume that $a_{1} \in N(a) \cap N(b)$, then $\left|V\left(C_{1}\left(a_{1}, a_{2}\right)\right)\right| \geqslant 5$ and $\left|V\left(C_{1}\left(a_{3}, a_{1}\right)\right)\right| \geqslant 5$ that provide $\left|C_{1}\right| \geqslant 13$. So, assume that $a$ has two neighbors $a_{1}, a_{2} \in C_{1}, b$ has two neighbors $b_{1}, b_{2} \in C_{1} \backslash\left\{a_{1}, a_{2}\right\}$, and assume these four vertices clockwisely lie on $C_{1}$.

If $a_{1} a_{2} \in E\left(C_{1}\right)$, then $\left|V\left(C_{1}\left(a_{2}, b_{1}\right)\right)\right| \geqslant 4$ and $\left|V\left(C_{1}\left(b_{2}, a_{1}\right)\right)\right| \geqslant 4$ providing $\left|C_{1}\right| \geqslant 12$, a contradiction. So, we may assume that $a_{1} a_{2} \notin E\left(C_{1}\right)$ and $b_{1} b_{2} \notin E\left(C_{1}\right)$, i.e., $\left|V\left(C_{1}\left(a_{1}, a_{2}\right)\right)\right| \geqslant 1$ and $\left|V\left(C_{1}\left(b_{1}, b_{2}\right)\right)\right| \geqslant 1$. By symmetry, we assume $x \in \operatorname{int}\left(C_{1}\left[a_{1}, b_{1}\right] \cup a_{1} a b b_{1}\right)$. By simply counting the number of vertices in $C_{1} \backslash\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$, we get $\left|C_{1}\right|>11$, a contradiction.

Lemma 5. For $u, v \in C$ and $x \notin C$, if $x u, x v \in E(G)$, then $u v \in E(C)$.

Proof. Assume to the contrary that $u v \notin E(C)$. By Lemma 3, $u v \notin E(G)$. Let $|V(C[u, v])|=$ $l<|V(C[v, u])|$. Then, $3 \leqslant l \leqslant \frac{p+1}{2} \leqslant 6$.

Since $C[u, v] \cup v x u$ is an $(l+1)$-cycle and $C[v, u] \cup u x v$ is a $(p-l+3)$-cycle, $l \notin\{4,6\}$, and $l \neq 5$ whenever $p=9$. If $l=5$ and $p=11, C[v, u] \cup u x v$ must bound a 9 -face by Lemma 1,
then $f_{o}$ has to be adjacent to a 3-face $f_{1}$ on $C[u, v]$, and hence $C[u, v] \cup v x u \cup b\left(f_{1}\right)$ yields a 7 -cycle. So, $l=3$. Let $C[u, v]=u w v$.

If $p=11$, then $f_{o}$ has to be adjacent to a 3-face on $C[v, u]$ that contradicts to Lemma 4 because $C[v, u] \cup v x u$ is a separating 11-cycle. Therefore, $p=9$ and $C[v, u] \cup v x u$ bounds a 9-face by Lemma 1. Let $G^{\prime}$ be the graph obtained from $G \backslash V(C(v, u))$ by inserting 5 new vertices into $u x$. Then, $G^{\prime} \in \mathcal{G}, \sigma\left(G^{\prime}\right)<\sigma(G)$, and the unbounded face of $G^{\prime}$ has degree 9 . We can extend $\phi(u), \phi(w)$ and $\phi(v)$ to a 3-coloring $\phi^{\prime}$ of $G^{\prime}$ with $\phi^{\prime}(u) \neq \phi^{\prime}(x)$. But $\phi^{\prime}$ and $\phi$ yield a 3-coloring of $G$ that extends $\phi$, a contradiction.

Lemma 6. G contains neither 4-cycles nor 6-cycles.
Proof. First assume to the contrary that $G$ contains a 4-cycle $C_{1}=u v w x u$. If $C_{1}$ is a separating 4 -cycle, let $\psi$ be an extension of $\phi$ on $G \backslash \operatorname{int}\left(C_{1}\right)$, and let $G_{1}$ be the graph obtained from $G \backslash \operatorname{ext}\left(C_{1}\right)$ by inserting five new vertices into an edge of $C_{1}$. If $p \neq 3$ then $\left|C \backslash C_{1}\right| \geqslant 6$ since $C$ is chordless, and hence $\left|\operatorname{ext}\left(C_{1}\right)\right| \geqslant 6$. If $p=3$ then $\left|C \cap C_{1}\right| \leqslant 1$ and hence $E(C) \cap E\left(C_{1}\right)=\emptyset$, again $\left|\operatorname{ext}\left(C_{1}\right)\right| \geqslant 6$ because every face incident with some edge on $C_{1}$ is a $4^{+}$-face. Therefore, $\sigma\left(G_{1}\right)<\sigma(G)$, and we can extend the restriction of $\psi$ on $C_{1}$ to $G_{1}$, and thus get a 3-coloring of $G$ that extends $\phi$. So, we assume that $G$ contains no separating 4 -cycles, and let $f$ be the face bounded by $C_{1}$. We proceed to show that one can identify a pair of diagonal vertices of $C_{1}$ such that $\phi$ can be extended to a 3-coloring of the resulting graph $G^{\prime}$. Since any 3-coloring of $G^{\prime}$ offers a 3-coloring of $G$, this contradiction guarantees the nonexistence of 4-cycles in $G$.

If $f \notin N\left(f_{o}\right), C_{1}$ contains a pair of diagonal vertices that are not on $C$. By symmetry, we assume that $u, w \in C_{1} \backslash C$ whenever $f \notin N\left(f_{o}\right)$. Let $G_{u, w}$ be the graph obtained from $G$ by identifying $u$ and $w$, and let $r_{u w}$ be the new vertex obtained by identifying $u$ and $w$. It is clear that $G_{u, w}$ contains no adjacent triangles since no edge of $C_{1}$ is contained in triangles. If $f \notin N\left(f_{o}\right)$, it is certain that $\phi$ is still a proper coloring of $C$ in $G_{u, w}$. If $f \in N\left(f_{o}\right)$, we may assume that $u \in C$, then $w \notin C$ and $N(w) \cap C \subset\{x, v\}$ by Lemmas 3 and 5 , and thus $\phi$ is also a proper coloring of $C$ in $G_{u, w}$ by letting $\phi\left(r_{u, w}\right)=\phi(u)$.

Since a cycle of length 5 or 7 in $G_{u, w}$ yields a 7 -cycle or a separating 9-cycle in $G, G_{u, w} \in \mathcal{G}$. Now we need only to check that $f_{o}$ is still a special face in $G_{u, w}$ in case of $p=11$. Assume that $p=11$. We first consider the case that $f \in N\left(f_{o}\right)$.

If $C$ has a claw-center $z$ with neighbors $y_{1}, y_{2}$ and $y_{3}$ clockwisely on $C$ in $G_{u, w}$, then $y_{i}=$ $r_{u w}$ for an $i$. Assume $y_{1}=r_{u w}$. It is clear that $x \notin\left\{y_{2}, y_{3}\right\}$, and $y_{2} y_{3} \in E(C)$ by Lemma 5 . If $\left|V\left(C\left(x, y_{2}\right)\right)\right| \leqslant 3$, then in $G, C\left(x, y_{2}\right) \cup x w z y_{2} \cup z y_{3}$ contains a cycle of length 5 or 7 . If $\left|V\left(C\left(y_{3}, u\right)\right)\right| \leqslant 3$, then in $G, C\left(y_{3}, u\right) \cup C_{1} \cup w z y_{2} \cup z y_{3}$ contains a cycle of length 5 or 7 , or a separating 9 -cycle. Therefore, $\left|V\left(C\left(x, y_{2}\right)\right)\right| \geqslant 4,\left|V\left(C\left(y_{3}, u\right)\right)\right| \geqslant 4$, and hence $p \geqslant 12$, a contradiction.

Assume that $C$ has a d-claw-center $\left\{z_{1}, z_{2}\right\}$ in $G_{u, w}$. Since $C$ has no claw-center in $G_{u, w}$, $\left|N\left(z_{i}\right) \cap C\right|=2, i=1,2$. Let $N\left(z_{1}\right) \cap C=\left\{y_{1}, y_{2}\right\}$ and $N\left(z_{2}\right) \cap C=\left\{y_{3}, y_{4}\right\}$. Since $G$ contains no adjacent triangles, $\left\{y_{1}, y_{2}\right\} \cap\left\{y_{3}, y_{4}\right\}=\emptyset$ by Lemma 5. Since $f_{o}$ is a special face in $G$, we may assume that $y_{2}=r_{u w}$. Then, $y_{3} y_{4} \in E(C)$ by Lemma 5. Using the similar argument as used in the last paragraph, we get $p \geqslant 12$ by counting the number of vertices in $C\left(x, y_{3}\right), C\left(y_{4}, y_{1}\right)$ and $C\left(y_{1}, u\right)$, a contradiction.

In the case that $f \notin N\left(f_{o}\right), C$ has a claw-center $z$ provides $z=r_{u, w}$, and $C$ has a d-claw-center provides $r_{u, w}$ is in the d-claw-center. In either case, one may get a contradiction that $p \geqslant 12$ by almost the same arguments as above.

Now, assume that $C^{\prime}$ is a 6 -cycle of $G$. Since $G$ contains no 4 -cycles as just proved above, every face incident with some edge on $C^{\prime}$ is a $6^{+}$-face. If $C^{\prime}$ is a separating cycle, it is not difficult to verify that $\left|\operatorname{ext}\left(C^{\prime}\right)\right| \geqslant 4$, then by letting $G^{\prime \prime}$ be the graph obtained from $G \backslash \operatorname{int}\left(C^{\prime}\right)$ by inserting three vertices into an edge of $C^{\prime}$, we can first extend $\phi$ to $G \backslash \operatorname{int}\left(C^{\prime}\right)$, and then extend the restriction of $\phi$ on $C^{\prime}$ to $G^{\prime \prime}$, and thus get an extension of $\phi$ on $G$. So, we assume that $C^{\prime}$ bounds a face $f^{\prime}$.

If $C^{\prime} \cap C \neq \emptyset$, we choose $u_{0}$ to be a vertex in $C^{\prime} \cap C$, and choose $u_{1}$ to be a vertex in $C^{\prime} \backslash C$. If $C^{\prime} \cap C=\emptyset$, since $G$ contains no $l$-cycle for $l=4,5$ or 7 , there must be a vertex on $C^{\prime}$ that has no neighbors on $C$, we choose such a vertex as $u_{1}$. Let $C^{\prime}=u_{0} u_{1} \ldots u_{5} u_{0}$, and let $H$ be the graph obtained from $G$ by identifying $u_{1}$ and $u_{5}, u_{2}$ and $u_{4}$, respectively. Since $H$ contains no adjacent triangles, and any 5 -cycle (7-cycle) of $H$ yields a 7 -cycle (separating 9 -cycle) in $G, H \in \mathcal{G}$.

We will show that $\phi$ is still a coloring of $f_{o}$ in $H$. It is trivial if $C^{\prime} \cap C=\emptyset$, since the operation from $G$ to $H$ is independent of $\phi$. Assume that $C^{\prime} \cap C \neq \emptyset$. Then, $u_{0} \in C$ and $u_{1} \notin C$ by our choice, and $u_{2} \notin C$ and $N\left(u_{1}\right) \cap C=\left\{u_{0}\right\}$ by Lemma 5. If either $u_{2}$ has no neighbors on $C$, or $u_{4} \notin C$, then we are done. Otherwise, assume that $u_{4} \in C$ and $u_{2}$ has a neighbor, say $z$, on $C$, and assume that $u_{0}, z$ and $u_{4}$ lie on $C$ clockwisely. Since $G$ contains no 5-cycles, $u_{0} u_{4} \notin$ $E(G)$, and hence $u_{5} \in C$ by Lemma 5 . Since $G$ contains no 4 -cycles and no separating 6 -cycles, $\left|V\left(C\left(u_{0}, z\right)\right)\right| \geqslant 4,\left|V\left(C\left(z, u_{4}\right)\right)\right| \geqslant 4$, and hence $p \geqslant 12$, a contradiction.

Finally, we will prove that $f_{o}$ is still a special face in $H$ in case of $p=11$. Then, a contradiction occurs again since $\phi$ can be extended to $H$ that offers an extension of $\phi$ to $G$, this will end the proof of Lemma 6 and also the proof of our theorem.

The proof technique is again, as used repeatedly, to derive a contradiction by counting the number of vertices on the segments divided by the vertices adjacent to some claw-center or d-claw-center of $C$. We proceed only with the case $C^{\prime} \cap C=\emptyset$. Assume to the contrary that $p=11$ but $f_{o}$ is not a special face in $H$. Let $r_{1,5}$ and $r_{2,4}$ be the vertices obtained by identifying $u_{1}$ and $u_{5}$, and $u_{2}$ and $u_{4}$, respectively.

Assume that $C$ has a claw-center $y$ with three neighbors $y_{1}, y_{2}$ and $y_{3}$, clockwisely on $C$ in $H$. By symmetry, we may assume that $y=r_{1,5}$, and assume that $y_{1} u_{1} \in E(G)$ and $y_{2} u_{5}, y_{3} u_{5} \in E(G)$. Then, $y_{2} y_{3} \in E(C)$ by Lemma 5 . Since $G$ contains no adjacent triangles, contains no cycles of length 4,5 and 7 , and contains no separating 9 -cycles, $\left|V\left(C\left(y_{1}, y_{2}\right)\right)\right| \geqslant 4$, $\left|V\left(C\left(y_{3}, y_{1}\right)\right)\right| \geqslant 5$, and hence $p \geqslant 12$, a contradiction.

Assume that $C$ has a d-claw-center $\left\{z_{1}, z_{2}\right\}$ in $H$. Then, each of $z_{1}$ and $z_{2}$ has two neighbors on $C$ and these four vertices are all distinct. By symmetry, we may assume that $z_{1}=r_{1,5} \cdot z_{2}$ may be $u_{0}, r_{2,4}$ or a vertex not on $C \cup C^{\prime}$. In each case, the same argument as above ensures that $p \geqslant 12$. This contradiction completes the proof of Lemma 6.

Our proof is then completed because by the assumption in Theorem 1, $G$ contains either 4-cycles or 6-cycles.

## Acknowledgments

The author appreciates the referees sincerely for their helpful suggestions.

## References

[1] O.V. Borodin, A.N. Glebov, A. Raspaud, M.R. Salavatipour, Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B 93 (2005) 303-311.
[2] O.V. Borodin, A. Raspaud, A sufficient condition for planar graphs to be 3-colorable, J. Combin. Theory Ser. B 88 (2003) 17-27.
[3] R. Steinberg, The state of the three color problem, in: J. Gimbel, J.W. Kennedy, L.V. Quintas (Eds.), Quo Vadis. Graph Theory? in: Ann. Discrete Math., vol. 55, 1993, pp. 211-248.
[4] B. Xu , A 3-color theorem on plane graphs without 5-circuits, Acta Math. Sinica, in press.


[^0]:    * Supported partially by NSFC 10371055.

    E-mail address: baogxu@njnu.edu.cn.

