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The mitochondrial inner membrane contains a large protein complex crucial
for membrane architecture, the mitochondrial inner membrane organizing
system (MINOS). MINOS is required for keeping cristae membranes
attached to the inner boundary membrane via crista junctions and interacts
with protein complexes of the mitochondrial outer membrane. To study if
outer membrane interactions and maintenance of cristae morphology are
directly coupled, we generatedmutant forms of mitofilin/Fcj1 (formation of
crista junction protein 1), a core component of MINOS. Mitofilin consists of
a transmembrane anchor in the inner membrane and intermembrane space
domains, including a coiled-coil domain and a conserved C-terminal
domain. Deletion of the C-terminal domain disrupted the MINOS complex
and led to release of cristae membranes from the inner boundary
membrane, whereas the interaction of mitofilin with the translocase of the
outer membrane (TOM) and the sorting and assembly machinery (SAM)
were enhanced. Deletion of the coiled-coil domain also disturbed the
MINOS complex and cristae morphology; however, the interactions of
mitofilin with TOM and SAM were differentially affected. Finally, deletion
of both intermembrane space domains disturbed MINOS integrity as well
as interactions with TOM and SAM. Thus, the intermembrane space
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184 Mitochondrial Membrane Architecture
domains of mitofilin play distinct roles in interactions with outer membrane
complexes and maintenance of MINOS and cristae morphology, demon-
strating that MINOS contacts to TOM and SAM are not sufficient for the
maintenance of inner membrane architecture.
© 2012 Elsevier Ltd. Open access under CC BY-NC-ND license.
Introduction

Mitochondria belong to the class of endosymbiotic
organelles that are found in virtually all eukaryotic
cells.1 In unicellular model organisms, such as the
baker's yeast Saccharomyces cerevisiae, mitochondria
contain around 1000 different proteins, most of
which are imported into the organelle upon synthe-
sis in the cytosol.2–6 Mitochondria form a dynamic
tubular network that is dispersed throughout cells
and subject to continuous rearrangements mediated
by balanced fusion and fission events.7–10 The
overall morphology and ultrastructure of mitochon-
dria is determined by the two membrane systems of
these organelles, the bordering outer membrane and
the inner membrane that surrounds the central
matrix space.11,12 Inner and outer mitochondrial
membranes confine the intermembrane space.13 The
inner mitochondrial membrane is further divided
into the inner boundary membrane that closely
aligns with the outer membrane and extended
tubular protrusions into the matrix termed
cristae.11,12,14 These two subdomains of the inner
mitochondrial membrane show a remarkable degree
of functional specialization: whereas the inner
boundary membrane is, for example, enriched in
protein import systems, the components of the
oxidative phosphorylation machinery are preferen-
tially found in cristae membranes.12,15–18 Inner
boundary membrane and cristae membranes are
connected by morphologically well-defined mem-
brane regions that have been named crista
junctions.11,12,19,20 Factors that have been directly
or indirectly linked to the development and mainte-
nance of the typical cristae morphology include the
inner membrane fusion protein OPA1/Mgm1,21–23

prohibitins,24 oligomeric forms of the F1Fo-ATP
synthase,18,25 and mitofilin.20,26,27 The yeast mitofi-
lin protein, also termed Fcj1 (formation of crista
junction protein 1), was the first protein found to be
preferentially localized to crista junction regions.20

Recently, a large inner membrane protein complex
that consists of mitofilin/Fcj1 and at least five other
subunits [Mio10 (Mcs10/Mos1), Aim5 (Mcs12),
Aim13 (Mcs19), Aim37 (Mcs27), and Mio27
(Mcs29/Mos2)] was identified.28–31 This complex
was termed mitochondrial inner membrane orga-
nizing system (MINOS), mitochondrial contact site
complex (MICOS), or mitochondrial organizing
structure (MitOS) (nomenclatures summarized by
Herrmann32). MINOS mutant cells exhibit a dramat-
ically altered cristae morphology: cristae appear as
large, extended stacks of lamellarmembranes that are
detached from the inner boundary membrane. This
phenotype was shown to be most pronounced in
fcj1Δ and mio10Δ mutants with an almost complete
loss of crista junctions.20,28–31 These effects on
mitochondrial ultrastructure were similar to those
observed upon knockdown of mitofilin in HeLa
cells26 and upon inactivation of the two Caenorhabdi-
tis elegans mitofilin proteins, IMMT-1 and IMMT-2.27

Human mitofilin (IMMT, MINOS2) was found in a
complex with the Mio10 ortholog MINOS131 and the
CHCHD3 (MINOS3) protein,31,33–35 which is related
to yeast Aim13.36 The mitochondrial morphology
protein MOMA-1 identified in C. elegans shows
homology to Aim37 and Mio27.37 Interestingly,
components of MINOS were also found to associate
with a number of outer membrane protein com-
plexes. Interaction of mitofilin/Fcj1 with the general
preprotein translocase of the outer membrane (TOM
complex) supports protein import via the mitochon-
drial intermembrane space assembly pathway.28

Several reports identified a physical connection
between mitofilin and the sorting and assembly
machinery of the outer membrane (SAM complex/
TOB complex),29,31,33–35 which is required for the
biogenesis of outer membrane proteins.1,3,4 More-
over, interactions of MINOS with the outer mem-
brane fusion protein Ugo1 and the abundant channel
protein porin (VDAC) have been observed.29,30

It has remained unknown if and how the roles of
MINOS in the formation of crista junctions and inner/
outer membrane contact sites are mechanistically
connected. It was suggested that the maintenance of
crista junctions requires the outer membrane contacts
of MINOS to connect inner boundary and cristae
membranes,29,35 pointing to a direct correlation
between both MINOS functions. In this study, we
have dissected yeast mitofilin/Fcj1 to define the
roles of its different intermembrane space domains
in outer membrane interactions and maintenance of
inner membrane architecture. We show that the
interactions of mitofilin with outer membrane
complexes and the integrity of MINOS and inner
membrane morphology are differentially affected
by the deletion of mitofilin domains. The associa-
tion of MINOS with the TOM and SAM complexes
of the outer membrane is not sufficient for the
maintenance of crista junctions.
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Mutant forms of yeast mitofilin/Fcj1

Yeast mitofilin/Fcj1 consists of an N-terminal
presequence required for import of the protein into
mitochondria, a single transmembrane domain
spanning the inner membrane and a large hydro-
philic portion exposed to the intermembrane space.
This intermembrane space portion contains a
central putative coiled-coil domain and a C-termi-
nal mitofilin signature domain that is highly
conserved among the members of this protein
family (Fig. 1a).20,28 Protein-A-tagged wild-type
Fcj1 (Fcj1-WTProtA) has been used to isolate and
characterize the MINOS complex.28 Based on this
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187Mitochondrial Membrane Architecture
replace the wild-type FCJ1 gene (Fig. 1a).28 We
compared the growth behavior of Fcj1-WTProtA
and the mutant forms with the different domain
deletions on non-fermentable medium under
conditions where the full deletion of FCJ1 had
been shown to impair yeast growth (Fig. 1b).20,28–31

Growth of Fcj1-WTProtA cells was indistinguishable
from the isogenic wild-type yeast strain expressing
untagged Fcj1, confirming that the Protein A tag
does not interfere with the functionality of the
protein (Fig. 1b). Deletion of the C-terminal domain
led to a severe growth defect comparable to the
complete absence of Fcj1 (Fig. 1b, compare Fcj1-
WTProtA, Fcj1-491ProtA, and fcj1Δ). Accordingly, a
similar growth defect was observed for the shortest
mutant form Fcj1-140ProtA lacking the C-terminal
domain aswell as the coiled-coil domain. In contrast,
deletion of the central coiled-coil domain alone (Fcj1-
ΔccProtA) only moderately impaired yeast growth
(Fig. 1b). This was surprising since coiled-coil
domains are generally known to mediate protein–
protein interactions38 and are therefore expected to
be important for the interaction of Fcj1 with partner
proteins. Taken together, the growth tests suggest
that the C-terminal domain is more critical for the
functionality of Fcj1 than the coiled-coil domain.
We isolatedmitochondria from cells expressing Fcj1-

WTProtA or one of the three mutant forms and
compared the steady-state protein levels of the
different Fcj1 fusion proteins by immunodetection of
the Protein A moiety (Fig. 1c). The variants Fcj1-
491ProtA, Fcj1-140ProtA, and Fcj1-ΔccProtA all accumu-
lated in mitochondria in similar amounts compared to
Fcj1-WTProtA, demonstrating that the mutant forms of
Fcj1 are properly targeted and stable (Fig. 1c). We then
Fig. 2. Altered cristae morphology in mitofilin/Fcj1 muta
mitochondrial ultrastructure (lower panels) of the following yeas
fcj1Δ (3092), Fcj1-491ProtA (3380), Fcj1-140ProtA (3382), and Fcj1-Δc
yeast cellswere grown in liquidYPGmedium [1% (w/v) yeast ext
density of 0.3, pelleted by centrifugation, and resuspended in dem
3,3′-dihexyloxacarbocyanine iodide (DiOC6) (100 ng/ml final c
suspensions were applied to a glass slide coated with a mixture
Mitochondrial morphology was examined with a fluorescence m
bandpass 525/50, dichroicmirror 495LP), and imageswere recor
5 μM. For the analysis of mitochondrial ultrastructure by electro
composed of 1% (w/v) yeast extract, 2% (w/v) bacto-peptone, a
used to inoculate a minimal medium containing 2% (v/v) L-lac
(L-leucine, histidine, L-methionine, and uracil).28 For staining of m
fixed using 3% (v/v) glutaraldehyde in sodium cacodylate, pH
Tris–HCl (pH 7.5), 2 mg/ml DAB, and 0.06% (v/v) H2O2.

28 Yea
overnight in 0.5% (w/v) uranylacetate, and finally embedded in
Representative images are shown. Scale bars represent 500 nm. (g
from the indicated yeast cells. Isolated mitochondria (40 μg tot
1 mM ethylenediaminetetraacetic acid (EDTA), and 10 mMMop
buffer (1 mM EDTA and 10 mM Mops/KOH, pH 7.2) (swelling
left on ice for 30 min. Mitochondria were reisolated, suspended
sucrose, 80 mM KCl, 5 mM MgCl2, 2 mM KH2PO4, 5 mM meth
50 μg/ml proteinase K (Prot. K) where indicated. Protease
Mitochondria were washed once in SEM buffer and subjected to
analyzed the steady-state levels ofmanyother proteins
in wild-type and mutant mitochondria. In all Fcj1
domain deletion mitochondria, the amounts of the
MINOS components Mio10 and Aim37 were compa-
rable to wild-type (Fig. 1d). In Fcj1-ΔccProtA mitochon-
dria, the amounts ofAim5andMio27weremoderately
reduced (Fig. 1d, compare lanes 1–3 and 10–12). The
levels of the Aim13 subunit, however, were consider-
ably lower in each of the mutant mitochondria (Fig.
1d). This observation is consistent with the earlier
finding that steady-state levels of Aim13 were
dramatically reduced in fcj1Δ mitochondria,28–30

indicating that the stable accumulation of Aim13 in
mitochondria depends on an intact Fcj1 protein.
Finally, subunits of the SAM (Sam35, Sam50) and
TOM (Tom22, Tom40) complexes in the outer mito-
chondrial membrane and control proteins of the inner
membrane (Cor1, Su g)were found in similar amounts
in wild-type and all mutant mitochondria (Fig. 1d).

Altered cristae morphology in mitofilin/Fcj1
mutants

We asked how the deletion of different mitofilin/
Fcj1 domains affected mitochondrial morphology
and ultrastructure. A mitochondria-specific fluores-
cent dye was used to examine the shape of the
mitochondrial network in living yeast cells. The
mitochondria of wild-type and Fcj1-WTProtA cells
appeared as elongated, interconnected tubules as
expected, whereas fcj1Δ mutant mitochondria were
fragmented, partially aggregated, and occasionally
hollow (Fig. 2a–c).20,28,30,31 Fcj1-491ProtA and Fcj1-
140ProtA mitochondria looked similar to fcj1Δ
mitochondria, whereas Fcj1-ΔccProtA mitochondria
nts. (a–f) Mitochondrial morphology (upper panels) and
t strains: wild type (WT; YPH499; 1501), Fcj1-WTProtA (2035),
cProtA (3387). For visualization of mitochondrial morphology,
ract, 2% (w/v) bacto-peptone, 3% (v/v) glycerol] to an optical
ineralized water. The mitochondria-specific fluorescent dye

oncentration) was added to the cells. Small amounts of cell
of 10 mM Hepes, 5% (w/v) glucose, and 1% (w/v) agarose.
icroscope (excitation filter band pass 470/40, emission filter
dedusing ahigh-resolutionCCDcamera. Scale bars represent
n microscopy, yeast cells were first grown in liquid medium
nd 2% (v/v) L-lactate (pH 5.0) at 30 °C. This culture was then
tate (pH 5.0) supplemented with 20 mg/l amino acid mix
itochondria with diaminobenzidine (DAB), yeast cells were

7.2, and subsequently treated with a buffer containing 0.1 M
st cells were post-fixed with 1.5% (w/v) KMnO4, incubated
Epon 812. For each strain, 100 cell sections were examined.
) Hypoosomotic swelling assay with mitochondria prepared
al mitochondrial proteins) in SEM buffer [250 mM sucrose,
s/KOH, pH 7.2] were diluted 1:50 in either hypoosmotic EM
conditions)39 or equal amounts of SEM buffer (control) and
in BSA buffer [3% (w/v) bovine serum albumin, 250 mM
ionine, and 10 mM Mops/KOH, pH 7.2], and treated with
digestion was stopped by the addition of 2 mM PMSF.
SDS-PAGE and immunoblotting with the indicated antisera.
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showed an intermediate phenotype: Both elongated
tubular segments and fragmented, condensed mito-
chondrial structures were observed (Fig. 2d–f). To
examine the ultrastructure of mitochondria and the
morphology of cristae membranes, we used diami-
nobenzidine staining and electron microscopy.28 In
wild-type and Fcj1-WTProtA cells, cristae membranes
appeared as tubular invaginations from the inner
boundary membrane with clearly defined crista
junctions (Fig. 2a and b). In contrast, fcj1Δ cells
showed an increased inner membrane surface with
stacked lamellar cristae membranes and a dramatic
loss of crista junctions as reported (Fig. 2c).20,28–31

Very similar defects of mitochondrial ultrastructure
were observed in Fcj1-491ProtA, Fcj1-140ProtA, and
Fcj1-ΔccProtA yeast cells (Fig. 2d–f). In the Fcj1-
ΔccProtA strain, however, these typical alterations
were less pronounced: The number of cell sections
with extended stacks of lamellar cristae was lower
compared to the Fcj1-491ProtA, Fcj1-140ProtA, and
fcj1Δ strains.
The cristae morphology defects in fcj1Δ mutant

mitochondria have been shown to correlate with
a reduced rupturing of the outer membrane
under hypoosmotic conditions.28 When isolated
mitochondria are diluted into a hypoosmotic
buffer, the influx of water into the organelles
leads to a swelling of the matrix compartment
accompanied by an unfolding of cristae and
expansion of the inner boundary membrane. As
the expansion capacity of the outer membrane is
limited due to its smaller surface, the swelling
process causes outer membrane rupture followed
by the release of soluble intermembrane space
proteins, like Tim13, and protease accessibility of
inner membrane proteins, like Tim23 (Fig. 2g,
lanes 9 and 13). This hypoosmotic swelling is
impaired in fcj1Δ mitochondria, where the inner
boundary and cristae membranes are discon-
tinuous.28 We tested the swelling behavior of
mitochondria containing the Fcj1 truncation mu-
tants. The release of Tim13 as well as the
protease accessibility of Tim23 under hypoosmo-
tic conditions was reduced in Fcj1-491ProtA, Fcj1-
140ProtA, and Fcj1-ΔccProtA mitochondria com-
pared to Fcj1-WTProtA (Fig. 2g, lanes 9–16). The
swelling capacity of Fcj1-ΔccProtA mitochondria
was slightly higher compared to the other two
Fcj1 mutants, as judged by the slightly more
efficient Tim13 release and Tim23 protease
accessibility with Fcj1-ΔccProtA (Fig. 2g, lanes
10–12 and 14–16). These results are in full
agreement with the differential defects in cristae
morphology of the mutant mitochondria ob-
served by electron microscopy (Fig. 2a–f).
We conclude that the deletion of either the

C-terminal domain or the coiled-coil domain of
mitofilin/Fcj1 has severe consequences for cristae
morphology, but the defects are most pronounced,
when the C-terminal domain is missing. Deletion of
this conserved domain leads to morphological
rearrangements of the inner membrane with the
loss of crista junctions to the same extent as the
complete absence of mitofilin/Fcj1, resulting in
comparable growth defects of Fcj1-491ProtA and
fcj1Δ yeast strains (Fig. 1b).

Different roles of mitofilin/Fcj1 domains for
MINOS integrity and outer membrane contacts

How does the deletion of different mitofilin/Fcj1
domains affect the association of Fcj1 with other
MINOS components and the major outer mem-
brane interaction partners, the TOM and SAM
complexes? To address this question, we purified
full-length Fcj1 and the truncated variants by
affinity chromatography under mild conditions.
Protein–protein contacts between different orga-
nellar membranes are particularly well preserved
when whole-cell extracts are used as starting
material for complex isolations. 40 To analyze
both MINOS integrity and outer membrane in-
teractions, Fcj1-WTProtA, Fcj1-491ProtA, Fcj1-140ProtA,
and Fcj1-ΔccProtA yeast cells were cryogenically
ground under liquid nitrogen. The obtained cell
powder was extracted with digitonin buffer to
solubilize membrane protein complexes in their
native state. Fcj1-containing complexes were iso-
lated from the detergent extracts. The MINOS
subunits Mio10, Aim5, Aim13, Aim37, and Mio27
as well as the outer membrane complexes TOM
(Tom22, Tom40) and SAM (Sam35, Sam50) were
efficiently co-purified with Fcj1-WTProtA under
these conditions, whereas control proteins of
both inner membrane (Cor1, Su g) and outer
membrane (Om14) were not recovered in the
elution fraction (Fig. 3, lanes 8 and 11). When
Fcj1-491ProtA was used as bait protein, none of the
MINOS subunits were co-isolated in considerable
amounts, indicating that the conserved C-terminal
domain of Fcj1 is of crucial importance for the
integrity of MINOS (Fig. 3, lane 9). Surprisingly,
co-isolation of TOM components as well as of
SAM components was not impaired by the
deletion of the C-terminal domain (Fig. 3, lane
9). Tom22, Tom40, Sam35, and Sam50 were
detected in even higher amounts in the elution
fractions of Fcj1-491ProtA isolations than of Fcj1-
WTProtA. These data indicate that the last 49
amino acid residues including the conserved C-
terminal domain are critical for MINOS integrity
but are dispensable for the association of mitofi-
lin/Fcj1 with both SAM and TOM complexes.
We then performed affinity chromatography

experiments using Fcj1-ΔccProtA. This analysis
showed that the lack of the coiled-coil domain
of Fcj1 leads to a partial destabilization of the
MINOS complex (Fig. 3, lane 12). Whereas the
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30 °C, harvested by centrifugation, and washed twice
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ethylenediaminetetraacetic acid (EDTA), and 10% (v/v)
glycerol]. Upon resuspension in washing buffer, cells
were frozen in liquid nitrogen and cryogenically
ground.40 Equal amounts of cell powder derived from
each of the indicated strains were extracted with
digitonin buffer [20 mM Tris–HCl (pH 7.4), 50 mM
NaCl, 0.1 mM EDTA, 10% (v/v) glycerol, 1% (w/v)
digitonin, 2 mM PMSF, 1× Complete Protease Inhibitor
Cocktail (Roche Diagnostics), and 30 μg/ml DNase I].
After a clarifying spin to remove cell debris and
unsolubilized material, digitonin extracts were incu-
bated with pre-equilibrated human immunoglobulin
G-coupled Sepharose beads for 90 min at 4 °C. Beads
were rinsed 15 times with washing buffer [20 mM
Tris–HCl (pH 7.4), 60 mM NaCl, 0.5 mM EDTA, 10%
(v/v) glycerol, 0.3% (w/v) digitonin, and 2 mM PMSF]
to remove unbound material. Bound proteins were
eluted by cleavage with tobacco etch virus protease.
Samples were analyzed by SDS-PAGE and Western
blotting with the indicated antisera. Load, 1.5%; eluate,
100%. Su g, subunit g of F1Fo-ATP synthase.
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association of Aim5 and Aim13 with Fcj1-ΔccProtA
was strongly impaired compared to Fcj1-WTProtA,
the co-isolation of Aim37, Mio10, and Mio27 was
only moderately affected. For the interaction of
Fcj1-ΔccProtA with the TOM and SAM complexes,
we obtained differential results. The co-purification
of the TOM subunits Tom22 and Tom40 was
increased upon removal of the coiled-coil domain,
similar to the situation with the C-terminal
domain deletion mutant (Fig. 3, lane 12 compared
to lane 9). The recovery of Sam35 and Sam50 with
Fcj1-ΔccProtA, however, was considerably reduced
in comparison to Fcj1-WTProtA (Fig. 3, lanes 11
and 12). Finally, the lack of both coiled-coil and
C-terminal domain in the Fcj1-140ProtA construct
led to a loss of both MINOS integrity and
interaction with the TOM and SAM complexes
(Fig. 3, lane 10).
In conclusion, our data demonstrate that distinct

domains of mitofilin/Fcj1 differentially contribute
to MINOS integrity and cristae morphology on the
one hand and interaction with the outer membrane
complexes TOM and SAM on the other hand. The
conserved C-terminal signature domain of mitofi-
lin/Fcj1 is critical for the stability of the MINOS
complex, maintenance of cristae morphology, and
yeast growth, but not for the formation of inner/
outer membrane contacts through the TOM and
SAM complexes. The coiled-coil and C-terminal
domains differentially contribute to the association
of mitofilin/Fcj1 with the TOM and SAM com-
plexes. We show that the interaction of mitofilin/
Fcj1 with TOM and SAM is not sufficient to preserve
the connections between inner boundary membrane
and cristae membranes in the absence of assembled
MINOS complexes. These findings suggest that the
functions of MINOS for cristae maintenance and
formation of membrane contact sites can be
dissected and thus involve distinct mechanisms. It
has been proposed that MINOS, TOM, and SAM
are integrated in a large endoplasmic reticulum–
mitochondria organizing network (ERMIONE),
which plays crucial roles inmitochondrial biogenesis
and membrane architecture.41 The dissection of
distinct MINOS functions reported here supports
the view that ERMIONE is a dynamic system and
provides a basis for a mechanistic analysis of this
organizing network.
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