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Abstract

In this note, it is proved that every plane graph without 5- and 7-cycles and without adjacent triangles
is 3-colorable. This improves the result of [O.V. Borodin, A.N. Glebov, A. Raspaud, M.R. Salavatipour,
Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B 93 (2005)
303–311], and offers a partial solution for a conjecture of Borodin and Raspaud [O.V. Borodin, A. Raspaud,
A sufficient condition for planar graphs to be 3-colorable, J. Combin. Theory Ser. B 88 (2003) 17–27].
© 2006 Elsevier Inc. All rights reserved.
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In [1], Borodin et al. proved that every plane graph G without cycles of length from 4 to
7 is 3-colorable that provides a new upper bound to Steinberg’s conjecture (see [3, p. 229]).
In [2], Borodin and Raspaud proved that every plane graph with neither 5-cycles nor triangles of
distance less than four is 3-colorable, and they conjectured that every plane graph with neither
5-cycles nor adjacent triangles is 3-colorable, where the distance between triangles is the length
of the shortest path between vertices of different triangles, and two triangles are said to be ad-
jacent if they have an edge in common. In [4], Xu improved Borodin and Raspaud’s result by
showing that every plane graph with neither 5-cycles nor triangles of distance less than three is
3-colorable.

In this note, it is proved that every plane graph without 5- and 7-cycles and without adjacent
triangles is 3-colorable. This improves the result of [1], and offers a partial solution for Borodin
and Raspaud’s conjecture [2].
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Let G = (V ,E,F ) be a plane graph, where V,E and F denote the sets of vertices, edges
and faces of G, respectively. The neighbor set and degree of a vertex v are denoted by N(v) and
d(v), respectively. Let f be a face of G. We use b(f ),V (f ) and N(f ) to denote the boundary
of f , the set of vertices on b(f ), and the set of faces adjacent to f , respectively. The degree of f ,
denoted by d(f ), is the length of the facial walk of f . A k-vertex (k-face) is a vertex (face) of
degree k.

Let C be a cycle of G. We use int(C) and ext(C) to denote the sets of vertices located inside
and outside C, respectively. C is called a separating cycle if both int(C) �= ∅ and ext(C) �= ∅,
and is called a facial cycle otherwise. For convenience, we still use C to denote the set of vertices
of C.

An 11-face f of G is called a special face if the following hold:

(1) b(f ) is a cycle;
(2) f is adjacent to a triangle;
(3) every vertex x /∈ V (f ) has at most two neighbors on b(f ); and
(4) for every edge uv of G \ V (f ), |(N(u) ∩ V (f )| + |N(v) ∩ V (f )| � 3.

A vertex in G \ V (f ) that violates (3) is called a claw-center of b(f ), and a pair of adjacent
vertices in G \ V (f ) that violates (4) is called a d-claw-center of b(f ).

A separating 11-cycle C is called a special cycle if in G \ ext(C), C is the boundary of a
special face. We use G to denote the set of plane graphs without 5- and 7-cycles and without
adjacent triangles. Following is our main theorem.

Theorem 1. Let G be a graph in G that contains cycles of length 4 or 6, f an arbitrary face that
is a special face, or a 3-face, or a 9-face with b(f ) being a cycle. Then, any 3-coloring of f can
be extended to G.

As a corollary of Theorem 1, every plane graph in G is 3-colorable. To see this, let G be
a plane graph in G. By Grötzsch’s theorem, we may assume that G contains triangles. If G

contains neither 4-cycles nor 6-cycles, then by [1, Theorem 1.2], G is 3-colorable. Otherwise,
for an arbitrary triangle T , any 3-coloring of T can be extended to int(T ) and ext(T ), that yields
a 3-coloring of G.

Proof of Theorem 1. Assume that G is a counterexample to Theorem 1 with minimum σ(G) =
|V (G)|+|E(G)|. Without loss of generality, assume that the unbounded face fo is a special face,
or a 3-face or a 9-face with b(f ) being a cycle, such that a 3-coloring φ of fo cannot be extended
to G. Let C = b(fo) and let p = |C|. Then, every vertex not in C has degree at least 3.

By our choice of G, neither 4-cycle nor 6-cycle is adjacent to triangles. Since G \ int(C′) is
still in G for any separating cycle C′ of G.

Lemma 1. G contains neither special cycles, nor separating k-cycles, k = 3,9.

Lemma 2. G is 2-connected. That is, the boundary of every face of G is a cycle.

Interested readers may find the proof of Lemma 2 in [1] (see that of Lemma 2.2).
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Let C′ be a cycle of G, and u and v two vertices on C′. We use C′[u,v] to denote the path
of C′ clockwisely from u to v, and let C′(u, v) = C′[u,v] \ {u,v}. Unless specified particularly,
we always write a cycle on its vertices sequence clockwisely.

Lemma 3. C is chordless.

Proof. Assume to the contrary that C has a chord uv. Let S1 = V (C(u, v)), S2 = V (C(v,u)),
and assume that |S1| < |S2|. It is certain that p = 9 or 11, and |S1| � 4. Since |S1| = 3 provides
C[u,v] + uv is a 5-cycle, and |S1| = 4 provides C[v,u] + uv is a (p − 4)-cycle, we assume that
|S1| = 1 or 2.

If |S1| = 1, say S1 = {w}, then uvwu bounds a 3-face by Lemma 1. Let G′ be the graph
obtained from G − w by inserting a new vertex into uv. Then, G′ ∈ G, σ(G′) = σ(G) − 1. We
can extend φ to a 3-coloring φ′ of G′. This produces a contradiction because φ′ and φ(w) yield
a 3-coloring of G that extends φ.

Assume |S1| = 2. Since C[v,u] + uv is a (p − 2)-cycle, p = 11 and C[v,u] + uv bounds a
9-face by Lemma 1. Let G′ be the graph obtained from G \ S2 by inserting five vertices into uv.
Then, G′ ∈ G, σ(G′) < σ(G). By assigning appropriate colors to the new added vertices, the
restriction of φ on C[u,v] can be extended to a 3-coloring φ′ of G′. The restriction of φ′ on
G \ C(v,u) and φ again yield a 3-coloring of G that extends φ, a contradiction. �
Lemma 4. N(u) ∩ N(v) ∩ int(C1) = ∅ for separating 11-cycle C1 and uv ∈ E(C1).

Proof. Assume to the contrary that x ∈ N(u) ∩ N(v) ∩ int(C1). By Lemma 1, xuvx bounds a
3-face. We will show that C1 has neither claw-center nor d-claw-center. Then, C1 is a special
cycle that contradicts Lemma 1.

If xw ∈ E(G) for some w ∈ C1 \ {u,v}, assume that u,v and w clockwisely lie on C1, then
|V (C1(v,w))| � 5 and |V (C1(w,u))| � 5 since G ∈ G, and hence |C1| � 13, a contradiction.
If a vertex y ∈ int(C1) \ {x} has three neighbors z1, z2 and z3 on C1, then by simply count-
ing the number of vertices in C1 \ {z1, z2, z3}, G must contain a 9-cycle C2 with x ∈ int(C2),
a contradiction to Lemma 1 because C2 is a separating 9-cycle.

Assume that {a, b} is a d-claw-center of C1. Since G has no adjacent triangles, |(N(a) ∪
N(b))∩C1| � 3. If (N(a)∪N(b))∩C1 has exactly three vertices, say a1, a2 and a3 clockwisely
on C1, we may assume that a1 ∈ N(a)∩N(b), then |V (C1(a1, a2))| � 5 and |V (C1(a3, a1))| � 5
that provide |C1| � 13. So, assume that a has two neighbors a1, a2 ∈ C1, b has two neighbors
b1, b2 ∈ C1 \ {a1, a2}, and assume these four vertices clockwisely lie on C1.

If a1a2 ∈ E(C1), then |V (C1(a2, b1))| � 4 and |V (C1(b2, a1))| � 4 providing |C1| � 12, a
contradiction. So, we may assume that a1a2 /∈ E(C1) and b1b2 /∈ E(C1), i.e., |V (C1(a1, a2))| � 1
and |V (C1(b1, b2))| � 1. By symmetry, we assume x ∈ int(C1[a1, b1] ∪ a1abb1). By simply
counting the number of vertices in C1 \ {a1, a2, b1, b2}, we get |C1| > 11, a contradiction. �
Lemma 5. For u,v ∈ C and x /∈ C, if xu,xv ∈ E(G), then uv ∈ E(C).

Proof. Assume to the contrary that uv /∈ E(C). By Lemma 3, uv /∈ E(G). Let |V (C[u,v])| =
l < |V (C[v,u])|. Then, 3 � l � p+1

2 � 6.
Since C[u,v] ∪ vxu is an (l + 1)-cycle and C[v,u] ∪ uxv is a (p − l + 3)-cycle, l /∈ {4,6},

and l �= 5 whenever p = 9. If l = 5 and p = 11, C[v,u] ∪uxv must bound a 9-face by Lemma 1,
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then fo has to be adjacent to a 3-face f1 on C[u,v], and hence C[u,v] ∪ vxu ∪ b(f1) yields a
7-cycle. So, l = 3. Let C[u,v] = uwv.

If p = 11, then fo has to be adjacent to a 3-face on C[v,u] that contradicts to Lemma 4
because C[v,u] ∪ vxu is a separating 11-cycle. Therefore, p = 9 and C[v,u] ∪ vxu bounds
a 9-face by Lemma 1. Let G′ be the graph obtained from G \ V (C(v,u)) by inserting 5 new
vertices into ux. Then, G′ ∈ G, σ(G′) < σ(G), and the unbounded face of G′ has degree 9. We
can extend φ(u),φ(w) and φ(v) to a 3-coloring φ′ of G′ with φ′(u) �= φ′(x). But φ′ and φ yield
a 3-coloring of G that extends φ, a contradiction. �
Lemma 6. G contains neither 4-cycles nor 6-cycles.

Proof. First assume to the contrary that G contains a 4-cycle C1 = uvwxu. If C1 is a separating
4-cycle, let ψ be an extension of φ on G \ int(C1), and let G1 be the graph obtained from
G \ ext(C1) by inserting five new vertices into an edge of C1. If p �= 3 then |C \ C1| � 6 since C

is chordless, and hence |ext(C1)| � 6. If p = 3 then |C ∩ C1| � 1 and hence E(C) ∩ E(C1) = ∅,
again |ext(C1)| � 6 because every face incident with some edge on C1 is a 4+-face. Therefore,
σ(G1) < σ(G), and we can extend the restriction of ψ on C1 to G1, and thus get a 3-coloring
of G that extends φ. So, we assume that G contains no separating 4-cycles, and let f be the
face bounded by C1. We proceed to show that one can identify a pair of diagonal vertices of C1

such that φ can be extended to a 3-coloring of the resulting graph G′. Since any 3-coloring of G′
offers a 3-coloring of G, this contradiction guarantees the nonexistence of 4-cycles in G.

If f /∈ N(fo), C1 contains a pair of diagonal vertices that are not on C. By symmetry, we
assume that u,w ∈ C1 \ C whenever f /∈ N(fo). Let Gu,w be the graph obtained from G by
identifying u and w, and let ruw be the new vertex obtained by identifying u and w. It is clear that
Gu,w contains no adjacent triangles since no edge of C1 is contained in triangles. If f /∈ N(fo), it
is certain that φ is still a proper coloring of C in Gu,w . If f ∈ N(fo), we may assume that u ∈ C,
then w /∈ C and N(w) ∩ C ⊂ {x, v} by Lemmas 3 and 5, and thus φ is also a proper coloring
of C in Gu,w by letting φ(ru,w) = φ(u).

Since a cycle of length 5 or 7 in Gu,w yields a 7-cycle or a separating 9-cycle in G, Gu,w ∈ G.
Now we need only to check that fo is still a special face in Gu,w in case of p = 11. Assume that
p = 11. We first consider the case that f ∈ N(fo).

If C has a claw-center z with neighbors y1, y2 and y3 clockwisely on C in Gu,w , then yi =
ruw for an i. Assume y1 = ruw . It is clear that x /∈ {y2, y3}, and y2y3 ∈ E(C) by Lemma 5.
If |V (C(x, y2))| � 3, then in G, C(x, y2) ∪ xwzy2 ∪ zy3 contains a cycle of length 5 or 7. If
|V (C(y3, u))| � 3, then in G, C(y3, u) ∪ C1 ∪ wzy2 ∪ zy3 contains a cycle of length 5 or 7,
or a separating 9-cycle. Therefore, |V (C(x, y2))| � 4, |V (C(y3, u))| � 4, and hence p � 12,
a contradiction.

Assume that C has a d-claw-center {z1, z2} in Gu,w . Since C has no claw-center in Gu,w ,
|N(zi) ∩ C| = 2, i = 1,2. Let N(z1) ∩ C = {y1, y2} and N(z2) ∩ C = {y3, y4}. Since G contains
no adjacent triangles, {y1, y2} ∩ {y3, y4} = ∅ by Lemma 5. Since fo is a special face in G, we
may assume that y2 = ruw . Then, y3y4 ∈ E(C) by Lemma 5. Using the similar argument as used
in the last paragraph, we get p � 12 by counting the number of vertices in C(x, y3),C(y4, y1)

and C(y1, u), a contradiction.
In the case that f /∈ N(fo), C has a claw-center z provides z = ru,w , and C has a d-claw-center

provides ru,w is in the d-claw-center. In either case, one may get a contradiction that p � 12 by
almost the same arguments as above.
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Now, assume that C′ is a 6-cycle of G. Since G contains no 4-cycles as just proved above,
every face incident with some edge on C′ is a 6+-face. If C′ is a separating cycle, it is not
difficult to verify that |ext(C′)| � 4, then by letting G′′ be the graph obtained from G\ int(C′) by
inserting three vertices into an edge of C′, we can first extend φ to G \ int(C′), and then extend
the restriction of φ on C′ to G′′, and thus get an extension of φ on G. So, we assume that C′
bounds a face f ′.

If C′ ∩C �= ∅, we choose u0 to be a vertex in C′ ∩C, and choose u1 to be a vertex in C′ \C. If
C′ ∩C = ∅, since G contains no l-cycle for l = 4,5 or 7, there must be a vertex on C′ that has no
neighbors on C, we choose such a vertex as u1. Let C′ = u0u1 . . . u5u0, and let H be the graph
obtained from G by identifying u1 and u5, u2 and u4, respectively. Since H contains no adjacent
triangles, and any 5-cycle (7-cycle) of H yields a 7-cycle (separating 9-cycle) in G, H ∈ G.

We will show that φ is still a coloring of fo in H . It is trivial if C′ ∩C = ∅, since the operation
from G to H is independent of φ. Assume that C′ ∩ C �= ∅. Then, u0 ∈ C and u1 /∈ C by our
choice, and u2 /∈ C and N(u1) ∩ C = {u0} by Lemma 5. If either u2 has no neighbors on C,
or u4 /∈ C, then we are done. Otherwise, assume that u4 ∈ C and u2 has a neighbor, say z,
on C, and assume that u0, z and u4 lie on C clockwisely. Since G contains no 5-cycles, u0u4 /∈
E(G), and hence u5 ∈ C by Lemma 5. Since G contains no 4-cycles and no separating 6-cycles,
|V (C(u0, z))| � 4, |V (C(z,u4))| � 4, and hence p � 12, a contradiction.

Finally, we will prove that fo is still a special face in H in case of p = 11. Then, a contradic-
tion occurs again since φ can be extended to H that offers an extension of φ to G, this will end
the proof of Lemma 6 and also the proof of our theorem.

The proof technique is again, as used repeatedly, to derive a contradiction by counting the
number of vertices on the segments divided by the vertices adjacent to some claw-center or
d-claw-center of C. We proceed only with the case C′ ∩ C = ∅. Assume to the contrary that
p = 11 but fo is not a special face in H . Let r1,5 and r2,4 be the vertices obtained by identifying
u1 and u5, and u2 and u4, respectively.

Assume that C has a claw-center y with three neighbors y1, y2 and y3, clockwisely
on C in H . By symmetry, we may assume that y = r1,5, and assume that y1u1 ∈ E(G) and
y2u5, y3u5 ∈ E(G). Then, y2y3 ∈ E(C) by Lemma 5. Since G contains no adjacent triangles,
contains no cycles of length 4, 5 and 7, and contains no separating 9-cycles, |V (C(y1, y2))| � 4,
|V (C(y3, y1))| � 5, and hence p � 12, a contradiction.

Assume that C has a d-claw-center {z1, z2} in H . Then, each of z1 and z2 has two neighbors
on C and these four vertices are all distinct. By symmetry, we may assume that z1 = r1,5. z2 may
be u0, r2,4 or a vertex not on C ∪ C′. In each case, the same argument as above ensures that
p � 12. This contradiction completes the proof of Lemma 6. �

Our proof is then completed because by the assumption in Theorem 1, G contains either
4-cycles or 6-cycles. �
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