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Abstract

In this note, it is proved that every plane graph without 5- and 7-cycles and without adjacent triangles
is 3-colorable. This improves the result of [O.V. Borodin, A.N. Glebov, A. Raspaud, M.R. Salavatipour,
Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B 93 (2005)
303-311], and offers a partial solution for a conjecture of Borodin and Raspaud [O.V. Borodin, A. Raspaud,
A sufficient condition for planar graphs to be 3-colorable, J. Combin. Theory Ser. B 88 (2003) 17-27].
© 2006 Elsevier Inc. All rights reserved.
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In [1], Borodin et al. proved that every plane graph G without cycles of length from 4 to
7 is 3-colorable that provides a new upper bound to Steinberg’s conjecture (see [3, p. 229]).
In [2], Borodin and Raspaud proved that every plane graph with neither 5-cycles nor triangles of
distance less than four is 3-colorable, and they conjectured that every plane graph with neither
5-cycles nor adjacent triangles is 3-colorable, where the distance between triangles is the length
of the shortest path between vertices of different triangles, and two triangles are said to be ad-
jacent if they have an edge in common. In [4], Xu improved Borodin and Raspaud’s result by
showing that every plane graph with neither 5-cycles nor triangles of distance less than three is
3-colorable.

In this note, it is proved that every plane graph without 5- and 7-cycles and without adjacent
triangles is 3-colorable. This improves the result of [1], and offers a partial solution for Borodin
and Raspaud’s conjecture [2].
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Let G = (V, E, F) be a plane graph, where V, E and F denote the sets of vertices, edges
and faces of G, respectively. The neighbor set and degree of a vertex v are denoted by N (v) and
d(v), respectively. Let f be a face of G. We use b(f), V(f) and N(f) to denote the boundary
of f, the set of vertices on b( f), and the set of faces adjacent to f, respectively. The degree of f,
denoted by d(f), is the length of the facial walk of f. A k-vertex (k-face) is a vertex (face) of
degree k.

Let C be a cycle of G. We use int(C) and ext(C) to denote the sets of vertices located inside
and outside C, respectively. C is called a separating cycle if both int(C) # @ and ext(C) # @,
and is called a facial cycle otherwise. For convenience, we still use C to denote the set of vertices
of C.

An 11-face f of G is called a special face if the following hold:

(1) b(f)isacycle;

(2) f is adjacent to a triangle;

(3) every vertex x ¢ V (f) has at most two neighbors on b(f); and

(4) foreveryedge uv of G\ V(f), [(Nw)NV(H|+INw)NV(f) <3.

A vertex in G \ V(f) that violates (3) is called a claw-center of b(f), and a pair of adjacent
vertices in G \ V (f) that violates (4) is called a d-claw-center of b(f).

A separating 11-cycle C is called a special cycle if in G \ ext(C), C is the boundary of a
special face. We use G to denote the set of plane graphs without 5- and 7-cycles and without
adjacent triangles. Following is our main theorem.

Theorem 1. Let G be a graph in G that contains cycles of length 4 or 6, f an arbitrary face that
is a special face, or a 3-face, or a 9-face with b(f) being a cycle. Then, any 3-coloring of f can
be extended to G.

As a corollary of Theorem 1, every plane graph in G is 3-colorable. To see this, let G be
a plane graph in G. By Grotzsch’s theorem, we may assume that G contains triangles. If G
contains neither 4-cycles nor 6-cycles, then by [1, Theorem 1.2], G is 3-colorable. Otherwise,
for an arbitrary triangle 7', any 3-coloring of 7 can be extended to int(7") and ext(T"), that yields
a 3-coloring of G.

Proof of Theorem 1. Assume that G is a counterexample to Theorem 1 with minimum o (G) =
|V(G)|+|E(G)|. Without loss of generality, assume that the unbounded face f, is a special face,
or a 3-face or a 9-face with b( f) being a cycle, such that a 3-coloring ¢ of f,, cannot be extended
to G. Let C =b(f,) and let p = |C|. Then, every vertex not in C has degree at least 3.

By our choice of G, neither 4-cycle nor 6-cycle is adjacent to triangles. Since G \ int(C’) is
still in G for any separating cycle C’ of G.

Lemma 1. G contains neither special cycles, nor separating k-cycles, k =3, 9.
Lemma 2. G is 2-connected. That is, the boundary of every face of G is a cycle.

Interested readers may find the proof of Lemma 2 in [1] (see that of Lemma 2.2).
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Let C’ be a cycle of G, and u and v two vertices on C’. We use C’[u, v] to denote the path
of C’ clockwisely from u to v, and let C'(u, v) = C'[u, v] \ {u, v}. Unless specified particularly,
we always write a cycle on its vertices sequence clockwisely.

Lemma 3. C is chordless.

Proof. Assume to the contrary that C has a chord uv. Let S| = V(C(u,v)), S» = V(C(v, u)),
and assume that |S1| < |S>|. It is certain that p =9 or 11, and |S;| < 4. Since |S;| = 3 provides
Clu,v] +uv is a 5-cycle, and |S1| = 4 provides C[v, u] + uv is a (p — 4)-cycle, we assume that
|S1]=1or2.

If |S1] =1, say S| = {w}, then uvwu bounds a 3-face by Lemma 1. Let G’ be the graph
obtained from G — w by inserting a new vertex into uv. Then, G’ € G, 6 (G') = o (G) — 1. We
can extend ¢ to a 3-coloring ¢’ of G’. This produces a contradiction because ¢’ and ¢ (w) yield
a 3-coloring of G that extends ¢.

Assume |S1| = 2. Since C[v,u] +uvisa (p —2)-cycle, p =11 and C[v, u] 4+ uv bounds a
9-face by Lemma 1. Let G’ be the graph obtained from G \ S by inserting five vertices into uv.
Then, G’ € G, 0(G’) < o(G). By assigning appropriate colors to the new added vertices, the
restriction of ¢ on C[u, v] can be extended to a 3-coloring ¢’ of G’. The restriction of ¢’ on
G\ C(v, u) and ¢ again yield a 3-coloring of G that extends ¢, a contradiction. 0O

Lemma 4. N(u) N N(v) Nint(Cy) = @ for separating 11-cycle C1 and uv € E(Cy).

Proof. Assume to the contrary that x € N(u) N N(v) Nint(Cy). By Lemma 1, xuvx bounds a
3-face. We will show that C; has neither claw-center nor d-claw-center. Then, Cy is a special
cycle that contradicts Lemma 1.

If xw € E(G) for some w € Cy \ {u, v}, assume that u, v and w clockwisely lie on C1, then
[V(Ci(v,w))| =5 and |V (Ci(w, u))| = 5 since G € G, and hence |C;| > 13, a contradiction.
If a vertex y € int(Cy) \ {x} has three neighbors z;, z2 and z3 on Cj, then by simply count-
ing the number of vertices in Cy \ {z1, 22, z3}, G must contain a 9-cycle C, with x € int(C»),
a contradiction to Lemma 1 because C» is a separating 9-cycle.

Assume that {a, b} is a d-claw-center of C;. Since G has no adjacent triangles, |(N (a) U
N(b))NCy| = 3.1If (N(a) U N (b)) N Cq has exactly three vertices, say aj, ax and a3 clockwisely
on C1, we may assume that a; € N(a) NN (b), then |V (Ci(a1,az))| = 5and |V (Ci(az,a1))| =5
that provide |C1| > 13. So, assume that a has two neighbors aj, a; € Cy, b has two neighbors
b1, by € C1\ {a1, a2}, and assume these four vertices clockwisely lie on Cj.

If ajay € E(Cy), then |V (Ci(az, b1))| = 4 and |V (C1(b2,a1))| = 4 providing |Cq| > 12, a
contradiction. So, we may assume thatajas ¢ E(C1) and b1by ¢ E(Cy),i.e., |V(Ci(a1,a2))| =21
and |V (C1(b1, b3))| > 1. By symmetry, we assume x € int(Cy[ay, b1] U ajabby). By simply
counting the number of vertices in Cy \ {ay, az, b1, b2}, we get |C| > 11, a contradiction. O

Lemma 5. For u,v e C and x ¢ C, if xu, xv € E(G), then uv € E(C).

Proof. Assume to the contrary that uv ¢ E(C). By Lemma 3, uv ¢ E(G). Let |V(Clu, v])| =
I <|V(Clv,u])|. Then, 3 <! < ZH <.
Since Clu, v] U vxu is an (I 4+ 1)-cycle and C[v,u]Uuxvisa (p — [+ 3)-cycle, [ ¢ {4, 6},

and / # 5 whenever p =9.1f [ =5 and p =11, C[v, 4] U uxv must bound a 9-face by Lemma 1,
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then f, has to be adjacent to a 3-face f1 on C[u, v], and hence C[u, v] U vxu U b(f1) yields a
7-cycle. So, [ = 3. Let Clu, v] = uwv.

If p =11, then f, has to be adjacent to a 3-face on C[v, u] that contradicts to Lemma 4
because C[v,u] U vxu is a separating 11-cycle. Therefore, p =9 and C[v, u] U vxu bounds
a 9-face by Lemma 1. Let G’ be the graph obtained from G \ V(C(v, u)) by inserting 5 new
vertices into ux. Then, G’ € G, 0 (G’) < 6 (G), and the unbounded face of G’ has degree 9. We
can extend ¢ (u), ¢ (w) and ¢ (v) to a 3-coloring ¢’ of G’ with ¢’(u) # ¢'(x). But ¢’ and ¢ yield
a 3-coloring of G that extends ¢, a contradiction. O

Lemma 6. G contains neither 4-cycles nor 6-cycles.

Proof. First assume to the contrary that G contains a 4-cycle C; = uvwxu. If Cy is a separating
4-cycle, let ¥ be an extension of ¢ on G \ int(Cp), and let G| be the graph obtained from
G \ ext(C1) by inserting five new vertices into an edge of C1. If p # 3 then |C \ C;| > 6 since C
is chordless, and hence |ext(C1)| = 6. If p =3 then [C N C{| < 1 and hence E(C)N E(Cy) =0,
again |ext(C1)| > 6 because every face incident with some edge on Cj is a 4+ _face. Therefore,
0(G1) < 0(G), and we can extend the restriction of ¥ on C; to G, and thus get a 3-coloring
of G that extends ¢. So, we assume that G contains no separating 4-cycles, and let f be the
face bounded by C. We proceed to show that one can identify a pair of diagonal vertices of C;
such that ¢ can be extended to a 3-coloring of the resulting graph G'. Since any 3-coloring of G’
offers a 3-coloring of G, this contradiction guarantees the nonexistence of 4-cycles in G.

If f¢ N(f,), Cp contains a pair of diagonal vertices that are not on C. By symmetry, we
assume that u, w € C; \ C whenever f ¢ N(f,). Let G, ,, be the graph obtained from G by
identifying # and w, and let r,,,, be the new vertex obtained by identifying u# and w. It is clear that
G, contains no adjacent triangles since no edge of C is contained in triangles. If f ¢ N(f,), it
is certain that ¢ is still a proper coloring of C in Gy, 4. If f € N(f,), we may assume thatu € C,
then w ¢ C and N(w) N C C {x, v} by Lemmas 3 and 5, and thus ¢ is also a proper coloring
of C in G, by letting ¢ (ry, ) = ¢ (u).

Since a cycle of length 5 or 7 in G, 4, yields a 7-cycle or a separating 9-cyclein G, G, € G.
Now we need only to check that f,, is still a special face in G, in case of p = 11. Assume that
p = 11. We first consider the case that f € N(f,).

If C has a claw-center z with neighbors y;, y2 and y3 clockwisely on C in G, 4, then y; =
ruw for an i. Assume y; = ryy,. It is clear that x ¢ {y», y3}, and y>y3 € E(C) by Lemma 5.
If [V(C(x,y2))] <3, then in G, C(x, y2) Uxwzy, U zy3 contains a cycle of length 5 or 7. If
[V(C(y3,u))| <3, then in G, C(y3,u) U Cy U wzy, U zy3 contains a cycle of length 5 or 7,
or a separating 9-cycle. Therefore, |V (C(x, y2))| = 4, |V(C(y3,u))| > 4, and hence p > 12,
a contradiction.

Assume that C has a d-claw-center {z, z2} in G, . Since C has no claw-center in Gy,
IN(zi)NC|=2,i=1,2.Let N(z1) N C ={y1, y2} and N(z2) N C = {y3, y4}. Since G contains
no adjacent triangles, {y1, y2} N {y3, y4} =@ by Lemma 5. Since f, is a special face in G, we
may assume that yp = ry,,. Then, y3y4 € E(C) by Lemma 5. Using the similar argument as used
in the last paragraph, we get p > 12 by counting the number of vertices in C(x, y3), C(y4, ¥1)
and C(y1, u), a contradiction.

In the case that f ¢ N(f,), C has a claw-center z provides z = r,,_,,, and C has a d-claw-center
provides r, ,, is in the d-claw-center. In either case, one may get a contradiction that p > 12 by
almost the same arguments as above.
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Now, assume that C’ is a 6-cycle of G. Since G contains no 4-cycles as just proved above,
every face incident with some edge on C’ is a 6" -face. If C’ is a separating cycle, it is not
difficult to verify that |ext(C’)| > 4, then by letting G” be the graph obtained from G \ int(C’) by
inserting three vertices into an edge of C’, we can first extend ¢ to G \ int(C’), and then extend
the restriction of ¢ on C’ to G”, and thus get an extension of ¢ on G. So, we assume that C’
bounds a face f’.

If C'NC # @, we choose ug to be a vertex in C’ N C, and choose u; to be a vertex in C'\ C. If
C’'NC =@, since G contains no I-cycle for I =4, 5 or 7, there must be a vertex on C’ that has no
neighbors on C, we choose such a vertex as u. Let C' = ugu; ...usug, and let H be the graph
obtained from G by identifying u and us, u; and u4, respectively. Since H contains no adjacent
triangles, and any 5-cycle (7-cycle) of H yields a 7-cycle (separating 9-cycle) in G, H € G.

We will show that ¢ is still a coloring of f,, in H. Itis trivial if C' N C = @, since the operation
from G to H is independent of ¢. Assume that C’ N C # @. Then, ug € C and u; ¢ C by our
choice, and uy ¢ C and N(u1) N C = {ug} by Lemma 5. If either u»> has no neighbors on C,
or us ¢ C, then we are done. Otherwise, assume that us € C and u» has a neighbor, say z,
on C, and assume that uq, z and u4 lie on C clockwisely. Since G contains no 5-cycles, uous ¢
E(G), and hence u5 € C by Lemma 5. Since G contains no 4-cycles and no separating 6-cycles,
[V (C(ug,2))| =4, |V(C(z,uq))| >4, and hence p > 12, a contradiction.

Finally, we will prove that f, is still a special face in H in case of p = 11. Then, a contradic-
tion occurs again since ¢ can be extended to H that offers an extension of ¢ to G, this will end
the proof of Lemma 6 and also the proof of our theorem.

The proof technique is again, as used repeatedly, to derive a contradiction by counting the
number of vertices on the segments divided by the vertices adjacent to some claw-center or
d-claw-center of C. We proceed only with the case C' N C = {J. Assume to the contrary that
p =11but f, is not a special face in H. Let r1 5 and 2 4 be the vertices obtained by identifying
u1 and us, and uy and u4, respectively.

Assume that C has a claw-center y with three neighbors yj, y» and y3, clockwisely
on C in H. By symmetry, we may assume that y = ry 5, and assume that y;u; € E(G) and
yous, yzus € E(G). Then, y,y3 € E(C) by Lemma 5. Since G contains no adjacent triangles,
contains no cycles of length 4, 5 and 7, and contains no separating 9-cycles, |V (C(y1, »2))| = 4,
[V(C(y3,y1))| =5, and hence p > 12, a contradiction.

Assume that C has a d-claw-center {z1, z2} in H. Then, each of z; and z, has two neighbors
on C and these four vertices are all distinct. By symmetry, we may assume that z; = r; 5. zp may
be ug, rp.4 or a vertex not on C U C’. In each case, the same argument as above ensures that
p > 12. This contradiction completes the proof of Lemma 6. O

Our proof is then completed because by the assumption in Theorem 1, G contains either
4-cycles or 6-cycles. O
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