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1. Introduction

In recent literature a lot of attention is given to concrete classes of finitely presented algebras A
over a field K defined by homogeneous semigroup relations, that is, relations of the form w = v ,
where w and v are words of the same length in a generating set of the algebra. Of course such
an algebra is a semigroup algebra K [S], where S is the monoid generated by the same presentation.
Particular classes show up in different areas of research. For example, algebras yielding set theo-
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retic solutions of the Yang–Baxter equation (see for example [7,9,10,12,18]) or algebras related to
Young diagrams, representation theory and algebraic combinatorics (see for example [1,5,8,11,14]). In
all the mentioned algebras there are strong connections between the structure of the algebra K [S],
the underlying semigroup S and the underlying group G , defined by the same presentation as the
algebra.

In [3] the authors introduced and initiated a study of combinatorial and algebraic aspects of the
following new class of finitely presented algebras over a field K :

A = K 〈a1,a2, . . . ,an | a1a2 · · ·an = aσ (1)aσ (2) · · ·aσ (n), σ ∈ H〉,

where H is a subset of the symmetric group Symn of degree n. So A = K [Sn(H)] where

Sn(H) = 〈a1,a2, . . . ,an | a1a2 · · ·an = aσ (1)aσ (2) · · ·aσ (n), σ ∈ H〉,

the monoid with the “same” presentation as the algebra. By Gn(H) we denote the group defined by
this presentation. So

Gn(H) = gr(a1,a2, . . . ,an | a1a2 · · ·an = aσ (1)aσ (2) · · ·aσ (n), σ ∈ H).

Two obvious examples are: the free K -algebra K [Sn({1})] = K 〈a1, . . . ,an〉 with H = {1} and Sn({1}) =
FMn , the rank n free monoid, and the commutative polynomial algebra K [S2(Sym2)] = K [a1,a2] with
H = Sym2 and Sn(H) = FaM2, the rank 2 free abelian monoid. For M = Sn(Symn), the latter can
be extended as follows [3, Proposition 3.1]: the algebra K [M] is the subdirect product of the com-
mutative polynomial algebra K [a1, . . . ,an] and a primitive monomial algebra that is isomorphic to
K [M]/K [Mz], with z = a1a2 · · ·an , a central element.

On the other hand, let M = Sn(H) where H = gr({(1,2, . . . ,n)}), a cyclic group of order n.
Then [3, Theorem 2.2] the monoid M is cancellative and it has a group G of fractions of the
form G = M〈a1 · · ·an〉−1 ∼= F × C , where F = gr(a1, . . . ,an−1) is a free group of rank n − 1 and
C = gr(a1 · · ·an) is a cyclic infinite group. The algebra K [M] is a domain and it is semiprimitive.
Moreover [3, Theorem 2.1], a normal form of elements of the algebra can be given. It is worthwhile
mentioning that the group G is an example of a cyclically presented group. Such groups arise in a
very natural way as fundamental groups of certain 3-manifolds [6], and their algebraic structure also
receives a lot of attention; for a recent work and some references see for example [2].

In this paper we continue the investigations on the algebras K [Sn(H)] and the groups Gn(H).
First we will prove some general results and next we will give a detailed account in case H is the
alternating group Altn of degree n. It turns out that the structure of the group Gn(H) can be com-
pletely determined and the algebra K [Sn(H)] has some remarkable properties. In order to state our
main result we fix some notation. Throughout the paper K is a field. If b1, . . . ,bm are elements of a
monoid M then we denote by 〈b1, . . . ,bm〉 the submonoid generated by b1, . . . ,bm . If M is a group
then gr(b1, . . . ,bm) denotes the subgroup of M generated by b1, . . . ,bm . Clearly, the defining relations
of an arbitrary Sn(H) are homogeneous. Hence, it has a natural degree or length function. This will
be used freely throughout the paper. By ρ = ρS we denote the least cancellative congruence on a
semigroup S . If η is a congruence on S then I(η) = linK {s − t | s, t ∈ M, (s, t) ∈ η} is the kernel of the
natural epimorphism K [S] → K [S/η]. For a ring R , we denote by J (R) its Jacobson radical and by
B(R) its prime radical. Our main result reads as follows.

Theorem 1.1. Suppose K is a field and n � 4. Let M = Sn(Altn), z = a1a2 · · ·an ∈ M and G = Gn(Altn). The
following properties hold.

(i) C = {1,a1a2a−1
1 a−1

2 } is a nontrivial central subgroup of G and G/C is a free abelian group of rank n.
Moreover D = gr(a2

i | i = 1, . . . ,n) is a central subgroup of G with G/(C D) ∼= (Z/2Z)n.
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(ii) K [G] is a noetherian algebra satisfying a polynomial identity (PI, for short). If K has characteris-
tic �= 2, then J (K [G]) = 0. If K has characteristic 2, then J (K [G]) = (1 − a1a2a−1

1 a−1
2 )K [G] and

J (K [G])2 = 0.
(iii) The element z2 is central in M and z2M is a cancellative ideal of M such that G ∼= (z2M)〈z2〉−1 . Further-

more, K [M/ρ] is a noetherian PI-algebra and J (K [M]) is nilpotent.
(iv) Suppose n is odd. Then z is central in M and 0 �= J (K [M]) = I(η) for a congruence η on M and J (K [M])

is a finitely generated ideal.
(v) Suppose n is even and n � 6. If K has characteristic �= 2, then J (K [M]) = 0. If K has characteristic 2,

then 0 �= J (K [M]) = I(η) for a congruence η on M and J (K [M]) is a finitely generated ideal.

Part (v) of Theorem 1.1 is also true for n = 4, but its proof is quite long for this case and it requires
additional technical lemmas. (The interested reader can find a proof of this in [4].)

So, in particular, the Jacobson radical is determined by a congruence relation on the semigroup
Sn(Altn), it is nilpotent and finitely generated as an ideal. In [3] the question was asked whether
these properties hold for all algebras K [Sn(H)], for subgroups H of Symn .

2. General results

In this section we prove some preparatory general properties of the monoid algebra K [Sn(H)] for
an arbitrary subset H of Symn with n � 3. To simplify notation, throughout this section we put

M = 〈a1,a2, . . . ,an | a1a2 · · ·an = aσ (1)aσ (2) · · ·aσ (n), σ ∈ H〉. (1)

If α = ∑
x∈M kxx ∈ K [M], with each kx ∈ K , then the finite set {x ∈ M | kx �= 0} we denote by supp(α).

It is called the support of α.

Proposition 2.1. Suppose that there exists k such that 1 < k < n and, for all σ ∈ H, σ(1) �= k and σ(n) �= k.
Then J (K [M]) = 0.

Proof. Suppose that J (K [M]) �= 0. Let α ∈ J (K [M]) be a nonzero element. Because, by assumption,
σ(1) �= k for all σ ∈ H , we clearly get that a2

kα �= 0. As a2
kα ∈ J (K [M]), there exists β ∈ K [M] such

that a2
kα +β +βa2

kα = 0. Obviously, β /∈ K . Let α1, β1 be the homogeneous components (for the natu-
ral Z-gradation of K [M]) of α and β of maximum degree respectively. Then β1a2

kα1 = 0. In particular,
there exist w1, w2 in the support of β1 and w ′

1, w ′
2 in the support of α1 such that

w1a2
k w ′

1 = w2a2
k w ′

2

and either w1 �= w2 or a2
k w ′

1 �= a2
k w ′

2. But, because σ(n) �= k for all σ ∈ H , this is impossible. Therefore
J (K [M]) = 0. �
Corollary 2.2. If H is a subgroup of Symn and J (K [M]) �= 0 then H is a transitive subgroup of Symn.

Proof. Suppose that H is a subgroup of Symn and J (K [M]) �= 0. By Proposition 2.1, for all k there
exists σ ∈ H such that either σ(1) = k or σ(n) = k. Suppose that H is not transitive. Then there
exists 1 � j � n such that j /∈ {σ(1) | σ ∈ H}. Hence there exists σ ∈ H such that σ(n) = j. Thus the
orbits I1 = {σ(1) | σ ∈ H} and I2 = {σ(n) | σ ∈ H} are disjoint nonempty sets such that I1 ∪ I2 =
{1,2, . . . ,n}. So, there are no defining relations of the form a1 · · · = an · · · , nor of the form · · ·a1 =
· · ·an . Consequently, if 0 �= α ∈ K [M] then a2

nα �= 0 and αa2
1 �= 0.

Let α ∈ J (K [M]) be a nonzero element. Then, a2
1a2

nα �= 0, and there exists β ∈ K [M] such that
a2

1a2
nα + β + βa2

1a2
nα = 0. Clearly, it follows that β /∈ K . Let α1, β1 be the homogeneous components

of α and β of maximum degree respectively. We obtain that β1a2
1a2

nα1 = 0. In particular, there exist
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w1, w2 in the support of β1 and w ′
1, w ′

2 in the support of α1 such that (w1, w ′
1) �= (w2, w ′

2) and

w1a2
1a2

n w ′
1 = w2a2

1a2
n w ′

2.

Again, because there are no defining relations of the form a1 · · · = an · · · nor of the form · · ·a1 = · · ·an ,
this yields a contradiction. Therefore H is transitive. �

Let z = a1a2 · · ·an ∈ M . The fact that z is central in M = Sn(H) for the case of the cyclic group H
generated by (1,2, . . . ,n) was an important tool in [3]. In Section 4 we will show that z2 is central
if M = Sn(Altn). We start by showing that the centrality of zm , for some positive integer m, has some
impact on the algebraic structure of M and K [M] and we determine when z is central in case H is a
subgroup of Symn .

Proposition 2.3. Suppose H is a subgroup of Symn and put z = a1a2 · · ·an. The following conditions are
equivalent.

(i) z is central in M = Sn(H),
(ii) a1z = za1 ,

(iii) H contains the subgroup of Symn generated by the cycle (1,2, . . . ,n).

Proof. Let H0 denote the subgroup of Symn generated by the cycle (1,2, . . . ,n). Assume H0 ⊆ H .
Then M = Sn(H) is an epimorphic image of Sn(H0). As a1a2 · · ·an is central in Sn(H0), it follows that
z indeed is central in M .

Assume now that a1z = za1. We need to show that H0 ⊆ H . Every defining relation can be written
in the form: z = akck , with 1 � k � n, ck = ∏

i=1, i �=k aτ (i) , τ ∈ Sym({1, . . . ,n} \ {k}) ⊆ Symn . By assump-

tion, a2
1a2 · · ·an = a1z = za1 = akcka1. Since akck is a product of distinct generators, there must exist

a relation of the form cka1 = z. Since also z is a product of distinct generators, it follows that k = 1.
Thus z = a1c1 = c1a1. The former equality yields that σ1 = ( 1 2 ... n−1 n

1 τ (2) ... τ (n−1) τ (n)

) ∈ H and the equality

z = c1a1 gives σ2 = ( 1 2 ... n−1 n
τ (2) τ (3) ... τ (n) 1

) ∈ H . Hence (1,2, . . . ,n) = σ−1
1 σ2 ∈ H and so H0 ⊆ H . The result

follows. �
Assume now that zm is central, for some positive integer m. Note that then the binary relation

ρ ′ on M , defined by sρ ′t if and only if there exists a nonnegative integer i such that szi = tzi , is a
congruence on M . We now show that Gn(H) is the group of fractions of M = M/ρ ′ . We denote by a
the image in M of a ∈ M under the natural map M → M .

Lemma 2.4. Suppose that zm is central for some positive integer m. Then, ρ ′ = ρ is the least cancellative
congruence on M and Ma ∩ aM ∩ 〈zm〉 �= ∅ for every a ∈ M.

In particular, M = M/ρ is a cancellative monoid and G = M〈zm〉−1 is the group of fractions of M. More-
over, G ∼= Gn(H) = gr(a1, . . . ,an | a1a2 · · ·an = aσ(1)aσ(2) · · ·aσ(n), σ ∈ H).

Proof. Since zm is central, we already know that the binary relation ρ ′ is a congruence on M .
Let a = ai1ai2 · · ·aik ∈ M . We shall prove that aM ∩ 〈zm〉 �= ∅ by induction on k. For k = 0, this
is clear. Suppose that k > 0 and that bM ∩ 〈zm〉 �= ∅ for all b ∈ M of degree less than k. Thus
there exists r ∈ M such that ai1 · · ·aik−1 r ∈ 〈zm〉. Since aik zm = zmaik , it follows easily from the type
of the defining relations for M that there exists w ∈ M such that aik w = z. We thus get that
awzm−1r = ai1 . . .aik−1 zmr = ai1 . . .aik−1 rzm ∈ 〈zm〉. Similarly we see that Ma ∩ 〈zm〉 �= ∅. Therefore ρ ′
is the least cancellative congruence on M and M〈zm〉−1 is the group of fractions of M and the second
assertion also follows. �
Proposition 2.5. Suppose that zm is central for some positive integer m. Let α1, . . . ,αk ∈ I(ρ) ∩ K [Mzm].
Then the ideal

∑k
i=1 K [M]αi K [M] is nilpotent. In particular, I(ρ) ∩ K [Mzm] ⊆ B(K [M]).
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Proof. Let α1, . . . ,αk ∈ I(ρ) ∩ K [Mzm]. Clearly there exists a positive integer N such that αi zmN = 0,
for all i = 1, . . . ,k. Since zm is central and αi ∈ K [Mzm], we have that (

∑m
i=1 K [M]αi K [M])N+1 = 0

and the result follows. �
Proposition 2.6. The following properties hold.

(i) J (K [M]/K [MzM]) = 0.
(ii) J (K [M]) ⊆ K [Mz ∪ zM].

(iii) J (K [M])3 ⊆ K [Mz2MzM ∪ MzMz2M] ⊆ K [Mz2M].

If, furthermore, zm is central and Mzk M is cancellative for some positive integers m,k, and char(K ) = 0 then
K [Mzk M] has no nonzero nil ideal. In particular, B(K [Mzk M]) = 0. Furthermore, if k = 2 then B(K [M])3 = 0.

Proof. To prove the first part, let X be the free monoid with basis x1, x2, . . . , xn . Then

K [M]/K [MzM] ∼= K [X]/K [ J ],

where J = ⋃
σ∈H∪{1} Xxσ(1) · · · xσ(n) X . Note that X/ J has no nonzero nilideal. Hence, by [15, Corol-

lary 24.7], K [M]/K [MzM] is semiprimitive. Therefore J (K [M]/K [MzM]) = 0.
To prove the second and third part, suppose that α = ∑q

i=1 λi si ∈ J (K [M]), with supp(α) =
{s1, . . . , sq} of cardinality q and λi ∈ K , is a homogeneous element (with respect to the gradation de-
fined by the natural length function on M). Then α is nilpotent (see for example [17, Theorem 22.6]).
Suppose that s1 /∈ zM and s1 /∈ Mz. Let i, j be such that s1 ∈ ai M ∩ Ma j . Then, for every l � 1, the
element (s1a jai)

l = s1a jai s1a jai · · · can only be rewritten in M in the form (s′a jai)
l , where s′ ∈ M

is such that s′ = s1. Therefore, αa jai ∈ J (K [M]) is not nilpotent, a contradiction. It follows that s1,
and similarly every si ∈ Mz ∪ zM . Again by [17, Theorem 22.6], we know that J (K [M]) is a ho-
mogeneous ideal. This implies that J (K [M]) ⊆ K [Mz ∪ zM]. Hence J (K [M])3 ⊆ MzJ (K [M])zM ⊆
K [Mz2MzM ∪ MzMz2 M]. This finishes the proof of statements (ii) and (iii).

To prove the last part, assume char(K ) = 0, Mzk M is cancellative and zm is central for some pos-
itive integers m,k. Since ai zm = zmai , it follows from the type of the defining relations for M that
z ∈ ai M ∩ Mai for every 1 � i � n. Hence, by Lemma 2.4, we know that Mzk M has a group of frac-
tions G (that is obtained by inverting the powers of the central element zkm). Let I be a nil ideal
of K [Mzk M]. Then K [G]I K [G] = I〈z−km〉 is a nil ideal of K [G]. Since, by assumption, char(K ) = 0,
we know from [16, Theorem 2.3.1] that then I = 0. So, if k = 2 then, by the first part of the result,
B(K [M])3 ⊆ K [Mz2M] ∩ B(K [M]). Since K [Mz2M] ∩ B(K [M]) is a nil ideal of K [Mz2M], the result
follows. �
Corollary 2.7. Suppose z is central. The following properties hold.

(i) If J (K [M]) = 0 then J (K [M]) = I(ρ) ∩ K [Mz].
(ii) If B(K [M]) = 0 then B(K [M]) = I(ρ) ∩ K [Mz].

(iii) If B(K [M]) = 0 then Mz is cancellative. The converse holds provided char(K ) = 0.

Proof. (i) By Proposition 2.6, J (K [M]) ⊆ K [Mz]. Note that K [M] = K [M/ρ] = K [M]/I(ρ). Hence,
if J (K [M]) = 0, we get that J (K [M]) ⊆ I(ρ) ∩ K [Mz]. By Proposition 2.5 we thus obtain that
J (K [M]) = I(ρ) ∩ K [Mz].

(ii) If K [M] is semiprime, then, by Proposition 2.6, B(K [M]) ⊆ I(ρ) ∩ K [Mz]. Thus, by Proposi-
tion 2.5, B(K [M]) = I(ρ) ∩ K [Mz].

(iii) Because of Proposition 2.5, we know that I(ρ) ∩ K [Mz] ⊆ B(K [M]). Suppose now that
B(K [M]) = 0. Then, ρ restricted to Mz must be the trivial relation, i.e., Mz is cancellative. Con-
versely, assume that char(K ) = 0 and Mz is cancellative. Then, by Proposition 2.6, B(K [M]) is a nil
ideal of K [Mz], and thus (also by Proposition 2.6) B(K [M]) = 0, as desired. �
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3. The monoid Sn(Altn)

In this section we investigate the monoid Sn(Altn) with n � 4. The information obtained is essential
to prove our main result, Theorem 1.1. Note that the cycle (1,2, . . . ,n) ∈ Altn if and only if n is odd.
Hence by Proposition 2.3, z = a1a2 · · ·an is central if and only if n is odd. However, for arbitrary n,
we will show that z2 is central and that the ideal Sn(Altn)z2 is cancellative as a semigroup and we
also will determine the structure of its group of fractions Gn(Altn). This information will be useful to
determine the radical of the algebra K [Sn(Altn)].

Throughout this section n � 4, M = Sn(Altn) and G = Gn(Altn). Let σ ∈ Altn . Since the set of defin-
ing relations of M (of G , respectively) is σ -invariant, σ determines the automorphism of M (of G
respectively) defined by σ(an1

i1
· · ·anm

im
) = an1

σ(i1)
· · ·anm

σ(im)
.

We will use the same notation for the generators of the free monoid FMn and the generators of M ,
if unambiguous. Throughout the rest of the paper, z denotes the element z = a1a2 · · ·an ∈ M .

Let w = ai1ai2 · · ·aim be a nontrivial word in the free monoid FMn on the set {a1,a2, . . . ,an}. Let
1 � p,q � m and r, s be nonnegative integers such that p + r,q + s � m. We say that the subwords
aip aip+1 · · ·aip+r and aiq aiq+1 · · ·aiq+s overlap in w if either p � q � p + r or q � p � q + s. For example,
in the word a3a2a1a3a4 the subwords a2a1a3 and a1a3a4 overlap and the subwords a3a2 and a1a3
do not overlap. Let u, u′ be words in the free monoid FMn . We say that u′ is a one step rewrite
of u if there exist u1, u2, u3, u′

2 ∈ FMn such that u2 and u′
2 represent z in M , and u = u1u2u3 and

u′ = u1u′
2u3.

Lemma 3.1. Let z = a1a2 · · ·an ∈ M.

(i) If n � 4 then aia j z = zaia j , for any different integers 1 � i, j � n.
(ii) If n � 5 then aia jak z = a jakai z and zaia jak = za jakai , for any three different integers 1 � i, j,k � n.

(iii) If n = 4 and 1 � i, j,k � n are three different integers then
1. if aia jakal = z then aia jak z = a jakai z = akaia j z = zaka jai ,
2. if alaia jak = z then zaia jak = za jakai = zakaia j = aka jai z.

(iv) If n � 6 is even then aia jak z = za jaiak, for any three different integers 1 � i, j,k � n.

Proof. (i) If 1 � i, j � n are different then there exists σ ∈ Altn such that σ(1) = i and σ(2) = j.
Hence

aia j z = aia jσ(1,2, . . . ,n)2(a1a2 · · ·an)

= aia jaσ (3) · · ·aσ (n)aσ (1)aσ (2) = zaia j.

(ii) and (iv) Suppose that n � 5. In this case, for any three different integers 1 � i, j,k � n there
exists σ ∈ Altn such that σ(1) = i, σ (2) = j, σ (3) = k. Let τ = τn ∈ Symn be defined by τ = id if n is
odd, and τ = (i, j) if n is even. So τσ (1,2, . . . ,n)3 ∈ Altn . Hence in M we get

aia jakz = aia jakτσ (1,2, . . . ,n)3(a1a2 · · ·an)

= (aσ (1)aσ (2)aσ (3))(aσ (4) · · ·aσ (n)aτ (i)aτ ( j)ak)

= σ(z)aτ (i)aτ ( j)ak.

In particular, (iv) follows. Since (1,2,3) ∈ Altn , this yields

aia jakz = (
σ(1,2,3)(a1a2 · · ·an)

)
aτ (i)aτ ( j)ak

= (a jakai)aσ (4) · · ·aσ (n)aτ (i)aτ ( j)ak = a jakai z.
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Similarly one proves that

zaia jak = za jakai,

for n � 5.
(iii) Suppose that n = 4. Let {i, j,k, l} = {1,2,3,4}. Then either aia jakal = z or alaia jak = z. If

aia jakal = z, then

z = aia jakal = a jakaial = akaia jal,

and, since z ∈ al M , we get

aia jakz = a jakai z = akaia j z.

Clearly, aia jak z = aia jak(alaka jai) = zaka jai .
Similarly, if alaia jak = z, we get

zaia jak = za jakai = zakaia j = (aka jaial)akaia j = aka jai z. �
Lemma 3.2. Let z = a1a2 · · ·an ∈ M. Then z2 is central in M.

Proof. If n � 6 and n is even then

z2a1 = za1a2 · · ·ana1 = a1a2a3a4za5 · · ·ana1
(
by Lemma 3.1(i)

)

= a1a2a3a4
(
(1,5)(2,3)(2,3, . . . ,n)3(a1a2 · · ·an)

)
a5 · · ·ana1

= a1a2a3a4(a5a1a6 · · ·ana3a2a4)a5 · · ·ana1

= a1
(
(1,2,3,4,5)(a1a2 · · ·an)

)
(2,3)(1,2, . . . ,n)(a1a2 . . .an)

= a1z2.

If n = 4 then

a1z2 = a1(a3a4a1a2)z = a1a3a4za1a2 (by Lemma 3.1)

= a1a3a4(a2a3a1a4)a1a2 = za3a1a4a1a2

= a3a1za4a1a2 (by Lemma 3.1)

= a3a1(a2a1a4a3)a4a1a2 = a3a1a2a1a4(a3a2a4a1)

= a3a1za2a4a1 = za3a1a2a4a1 (by Lemma 3.1)

= z2a1.

Since Altn is transitive, we get that z2 is central for all even n. Since z is central in M for all odd n,
the assertion follows. �
Lemma 3.3. For n = 4, a1a2a4a3z = σ(a1a2a4a3)z, for all σ ∈ Alt4 , and it is central in M. In particular,
σ(z)z = zσ(z) = zγ (z) = γ (z)z for any σ ,γ ∈ Sym4 of the same parity.
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Proof. By Lemma 3.1, we have

a1a2a4a3z = a1(a3a2a4)z = a1(a4a3a2)z,

and also

a1a2a4a3z = za1a2a4a3 = z(a2a4a1)a3 = a2a4a1a3z,

a1a2a4a3z = za1a2a4a3 = z(a4a1a2)a3 = a4a1a2a3z,

a1a2a4a3z = a1a3a2a4z = za1a3a2a4 = z(a3a2a1)a4 = a3a2a1a4z.

Thus a1a2a4a3z = σ(a1a2a4a3)z for all σ ∈ Alt4. In particular, σ(z)z = γ (z)z for odd permutations
σ ,γ . Of course such an equality also holds if γ ,σ are even. Note that, because of Lemma 3.1, zσ(z) =
σ(z)z for any permutation σ .

In order to prove that a1a2a4a3z is central we only need to show that a1a2a4a3za1 = a1a1a2a4a3z.
By Lemma 3.1, we have

a1a2a4a3za1 = a1a2za4a3a1 = a1a2z(a1a4a3)

= a1a2a1a4za3 = a1(a1a4a2)za3

= a1a1za4a2a3 = a1a1(a2a4a3a1)a4a2a3

= a1a1a2a4a3z. �
Lemma 3.4. Let z = a1a2 · · ·an ∈ M.

(i) If n � 6 is even then a2
i a j(akalar z) = a ja2

i (akalar z) and aia jaia j(akalar z) = a jaia jai(akalar z), for all
1 � i, j � n and for any three different integers 1 � k, l, r � n.

(ii) If n � 4, then a2
i a j z2 = a ja2

i z2 and aia jaia j z2 = a jaia jai z2 , for all 1 � i, j � n.

Proof. (i) Suppose that n � 6 is even. Applying Lemma 3.1 several times, we get

a1a1a2a1a2a3z = a1a1a2(a3a1a2z) = a1a1a2(za3a2a1)

= a1(za1a2)a3a2a1 = a1(za2a3a1)a2a1

= a1(a2a3z)a1a2a1 = (za2a1a3)a1a2a1

= (a2a1z)a3a1a2a1 = a2a1(za1a2a3)a1

= a2a1(a1a2a3a1z) = a2a1a1(a1a2a3z),

a1a2a1a2a1a2a3z = a1a2a1a2(za3a2a1) = a1a2(za1a2)a3a2a1

= a1a2(a3a2a1z)a2a1 = a1a2a3(za2a1)a2a1

= (za2a1a3)a2a1a2a1 = (a2a1z)a3a2a1a2a1

= a2a1(za2a1a3)a2a1 = a2a1(a2a1z)a3a2a1

= a2a1a2a1(a1a2a3z)

and, for every i ∈ {1,2, . . . ,n} \ {3,4},
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a1a1a2aia3a4z = a1a1a2(a3a4ai z) = a1a1a2a3(za4ai)

= a1(za2a1a3)a4ai = a1(za3a2a1)a4ai

= a1(a3a2z)a1a4ai = (a2a1a3z)a1a4ai

= a2a1a3(a1a4z)ai = a2a1(a1a4a3z)ai

= a2a1a1(za4a3)ai = a2a1a1(aia3a4z),

a1a2a1a2aia3a4z = a1a2a1a2(za4a3ai) = a1a2(za1a2)a4a3ai

= a1a2(a4a2a1z)a3ai = a1a2a4(za2a1)a3ai

= (za2a1a4)a2a1a3ai = (a2a1z)a4a2a1a3ai

= a2a1(za2a1a4)a3ai = a2a1(a2a1z)a4a3ai

= a2a1a2a1(aia3a4z).

Hence, in each case applying an appropriate σ ∈ Altn and using Lemma 3.1, we obtain a2
i a j(akalar z) =

a ja2
i (akalar z) and aia jaia j(akalar z) = a jaia jai(akalar z), for all 1 � i, j � n and for any three different

integers 1 � k, l, r � n.
(ii) Suppose that n is odd. Let z′ = a6a7 · · ·an (so z′ is the identity element if n = 5). Since z is

central in M , by Lemma 3.1, we have

a1a1a2z2 = a1a1a2(a3a4a5a1a2)z′z = a1(a2a3a1)a4a5a1a2z′z

= (a2a3a1)(a4a5a1)a1a2z′z = a2(a1a4a3)a5a1a1a2z′z

= a2a1a4(a1a3a5)a1a2z′z = a2a1(a1a3a4)a5a1a2z′z

= a2a1a1z2

and

a1a2a1a2z2 = a1a2a1a2(a3a5a4a2a1)z′z = a1a2(a3a1a2)a5a4a2a1z′z

= a1a2a3(a5a1a2)a4a2a1z′z = a1(a5a2a3)(a2a4a1)a2a1z′z

= (a2a1a5)a3a2a4a1a2a1z′z = a2a1(a2a5a3)(a1a2a4)a1z′z

= a2a1a2(a1a5a3)a2a4a1z′z = a2a1a2a1z2.

For n = 4, we have

a1a1a2z2 = a1z2a1a2 = a1(a2a3a1a4)(a2a3a1a4)a1a2

= a1a2a3(a4a2a1a3)a1a4a1a2 = (a2a1a4a3)a2a1a3a1a4a1a2

= a2a1(a1a3a4a2)a3a1a4a1a2 = a2a1a1a3a4(a1a2a3a4)a1a2

= a2a1a1z2

and, by Lemmas 3.1 and 3.3,



F. Cedó et al. / Journal of Algebra 324 (2010) 1290–1313 1299
a1a2a1a2z2 = za1a2za1a2 = a2a1(a4a3a1a2z)a1a2

= a2a1(a2a1a3a4z)a1a2 = a2a1a2a1a3a4a1a2z

= a2a1a2a1z2.

Hence, if n is odd or n = 4 and for σ ∈ Altn we have that

aσ (1)aσ (1)aσ (2)z2 = aσ (2)aσ (1)aσ (1)z2

and

aσ (1)aσ (2)aσ (1)aσ (2)z2 = aσ (2)aσ (1)aσ (2)aσ (1)z2.

So

a2
i a j z

2 = a ja
2
i z2 and aia jaia j z

2 = a jaia jai z
2

for all 1 � i, j � n, and (ii) follows.
Suppose that n � 6 is even. By Lemma 3.1, z2 = a2a1a3za4a5 · · ·an . Consequently, by (i), we get that

a2
i a j z

2 = a ja
2
i z2 and aia jaia j z

2 = a jaia jai z
2

for all 1 � i, j � n, as desired. �
We define the map f : FMn → {−1,1} by

f (ai1 · · ·aim) =
∏

1� j<k�m
i j �=ik

ik − i j

|ik − i j| . (2)

Note that if two words w, w ′ ∈ FMn represent the same element in M then f (w) = f (w ′).

Lemma 3.5. Let z = a1a2 · · ·an ∈ M. Let t be a positive integer. For 1 � i < j � n, let Fi j = 〈ai,a j〉. Then

(i) The elements in z2t F i j are of the form

z2ta2n1
i a2n2

j w, (3)

where w ∈ {1,ai,a j,aia j,a jai,aia jai,a jaia j,aia jaia j} and n1,n2 are nonnegative integers.
(ii) The elements in z2t(M \ ⋃

1�i< j�n Fi j) are of the form

z2ta2n1
i1

a2n2
i2

wam1
i2+1am2

i2+2 · · ·a
mn−i2
n , (4)

where i1 < i2 < n, a2n1
i1

a2n2
i2

w ∈ Fi1 i2 \ (〈ai1 〉 ∪ 〈ai2 〉), w ∈ {1,ai1 ,ai2 ,ai1ai2 , ai2ai1 ,ai1ai2ai1 ,ai2ai1ai2 ,

ai1ai2ai1ai2 }, n1,n2,m1,m2, . . . ,mn−i2 are nonnegative integers, and
∑n−i2

j=1 m j > 0.

Furthermore, every element s ∈ z2t M has a unique representation as a product of the form (3) or (4).
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Proof. (i) We may assume that t = 1. By Lemma 3.2, z2 is central in M . Now, by Lemma 3.4(ii), we
have

aia jaia jai z
2 = (a jaia jai)ai z

2,

aia jaia jaia j z
2 = (a jaia jai)aia j z

2 = a jaia ja ja
2
i z2,

aia jaia jaia jai z
2 = (a jaia jai)aia jai z

2 = a ja
4
i a2

j z2,

(aia j)
4z2 = (a jai)

2(aia j)
2z2 = a4

i a4
j z2.

Therefore

(aia j)
2ai z

2 = a jaia ja
2
i z2,

(aia j)
3z2 = a jaia

2
j a

2
i z2 = a jaia

2
i a2

j z2,

(aia j)
3ai z

2 = a ja
4
i a2

j z2 = a ja
2
j a

4
i z2,

(aia j)
4z2 = a4

i a4
j z2 = a4

j a
4
i z2,

for all 1 � i, j � n. The above easily implies that the elements in z2 Fij are of the form

z2a2n1
i a2n2

j w,

where w ∈ {1,ai,a j,aia j,a jai,aia jai,a jaia j,aia jaia j} and n1,n2 are nonnegative integers. Hence (i)
follows.

(ii) We may assume that t = 1. Let 1 � i < j � n and m ∈ {1, . . . ,n} \ {i, j}. Then, by (3) and
Lemmas 3.1, 3.2 and 3.4(ii), it is easy to see that

amz2(Fij \ (〈ai〉 ∪ 〈a j〉
)) = z2(Fij \ (〈ai〉 ∪ 〈a j〉

))
am, (5)

for all n � 4.
Let s ∈ M \ ⋃

1�i< j�n Fi j . Then s = a j1a j2 · · ·a jk , where { j1, . . . , jk} is a subset of {1, . . . ,n} of

cardinality � 3. We shall prove that z2s is of the form (4) by induction on the total degree k � 3 of s.
For k = 3, we have that j1, j2, j3 are three different elements and, by Lemmas 3.1 and 3.2,

z2a j1a j2a j3 = z2a j2a j3a j1 = z2a j3a j1a j2 ,

thus the result follows in this case.
Suppose that k > 3 and that the result is true for all elements in M \ ⋃

1�i< j�n Fi j of total
degree less than k. Then either a j2 · · ·a jk ∈ Fi1 i2 \ (〈ai1 〉 ∪ 〈ai2 〉), for some i1 < i2, or a j2 · · ·a jk ∈
M \ ⋃

1�i< j�n Fi j . Thus, by (i) and by the induction hypothesis

z2a j2 · · ·a jk = z2a2n1
i1

a2n2
i2

wam1
i2+1am2

i2+2 · · ·a
mn−i2
n ,

where i1 < i2 � n, a2n1
i1

a2n2
i2

w ∈ Fi1 i2 \ (〈ai1 〉 ∪ 〈ai2 〉), w ∈ {1,ai1 ,ai2 ,ai1ai2 , ai2ai1 ,ai1ai2ai1 ,ai2ai1ai2 ,

ai1ai2ai1ai2 } and n1,n2,m1, . . . ,mn−i2 � 0. By (i) and Lemma 3.2, we may assume that j1 /∈ {i1, i2}
and, by (5), we also may assume that

z2s = z2a2n1
i a2n2

i wa j1am1
i +1am2

i +2 · · ·a
mn−i2
n .
1 2 2 2
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Suppose that j1 < i2. Note that in this case, by Lemmas 3.1, 3.2 and 3.4(ii), we get

z2a2n1
i1

a2n2
i2

a j1 = z2a2n1
i1

a j1a2n2
i2

,

z2a2n1
i1

a2n2
i2

ai1a j1 = z2a2n1
i1

ai1a j1a2n2
i2

,

z2a2n1
i1

a2n2
i2

ai2a j1 = z2a2n1
i1

ai2a j1a2n2
i2

= z2a2(n1−1)
i1

a j1ai1a2n2+1
i2

,

z2a2n1
i1

a2n2
i2

ai1ai2a j1 = z2a2n1
i1

ai1ai2a j1a2n2
i2

= z2a2n1
i1

a j1ai1a2n2+1
i2

,

z2a2n1
i1

a2n2
i2

ai2ai1a j1 = z2a2n1
i1

ai2ai1a j1a2n2
i2

= z2a2n1
i1

ai1a j1a2n2+1
i2

,

z2a2n1
i1

a2n2
i2

ai1ai2ai1a j1 = z2a2n1
i1

ai1ai2ai1a j1a2n2
i2

= z2a2(n1+1)
i1

a j1a2n2+1
i2

,

z2a2n1
i1

a2n2
i2

ai2ai1ai2a j1 = z2a2n1
i1

ai2ai1ai2a j1a2n2
i2

= z2a2n1
i1

ai2a j1ai1a2n2+1
i2

= z2a2n1
i1

a j1ai1a2n2+2
i2

,

z2a2n1
i1

a2n2
i2

(ai1ai2)
2a j1 = z2a2n1

i1
(ai1ai2)

2a j1a2n2
i2

= z2a2n1
i1

ai1ai2a j1ai1a2n2+1
i2

= z2a2n1
i1

ai1a j1ai1a2n2+2
i2

.

Hence

z2s = z2a
2n′

1
i1

w ′am0
i2

am1
i2+1am2

i2+2 · · ·a
mn−i2
n ,

for some w ′ ∈ {a j1 ,ai1a j1 , a j1ai1 ,ai1a j1 ai1} and some nonnegative integers n′
1 and m0, and therefore

z2s is of the form (4) (if i1 < j1 < i2 then we take the pair (i1, j1) in place of the pair (i1, i2) in
formula (4), and if j1 < i1 < i2, then the degree of s with respect to a j1 is equal to 1, so by taking the
pair ( j1, i1) in place of the pair (i1, i2) in formula (4) we also get that z2s is of the form (4) because

we can then write z2s = z2a2·0
j1

a
2n′

1
i1

w ′a0
i1+1 · · ·a0

i2−1am0
i2

am1
i2+1am2

i2+2 · · ·a
mn−i2
n ).

Suppose that j1 > i2. By Lemma 3.4(ii), z2a2n1
i1

a2n2
i2

w ∈ (z2 Fi1 i2ai1ai2 ) ∪ (z2 Fi1 i2ai2ai1). Note that if
i2 < l < j1, then, by Lemmas 3.1 and 3.2,

z2ai1ai2a j1al = z2ai1alai2a j1 = z2alai2ai1a j1 = alz
2ai2ai1a j1

and

z2ai2ai1a j1al = z2ai2alai1a j1 = z2alai1ai2a j1 = alz
2ai1ai2a j1 .

Therefore, by using (5) and Lemmas 3.4(ii), 3.2 and 3.1, we can move the a j1 of

z2s = z2a2n1
i1

a2n2
i2

wa j1am1
i2+1am2

i2+2 · · ·a
mn−i2
n

to the right. Hence, if j1 = i2 + p, then

z2s = z2a
2n′

1
i1

a
2n′

2
i2

w ′am1
i2+1 · · ·a

mp+1
i2+p · · ·a

mn−i2
n ,

where a
2n′

1
i1

a
2n′

2
i2

w ′ ∈ Fi1 i2 \ (〈ai1 〉 ∪ 〈ai2 〉), w ′ ∈ {1,ai1 ,ai2 ,ai1ai2 ,ai2ai1 ,ai1ai2ai1 , ai2ai1ai2 ,ai1ai2ai1ai2 }
and n′

1,n′
2 are nonnegative integers. Thus (ii) follows by induction.
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Let

w1 = a2n1
i1

a2n2
i2

wam1
i2+1am2

i2+2 · · ·a
mn−i2
n

and

w2 = a
2n′

1
i′1

a
2n′

2
i′2

w ′am′
1

i′2+1a
m′

2
i′2+2 · · ·a

m′
n−i′2

n

be two words in FMn such that i1 < i2 � n, i′1 < i′2 � n,

w ∈ {1,ai1 ,ai2 ,ai1ai2 ,ai2ai1 ,ai1ai2ai1 ,ai2ai1ai2 ,ai1ai2ai1ai2}

and

w ′ ∈ {1,ai′1 ,ai′2 ,ai′1ai′2 ,ai′2ai′1 ,ai′1ai′2ai′1 ,ai′2ai′1ai′2 ,ai′1ai′2ai′1ai′2}.

Suppose that if
∑n−i2

j=1 m j > 0, then a2n1
i1

a2n2
i2

w ∈ 〈ai1 ,ai2 〉 \ (〈ai1 〉 ∪ 〈ai2 〉), and if
∑n−i′2

j=1 m′
j > 0, then

a
2n′

1
i′1

a
2n′

2
i′2

w ′ ∈ 〈ai′1 ,ai′2 〉 \ (〈ai′1 〉 ∪ 〈ai′2 〉). Suppose that (a1a2 · · ·an)2t w1 and (a1a2 · · ·an)2t w2 represent

the same element in M .
In order to prove the last part of the lemma it is sufficient to prove that w1 = w2. Note that the

degree of w1 in ai is equal to the degree of w2 in ai , for all i = 1, . . .n. Let f be the map defined
by (2). By the definition of f , we have that f (w1) = f (w2).

Note that if
∑n−i2

j=1 m j > 0, then
∑n−i′2

j=1 m′
j > 0, i1 = i′1, i2 = i′2 and m j = m′

j , for all 1 � j � n − i2.

Furthermore, since f (w1) = f (w2), by the definition of f , we have that f (a2n1
i1

a2n2
i2

w) = f (a
2n′

1
i′1

a
2n′

2
i′2

w ′)
in this case. Thus we may assume that

w1 = a2n1
i1

a2n2
i2

w and w2 = a
2n′

1
i′1

a
2n′

2
i′2

w ′.

Then the definition of f implies that f (w1) = f (w) and f (w2) = f (w ′). Hence f (w) = f (w ′).
Suppose that 1 = f (w) = f (w ′). In this case, w ∈ {1,ai1 ,ai2 ,ai1ai2} and w ′ ∈ {1,ai′1 ,ai′2 ,ai′1ai′2 }. If

w = 1, then the degree of w1 in each generator is even. Since w1, w2 have the same degree in each
generator, we have w ′ = 1 and w1 = w2 in this case.

If w = ai1ai2 , then the degree of w1 in ai1 is odd and the degree of w1 in ai2 is odd. Since
i1 < i2 and i′1 < i′2 and w1, w2 have the same degree in each generator, we have that i1 = i′1, i2 = i′2,
w ′ = ai1ai2 and w1 = w2, in this case.

If w = ai1 and ni2 = 0, then clearly w1 = w2 ∈ 〈ai1 〉.
If w = ai1 and ni2 �= 0, then by a degree argument it is easy to see that i1 = i′1, i2 = i′2, w ′ = ai1

and w1 = w2, in this case.
Similarly, if w = ai2 , we can see that w1 = w2.
Suppose that −1 = f (w) = f (w ′). In this case,

w ∈ {ai2ai1 ,ai1ai2ai1 ,ai2ai1ai2 ,ai1ai2ai1ai2}

and

w ′ ∈ {ai′ ai′ ,ai′ ai′ ai′ ,ai′ ai′ ai′ ,ai′ ai′ ai′ ai′ }.
2 1 1 2 1 2 1 2 1 2 1 2
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As above, using f and a degree argument we can also see that w1 = w2.
Therefore the result follows. �

Lemma 3.6. Suppose that n � 6 is even. Let t be a nonnegative integer. Let z = a1a2 · · ·an ∈ M. For 1 � i <

j � n, let Fi j = 〈ai,a j〉. Let k, l, r be three different integers such that 1 � k, l, r � n. Then

(i) (akalar z)ai = ai(akalar z), for all i ∈ {1,2, . . . ,n} \ {k, l, r}.
(ii) (akalar z)ai = ai(alakar z), for all i ∈ {k, l, r}.

(iii) The elements in z2takalar zFi j are of the form

z2takalar za2n1
i a2n2

j w, (6)

where w ∈ {1,ai,a j,aia j,a jai,aia jai,a jaia j,aia jaia j} and n1,n2 are nonnegative integers.
(iv) The elements in z2takalar z(M \ ⋃

1�i< j�n Fi j) are of the form

z2takalar za2n1
i1

a2n2
i2

wam1
i2+1am2

i2+2 · · ·a
mn−i2
n , (7)

where i1 < i2 < n, a2n1
i1

a2n2
i2

w ∈ Fi1 i2 \ (〈ai1 〉 ∪ 〈ai2 〉), w ∈ {1,ai1 ,ai2 ,ai1ai2 , ai2ai1 ,ai1ai2ai1 ,ai2ai1ai2 ,

ai1ai2ai1ai2 }, n1,n2,m1,m2, . . . ,mn−i2 are nonnegative integers, and
∑n−i2

j=1 m j > 0.

Furthermore every element s ∈ z2takalar zM has a unique representation as a product of the form (6) or (7).

Proof. (i) Let i ∈ {1,2, . . . ,n} \ {k, l, r}. By Lemma 3.1, we have

(akalar z)ai = ak(zalar)ai = akz(aialar) = ak(aialz)ar

= (aialak)zar = ai(zalak)ar = ai(akalar z).

(ii) Let i ∈ {k, l, r}. By Lemma 3.1, we may assume that i = k, and we have

(akalar z)ak = ak(zalar)ak = akz(akalar) = ak(alakar z).

To prove (iii) and (iv) we may assume that t = 0. Then the proof of (iii) and (iv) is similar to the
proof of Lemma 3.5. Namely, it is obtained by using (i) and (ii) in place of the fact that z2 is central
and using Lemma 3.4(i) in place of Lemma 3.4(ii). The proof of the last part of the lemma is similar
to the proof of the last part of Lemma 3.5. �
Lemma 3.7. Suppose that n � 6 is even. Then

⋃
1�r�n

(Mz ∩ Mzar) =
⋃

1�i< j<k�n

(Maia jakz ∪ Ma jaiakz).

Proof. By Lemma 3.1, we have that

a1a2a3z = za2a1a3 = a2a1za3.

Note that if 1 � i, j,k � n are three different integers then, since n � 6, there exists σ ∈ Altn such that
σ(1) = i, σ(2) = j and σ(3) = k. Therefore
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aia jakz ∈
⋃

1�r�n

(Mz ∩ Mzar), (8)

for all different 1 � i, j,k � n.
Suppose that

⋃
1�r�n(Mz ∩ Mzar) �

⋃
1�i< j<k�n(Maia jak z ∪ Ma jaiak z). Let s ∈ ⋃

1�r�n(Mz ∩
Mzar) \ ⋃

1�i< j<k�n(Maia jak z ∪ Ma jaiak z) be an element of minimal length. There exist 1 �
r � n, s′ = a j1 · · ·a jk−1 ∈ M and s′′ = ai1ai2 · · ·aik such that s = s′zar = s′′z. Thus there exist
w1, w2, . . . , wm in the free monoid FMn on {a1, . . . ,an}, such that w1 = a j1 · · ·a jk−1 a1a2 · · ·anar ,
wm = ai1 · · ·aik a1a2 · · ·an and wi = w1,i w2,i w3,i = w ′

1,i w ′
2,i w ′

3,i , where w2,i and w ′
2,i represent the

element z in M for all i = 1, . . . ,m, and w1, j = w ′
1, j+1 and w3, j = w ′

3, j+1, for all j = 1, . . . ,m − 1.
Let g: {1,2, . . . ,m} × {1,2, . . . ,n + k} → {1,2, . . . ,n} be such that wi = ag(i,1)ag(i,2) · · ·ag(i,n+k) for

all i = 1, . . . ,m. Let t be the least positive integer such that ag(t,k+1)ag(t,k+2) · · ·ag(t,n+k) represents z
in M . Since n is even, by Proposition 2.3, t > 1 and g(i,n + k) = r, for all i = 1, . . . , t . Hence

ag(1,1)ag(1,2) · · ·ag(1,n+k−1), . . . ,ag(t−1,1)ag(t−1,2) · · ·ag(t−1,n+k−1)

represent the same element in M . Furthermore, the length of w3,t−1 is less than n and greater
than 0.

Suppose that w3,t−1 = ar . In this case, w ′
2,tar = ag(t,k) · · ·ag(t,n+k) and w2,t−1ar represent the same

element in M , but, by Proposition 2.3, in M we have that zar �= ag(t,k)z, a contradiction. Therefore the
length of w3,t−1 is greater than 1.

Suppose that w3,t−1 = ag(t−1,n+k−1)ar . In this case, w2,t−1ag(t−1,n+k−1)ar and w ′
2,tag(t−1,n+k−1)ar =

ag(t,k−1)ag(t,k) · · ·ag(t,n+k) represent the same element in M . Since

ag(1,1)ag(1,2) · · ·ag(1,n+k−1), . . . ,ag(t−1,1)ag(t−1,2) · · ·ag(t−1,n+k−1)

represent the same element in M , we have in M that

ag(1,1) · · ·ag(1,k−1)z = ag(1,1)ag(1,2) · · ·ag(1,n+k−1)

= ag(t−1,1)ag(t−1,2) · · ·ag(t−1,n+k−1)

= ag(t−1,1)ag(t−1,2) · · ·ag(t−1,k−2)zag(t−1,n+k−1).

Thus ag(1,1) · · ·ag(1,k−1)z ∈ Mz ∩ Mzag(t−1,n+k−1) . By the choice of s, we have that

ag(1,1) · · ·ag(1,k−1)z ∈
⋃

1�i< j<k�n

(Maia jakz ∪ Ma jaiakz).

Since s = ag(1,1) · · ·ag(1,k−1)zar , by Lemma 3.6(i) and (ii),

s ∈
⋃

1�i< j<k�n

(Maia jakz ∪ Ma jaiakz),

a contradiction. Therefore the length of w3,t−1 is greater than 2.
Thus w3,t−1 = ag(t−1,n+k−l) · · ·ag(t−1,n+k−1)ar for some 1 < l < n. In this case,

w ′
2,tag(t−1,n+k−l) · · ·ag(t−1,n+k−1)ar = ag(t,k−l) · · ·ag(t,k−1)ag(t,k) · · ·ag(t,n+k).

Hence s ∈ Mzag(t−1,n+k−l) · · ·ag(t−1,n+k−1)ar . Since ag(t,k+1) · · ·ag(t,n+k) represents z in M and l < n,
we have that g(t − 1,n + k − l), . . . , g(t − 1,n + k − 1), r are l + 1 different integers. By Lemma 3.1,
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s ∈
⋃

1�i< j<k�n

(Maia jakz ∪ Ma jaiakz),

a contradiction. Therefore

⋃
1�r�n

(Mz ∩ Mzar) ⊆
⋃

1�i< j<k�n

(Maia jakz ∪ Ma jaiakz).

By (8), the result follows. �
Lemma 3.8. Suppose that n � 6 is even. Let s = a j1 a j2 · · ·a jm ∈ M \ MzM be such that

sz /∈
⋃

1�i< j<k�n

(Maia jakz ∪ Ma jaiakz).

Then, for s1, s2 ∈ M, sz = s1zs2 implies that s1s2 = s.

Proof. Let s1, s2 ∈ M be such that sz = s1zs2. Then, by an easy degree argument, s1 = ai1 · · ·aik and
s2 = aik+1 · · ·aim for some k and some ai1 , . . . ,aim . Thus there exist w1, w2, . . . , wt in the free monoid
FMn on {a1, . . . ,an}, such that wi = w1,i w2,i w3,i = w ′

1,i w ′
2,i w ′

3,i , where w2,i and w ′
2,i represent the

element z in M for all i = 1, . . . , t , w1, j = w ′
1, j+1 and w3, j = w ′

3, j+1, for all j = 1, . . . , t − 1, and
w ′

1,1 = a j1 a j2 · · ·a jm , w ′
3,1 = 1, w1,t = ai1 · · ·aik and w3,t = aik+1 · · ·aim . Thus, w1 = a j1 · · ·a jm w ′

2,1 and
wt = ai1 · · ·aik w2,taik+1 · · ·aim . It is enough to prove that w1,i w3,i = a j1 · · ·a jm , for all i = 1, . . . , t , by
induction on i.

If the two subwords w2,1 and w ′
2,1 of the word w1 = a j1a j2 · · ·a jm w ′

2,1 = w1,1 w2,1 w3,1 do not
overlap, then w2,1 is a subword of a j1 · · ·a jm , which is not possible because the latter represents s in
M and s /∈ MzM . Therefore they overlap and hence the degree of w3,1 is less than n and w3,1 is a
product of distinct letters. Since w1 represents sz in M and sz /∈ ⋃

1�i< j<k�n(Maia jak z ∪ Ma jaiak z),
it follows that w3,1 cannot have degree 1 by Lemma 3.7 and it cannot have degree greater than 2
by Lemma 3.1. Hence, the degree of w3,1 is 0 or 2. In the former case, clearly w1,1 w3,1 = w1,1 =
w ′

1,1 = a j1 a j2 · · ·a jm . Suppose that w3,1 has degree 2. From the equality of words a j1a j2 · · ·a jm w ′
2,1 =

w1,1 w2,1 w3,1 it follows that a jm−1a jm w ′
2,1 = w2,1 w3,1. Let w ′

2,1 = a jm+1 · · ·a jm+n . Then there exist
σ ,τ ∈ Altn such that

σ(1) = jm−1, σ (2) = jm, . . . , σ (n) = jm+n−2

and

τ (1) = jm+1, τ (2) = jm+2, . . . , τ (n) = jm+n.

Hence

(1, . . . ,n)−2σ−1τ (1) = 1, . . . , (1, . . . ,n)−2σ−1τ (n − 2) = n − 2.

Since n is even and (1, . . . ,n)−2σ−1τ ∈ Altn , we have that (1, . . . ,n)−2σ−1τ = id. Therefore τ = σ ◦
(1, . . . ,n)2 and then

jm+n−1 = τ (n − 1) = σ(1) = jm−1 and jm+n = τ (n) = σ(2) = jm.

Thus w3,1 = a jm+n−1a jm+n = a jm−1a jm and clearly w1,1 = a j1 a j2 · · ·a jm−2 . Hence, also in this case,
w1,1 w3,1 = a j1 · · ·a jm .
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Suppose that t � i > 1 and w1, j w3, j = a j1 · · ·a jm , for all j = 1, . . . , i − 1. We have that
w ′

1,i = w1,i−1 = a j1 · · ·a jq and w ′
3,i = w3,i−1 = a jq+1 · · ·a jm , for some 0 � q � m. Hence wi =

a j1 · · ·a jq w ′
2,ia jq+1 · · ·a jm = w1,i w2,i w3,i . Since a j1 · · ·a jm /∈ MzM by the hypothesis, as above we get

that the subwords w2,i and w ′
2,i of the word wi have to overlap.

Let r be the absolute value of the difference of the lengths of the words w1,i and w ′
1,i . Then r < n.

The equality of words w ′
1,i w ′

2,i w ′
3,i = w1,i w2,i w3,i implies that either w ′

2,iu
′ = uw2,i or u′w ′

2,i =
w2,iu for some words u, u′ of length r. Then all the generators involved in u (and also in u′) are
different. Since wi represents sz in M and sz /∈ ⋃

1�i< j<k�n(Maia jak z ∪ Ma jaiak z), by Lemma 3.1 we
get that r � 2. If r = 1 then we get zap = ap z in M for some p, which is impossible since n is even.
Hence, r = 0 or r = 2. As above we can see in the both cases that w1,t w3,t = a j1 · · ·a jm . The result
follows. �

Let I = {s ∈ M | sM ⊆ Mz} and I ′ = {s ∈ M | Ms ⊆ zM}. Clearly, I and I ′ are ideals of M . Let I1 =
{s ∈ Mz | sai ∈ Mz, for all i = 1,2, . . . ,n}, I ′1 = {s ∈ zM | ai s ∈ zM, for all i = 1,2, . . . ,n} and

T =
⋃

1�i< j<k�n

(Maia jakz ∪ Ma jaiakz).

Lemma 3.9. Suppose that n � 6 is even. Then I = I ′ = I1 = I ′1 = T .

Proof. From Lemma 3.6(i) and (ii), it follows that T is an ideal of M . Hence T ⊆ I . Suppose that these
two ideals are different. Let s ∈ I \ T . Since s ∈ I , there exists s′ ∈ M such that s = s′z. We consider
two cases.

Case 1. s′ ∈ MzM .

Then let s′′ ∈ M be an element of minimal degree such that s′ ∈ Mzs′′ . Thus there exists t ∈ M
such that s′ = tzs′′ . Since s = tzs′′z /∈ T , we have that s′′ has degree greater than or equal to 2. Let
s′′ = a j1 · · ·a jm . By the choice of s′′ , we know that s′′ /∈ MzM . Since s = s′z = tzs′′z /∈ T , clearly s′′z /∈ T .
Hence, by Lemma 3.8, the words in the free monoid FMn on {a1, . . . ,an} that represent s′′z in M are
of the form

a j1 · · ·a jq wa jq+1 · · ·a jm , (9)

where w represents z in M . Note that z2, za j1 z ∈ T . Therefore, since s = tzs′′z /∈ T and T is an ideal
of M , we have that q � 2 in (9). By Lemma 3.1 and the choice of s′′ , j1 = j2. Note also that by the
choice of s′′ , the words in FMn that represent s′ = tzs′′ in M are of the form

w ′a j1 · · ·a jm , (10)

where w ′ represents tz in M . It follows from the form of the words (9) and (10) that the words in
FMn that represent s = tzs′′z in M are of the form

w ′a j1 · · ·a jq wa jq+1 · · ·a jm , (11)

where w ′ represents tz in M , w represents z in M and q � 2. Since n is even, we know by Proposi-
tion 2.3, that za jm /∈ Mz. Therefore, by the form of the words (11) that represent s in M , the words
that represent sa jm in M are of the form

w ′a j1 · · ·a jq wa jq+1 · · ·a jm a jm ,
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where w ′ represents tz in M , w represents z in M and q � 2. In particular, it follows that sa jm /∈ Mz,
a contradiction since s ∈ I .

Case 2. s′ /∈ MzM .

Let s′ = a j1 · · ·a jm for some m � 0. Since s = s′z /∈ T , by Lemma 3.8 we get that the words in FMn

that represent s in M are of the form

a j1 · · ·a jq wa jq+1 · · ·a jm ,

where w represents z in M . If m = 0 then s = z and sa1 = za1 /∈ Mz, a contradiction, because s ∈ I .
Hence m > 0. Since za jm /∈ Mz, by the form of the words that represent s, it is easy to see that the
words that represent sa jm are of the form

a j1 · · ·a jq wa jq+1 · · ·a jm a jm ,

where w represents z in M . Therefore sa jm /∈ Mz, a contradiction since s ∈ I . Therefore I = T .
Clearly, we have I ⊆ I1. Let s ∈ I1 and let t ∈ M \ {1}. Then t = art′ for some 1 � r � n and t′ ∈ M .

Since sar ∈ Mz ∩ Mzar , by Lemma 3.7 it follows that st = sart′ ∈ T t′ ⊆ T ⊆ Mz. Therefore s ∈ I and so
I = I1.

By Lemma 3.1 and Lemma 3.6(i) and (ii),

⋃
1�i< j<k�n

(zaia jak M ∪ za jaiak M) =
⋃

1�i< j<k�n

(Maia jakz ∪ Ma jaiakz) = T .

Thus, by symmetry,

I = I ′ = I1 = I ′1 = T . �
4. Proof of Theorem 1.1

In this section we prove our main result, Theorem 1.1. So again, n � 4, M = Sn(Altn) and G =
Gn(Altn).

Recall that ρ ′ is the binary relation on M , defined by sρ ′t if and only if there exists a nonnegative
integer i such that szi = tzi . By Lemma 3.2, z2 is central in M . By Lemma 2.4, ρ ′ = ρ is the least
cancellative congruence on M .

Proof of (i). Let {i, j,k} be a subset of {1,2, . . . ,n} of cardinality three. By Lemma 3.1, in G , we have

aia jak = a jakai = akaia j. (12)

By Lemma 3.4, in G , we also have aia jaia j = a jaia jai and a2
i a j = a ja2

i , for all 1 � i, j � n. Therefore

(aia ja
−1
i a−1

j )2 = 1.
Let τ ∈ Symn \Altn . Suppose that n = τ ( j). If j = n − 1 then, by (12),

aτ (1)aτ (2) · · ·aτ (n) = aτ (1)aτ (2) · · ·aτ (n−3)aτ (n)aτ (n−2)an.

If n − j is even and greater than 1 then, by (12),

aτ (1)aτ (2) · · ·aτ (n) = aτ (1) · · ·aτ ( j−1)aτ ( j+1) · · ·aτ (n)an.
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If n − j is odd and greater than 1 then, by (12),

aτ (1)aτ (2) · · ·aτ (n) = aτ (1) · · ·aτ ( j−1)aτ ( j+1) · · ·aτ (n−2)aτ (n)aτ (n−1)an.

So, we have shown that aτ (1)aτ (2) · · ·aτ (n) = aσ(1) · · ·aσ(n−1)an for some σ ∈ Symn−1. Repeating the
above argument at most n − 3 times, we get that aτ (1)aτ (2) · · ·aτ (n) = aσ(1)aσ(2)aσ(3)a4a5 · · ·an for
some σ ∈ Sym3. Because τ is odd, it follows from (2), that also σ is odd. Hence, σ is a transposition,
and thus, again using (12), aτ (1)aτ (2) · · ·aτ (n) = a1a3a2a4a5 · · ·an .

Hence we have shown that, in G ,

aτ (1)aτ (2) · · ·aτ (n) = a1a3a2a4a5 · · ·an,

for all τ ∈ Symn \Altn .
Hence we have the following presentations of the group G .

G = gr(a1, . . . ,an | a1a2 · · ·an = aσ (1)aσ (2) · · ·aσ (n), σ ∈ Altn)

= gr(a1, . . . ,an | a1a2 · · ·an = aσ (1)aσ (2) · · ·aσ (n),a1a3a2a4 · · ·an = aτ (1)aτ (2) · · ·aτ (n),

σ ∈ Altn, τ ∈ Symn \Altn).

Note that, by (12), ai(a1a2a−1
1 a−1

2 )a−1
i = a1a2a−1

1 a−1
2 , for all 2 < i � n. Furthermore

a1
(
a1a2a−1

1 a−1
2

)
a−1

1 = a1(a1a2a3)
(
a−1

3 a−1
1 a−1

2

)
a−1

1

= a1(a2a3a1)
(
a−1

1 a−1
2 a−1

3

)
a−1

1 by (12)

= a1a2a3a−1
2 a−1

3 a−1
1

= a1a2a3
(
a−1

3 a−1
1 a−1

2

)
by (12)

= a1a2a−1
1 a−1

2

and

a2
(
a1a2a−1

1 a−1
2

)
a−1

2 = a2(a1a2a3)
(
a−1

3 a−1
1 a−1

2

)
a−1

2

= a2(a3a1a2)
(
a−1

2 a−1
3 a−1

1

)
a−1

2 by (12)

= a2a3a1a−1
3 a−1

1 a−1
2

= (a1a2a3)a
−1
3 a−1

1 a−1
2 by ( 12)

= a1a2a−1
1 a−1

2 .

Therefore a1a2a−1
1 a−1

2 is a central element of order at most 2 in G . Let C be the central subgroup
C = {1,a1a2a−1

1 a−1
2 }. Then G/C has the following presentations.

G/C = gr(b1, . . . ,bn | b1b2 = b2b1, b1b2 · · ·bn = bσ (1)bσ (2) · · ·bσ (n),

b1b3b2b4 · · ·bn = bτ (1)bτ (2) · · ·bτ (n), σ ∈ Altn, τ ∈ Symn \Altn)

= gr(b1, . . . ,bn | b1b2 · · ·bn = bσ (1)bσ (2) · · ·bσ (n), σ ∈ Symn).
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Hence G/C is a free abelian group of rank n and, since C = G ′ , in G we have

a1a2a−1
1 a−1

2 = aia ja
−1
i a−1

j ,

for all i �= j, because there exists σ ∈ Altn such that σ(1) = i and σ(2) = j.
We now show that a1a2a−1

1 a−1
2 �= 1. Let f be the map defined by (2). Note that if two words

w, w ′ ∈ FMn represent the same element in M , then f (w) = f (w ′). In particular,

a1a2zm �= a2a1zm

in M , for all m. Now, by Lemmas 3.2 and 2.4, we have that a1a2 �= a2a1 in G , as desired.
By Lemma 3.4, every a2

i is a central element in G . Let D be the central subgroup of G generated
by a2

1, . . . ,a2
n . Now G/(C D) ∼= (Z/2Z)n . Hence (i) follows. �

Proof of (ii). By (i) and [16, Lemma 5.1.11, Corollary 10.2.8], K [G] is a noetherian PI-algebra for
any field K . Furthermore, by [16, Theorem 7.3.1] J (K [G]) ⊆ J (K [C])K [G]. Thus, if K is a field
of characteristic �= 2, then J (K [G]) = 0. If K is a field of characteristic 2, then J (K [G]) =
(1 − a1a2a−1

1 a−1
2 )K [G], and J (K [G])2 = 0. �

Proof of (iii). By Lemma 3.2, z2 is central in M . Thus, it follows from Lemma 2.4 that every nonempty
right ideal of M contains z2k for some positive integer k. Therefore, if sx = tx for some s, t ∈ z2M and
x ∈ M , then sz2k = tz2k , for some k. Since z2 is central and s, t ∈ z2M , by Lemma 3.5, we get s = t .
This and a symmetric argument show that z2M is cancellative and also that the ideal z2M embeds
into M/ρ . Hence, again by Lemma 2.4, G = (z2M)〈z2〉−1.

Since K [G] is a PI-algebra and G is the group of fractions of M/ρ by Lemma 2.4, K [M/ρ] is a
finitely generated PI-algebra. Let M = M/ρ . It follows from part (i) that G is a nilpotent group and it
is abelian-by-finite, thus from [13, Theorem 4.3.3, and the comment following it] we know that K [M]
is noetherian. By [15, Theorem 18.1], J (K [M]) is nilpotent. Therefore, there exists a positive integer
m such that J (K [M])m ⊆ I(ρ). By Proposition 2.6, J (K [M])3 ⊆ K [z2M]. Since z2M is cancellative,
I(ρ) ∩ K [z2M] = 0. Hence J (K [M]) is nilpotent. �
Proof of (iv). Suppose that n � 4 is odd. We shall see that a1a1a2z �= a2a1a1z in M .

Let w0 = a1a1a2a1 · · ·an ∈ FMn and let w ∈ FMn be a word representing the element a1a1a2z ∈ M .
Then there exist w1, . . . , wr ∈ FMn with wr = w and wi = w1,i w2,i w3,i = w ′

1,i w ′
2,i w ′

3,i such that w2,i

and w ′
2,i represent the element z in M , for all i = 0,1, . . . , r, and w1, j = w ′

1, j+1 and w3,i = w ′
3,i+1, for

all j = 0, . . . , r − 1. We shall prove, by induction on r, that w1,i w3,i = a1a1a2 for all i = 0,1, . . . , r. It
is clear that w1,0 = a1a1a2 and w3,0 = 1, thus w1,0 w3,0 = a1a1a2. Suppose that i � 0 and w1,i w3,i =
a1a1a2. Then w1,i ∈ {1,a1,a1a1,a1a1a2}. We shall deal with four cases separately.

Case 1. w1,i = 1. In this case, w3,i = w ′
3,i+1 = a1a1a2. Since wi+1 = w1,i+1 w2,i+1 w3,i+1=w ′

2,i+1a1a1a2

and w2,i+1 and w ′
2,i+1 represent z ∈ M , we have that w3,i+1 ∈ {a1a1a2,a1a2}. If w3,i+1 = a1a1a2, then

clearly w1,i+1 = 1 and w1,i+1 w3,i+1 = a1a1a2. Suppose that w3,i+1 = a1a2. Since the degree in a1 of
wi+1 is 3 and the degree in a1 of w2,i+1 is 1, we have that w1,i+1 = a1. Hence w1,i+1 w3,i+1 = a1a1a2
in this case.

Case 2. w1,i = a1. In this case, w3,i = w ′
3,i+1 = a1a2. Since wi+1 = w1,i+1 w2,i+1 w3,i+1 = a1 w ′

2,i+1a1a2,
we have that either w1,i+1 = 1 or w1,i+1 begins with a1. If w1,i+1 = 1 then, using the degree in a1
and that w3,i+1 finishes with a1a2, we see that w3,i+1 = a1a1a2 and w1,i+1 w3,i+1 = a1a1a2. Suppose
that w1,i+1 begins with a1. Then w1,i+1 = a1u for some u ∈ FMn . Thus uw2,i+1 w3,i+1 = w ′

2,i+1a1a2.
Now w3,i+1 ∈ {1,a2,a1a2}. If w3,i+1 ∈ {a2,a1a2}, then using the degree in a1, we have that uw3,i+1 =
a1a2. Suppose that w3,i+1 = 1. Then uw2,i+1 = w ′

2,i+1a1a2 and, using the degree in a1 and in a2,
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we have that u ∈ {a1a2,a2a1}. Since w2,i+1 and w ′
2,i+1 represent z ∈ M , f (a2a1 w2,i+1) = 1 and

f (w ′
2,i+1a1a2) = −1, where f is the map defined by (2), thus u = a1a2. Hence w1,i+1 w3,i+1 = a1a1a2

in this case.

Case 3. w1,i = a1a1. In this case, w3,i = w ′
3,i+1 = a2. Since wi+1 = w1,i+1 w2,i+1 w3,i+1 = a1a1 w ′

2,i+1a2
and w2,i+1 represents z ∈ M , we have that w1,i+1 begins with a1. Then w1,i+1 = a1u for some
u ∈ FMn , and uw2,i+1 w3,i+1 = a1 w ′

2,i+1a2. Thus, using the degree in a1 and in a2, we have uw3,i+1 =
a1a2. Hence w1,i+1 w3,i+1 = a1a1a2 in this case.

Case 4. w1,i = a1a1a2. In this case, w3,i = w ′
3,i+1 = 1. Since wi+1 = w1,i+1 w2,i+1 w3,i+1=a1a1a2 w ′

2,i+1
and w2,i+1 represents z ∈ M , we have that w1,i+1 begins with a1. Then, as in Case 2, w1,i+1 = a1u
for some u ∈ FMn , and uw3,i+1 = a1a2. Hence w1,i+1 w3,i+1 = a1a1a2 in this case.

Therefore, we indeed have shown in each of the four cases that w1,i w3,i = a1a1a2, for all i =
0,1, . . . , r. In particular, a1a1a2z �= a2a1a1z in M .

Note that if 1 � i, j � n are different then there exists σ ∈ Altn such that σ(1) = i and σ(2) = j.
Therefore

aiaia j z �= a jaiai z,

for all i �= j, in M .
Since n is odd, z is central in M and, by Lemma 3.4, (aiaia j − a jaiai)z2 = 0. Therefore

(aiaia j − a jaiai)z ∈ B(K [M]) \ {0}, for all i �= j and for any field K .
Let ρ = ρ ∩ (zM × zM). So I(ρ) = linK {s − t | s, t ∈ zM and ∃i � 0, szi = tzi}. Since z2M is can-

cellative, it follows that I(ρ)2 = 0.
Suppose that K has characteristic different from 2. We have that J (K [G]) = 0. Since J (K [M])

is nilpotent and G is a central localization of M , we get J (K [M]) = B(K [M]) ⊆ J (K [G]). Hence
J (K [M]) = 0. Then J (K [M]) ⊆ I(ρ), and by Corollary 2.7

J
(

K [M]) = B
(

K [M]) = I(ρ).

Thus J (K [M])2 = 0.
Assume that s, t ∈ M are such that (s, t) ∈ ρ . Because z2M is cancellative, we know that z2s = z2t .

Note that in the proof of Lemma 3.5, in order to obtain the form (3) or (4) of z2s, we only use the
centrality of z2 and the relations z2aia jak = z2a jakai , z2aia2

j = z2a2
j ai and z2aia jaia j = z2a jaia jai , for

1 � i, j,k � n, three distinct elements. Since z2s = z2t , it follows that s − t ∈ K [M]Y K [M], where

Y =
⋃

1�i, j,k�n
|{i, j,k}|=3

{
aia jak − a jakai, a2

i a j − a ja
2
i , (aia j)

2 − (a jai)
2}.

This implies that Y generates I(ρ) as a two-sided ideal. Now, if s′z, t′z ∈ zM are ρ-related, then
also (s′, t′) ∈ ρ , so by the previous s′z − t′z ∈ K [M]Y zK [M] because z is central. In particular, I(ρ) =
J (K [M]) is a finitely generated ideal.

Suppose that K has characteristic 2. By Proposition 2.6, J (K [M]) ⊆ K [zM]. Thus J (K [M]) =
J (K [zM]). Note that zM/ρ is a cancellative semigroup and G is its group of fractions. Furthermore,
K [zM/ρ] = K [zM]/I(ρ). By (iii), we have that J (K [M]) is nilpotent. Hence

J
(

K [M])/I(ρ) = B
(

K [zM])/I(ρ) = B
(

K [zM/ρ]) = B
(

K [G]) ∩ K [zM/ρ],
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see [15, Corollary 11.5]. Let π : zM → G/C be the composition of the natural maps

zM ↪→ M → G → G/C .

Let η be the congruence defined on M by sηt if and only if either s = t or s, t ∈ zM and π(s) = π(t).
Since B(K [G]) = ω(K [C])K [G], it follows that J (K [M]) = I(η). In particular, z(aia j −a jai) ∈ J (K [M])
for all i, j. Let Q be the ideal of K [M] generated by all such elements. Then the set of all elements
of the form zai1

1 · · ·ain
n , for nonnegative integers i1, . . . , in , forms a basis of the algebra K [zM]/Q .

Therefore this algebra embeds into the algebra K [G/C], which is a commutative domain. It follows
that J (K [M]) = Q and hence it is finitely generated. �
Proof of (v). Suppose that n � 6 is and n is even. We shall prove that J (K [M]) ⊆ K [T ] (where T is
as in Lemma 3.9). Suppose that J (K [M]) � K [T ]. Let α ∈ J (K [M]) \ K [T ] with | supp(α)| = m. Let
supp(α) = {s1, . . . , sm}. By Proposition 2.6, si ∈ zM ∪ Mz. In particular, the degree of si is greater
than or equal to n. We may assume that s1 /∈ T . Then, by Lemma 3.9, there exist i, j such that
s1a j /∈ Mz and ai s1 /∈ zM . Hence, since the degree of s1 is greater than or equal to n, we have that
ai s1a j /∈ zM ∪ Mz and ai s1a j ∈ supp(aiαa j). But this is in contradiction with Proposition 2.6. Hence

J (K [M]) ⊆ K [T ].
Now we shall prove that K [T ] ∩ I(ρ) = 0, i.e., T is cancellative. Let s, t ∈ T be such that sρt . It is

sufficient to see that s = t . In order to prove this, we first shall verify that there exist three different
integers 1 � i, j,k � n such that s, t ∈ Maia jak z.

Since s, t ∈ T , there exist integers i, j,k, l, p,q and s′, t′ ∈ M such that s = s′aia jak z, t = t′alapaq z,
|{i, j,k}| = 3 and |{l, p,q}| = 3. We claim that t ∈ Maia jak z. First we deal with the case that l /∈
{i, j,k} and i /∈ {l, p,q}. Since sρt , we have that s and t have the same degrees with respect to every
generator. Therefore t′ ∈ Mai M . Let t1, t2 ∈ M be elements such that t′ = t1ait2. Thus t = t1ait2alapaq z.
By Lemma 3.6(i) and (ii) and Lemma 3.1,

t = t1ait2alapaqz = t1aialap′aq′ zt2 = t1zaialap′aq′t2

= t1zalap′aiaq′t2 = t1alap′aiaq′ zt2 = t1alt2aiap′′aq′′ z,

where {p,q} = {p′,q′} = {p′′,q′′}. Therefore t ∈ Maiap′′aq′′ z. Now, if p′′ /∈ { j,k} and j /∈ {p′′,q′′}, then,
since i, p′′,q′′ are three different integers, we can apply the same argument to get that t ∈ Ma jau′av ′ z,
with {u′, v ′} = {i,q′′}. Thus, applying this argument at most one more time, we get that t ∈ Mai′a j′ak′ z,
with {i, j,k} = {i′, j′,k′}. By Lemma 3.1, we may assume that i′ = i. If ( j′,k′) = ( j,k) then we have
proved the claim. So we may also assume that ( j′,k′) = (k, j). Thus there exists t′′ ∈ M such that
t = t′′aiaka j z.

If t′′ ∈ ⋃
1�r�n〈ar〉 then, since s and t have the same degrees with respect to every generator,

there exists 1 � r � n, and a nonnegative integer v such that s′ = t′′ = av
r . Hence, since sρt , we have

that s = t in G . Therefore a jak = aka j in G , a contradiction. So, t′′ /∈ ⋃
1�r�n〈ar〉. Hence there exist

different 1 � r, p � n and t′
1, t′

2 ∈ M such that t′′ = t′
1arapt′

2. We denote by degr(x) the degree in ar of
x ∈ M . Let u = degi(t

′
2) + deg j(t

′
2) + degk(t

′
2). If u is odd and i /∈ {r, p} then, by Lemma 3.6(i) and (ii)

and Lemma 3.1,

t = t′
1arapt′

2aiaka j z = t′
1arapaia jakzt′

2 = t′
1arapai za jakt′

2

= t′
1zaparaia jakt′

2 = t′
1apar zaia jakt′

2 = t′
1aparaiaka j zt′

2

= t′
1apart′

2aia jakz ∈ Maia jakz.

If u is odd and j /∈ {r, p} then, by Lemma 3.6(i) and (ii) and Lemma 3.1,
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t = t′
1arapt′

2aiaka j z = t′
1arapa jakai zt′

2 = t′
1arapa j zakait

′
2

= t′
1zapara jakait

′
2 = t′

1apar za jakait
′
2 = t′

1aparaiaka j zt′
2

= t′
1apart′

2aia jakz ∈ Maia jakz.

If u is odd and k /∈ {r, p} then, similarly, we get that t ∈ Maia jak z. If u is even then, by Lemma 3.6(i)
and (ii) and Lemma 3.1, we also get that t ∈ Maia jak z.

Therefore s, t ∈ Maiaka j z, as claimed.
Hence, we have that s = s′aia jak z and t = t̃aia jak z, for some s′ ,̃ t ∈ M . Since sρt , there exists a

nonnegative integer l such that z2l s = z2lt . Let v = degi(s′) + deg j(s′) + degk(s′). Since s and t have
the same degrees with respect to every generator, it follows that v = degi (̃t) + deg j (̃t) + degk (̃t). If v
is odd then, by Lemma 3.6(i) and (ii),

s = s′aia jakz = aiaka j zs′,

t = t̃aia jakz = aiaka j z̃t,

and if v is even then, by Lemma 3.6(i) and (ii),

s = s′aia jakz = aia jakzs′,

t = t̃aia jakz = aia jak z̃t.

Therefore, if v is odd, since z2laiaka j zs′ = z2laiaka j z̃t , from Lemma 3.6 it follows that aiaka j zs′ =
aiaka j z̃t , i.e. s = t . Similarly, if v is even we also get s = t . Hence K [T ] ∩ I(ρ) = 0.

Note that, since T is a cancellative ideal in M , we have that G = T 〈z2〉−1. Furthermore, J (K [M]) ⊆
K [T ] implies that J (K [M]) = J (K [T ]). Therefore by [15, Corollary 11.5],

J
(

K [M]) = B
(

K [M]) = B
(

K [T ]) = J
(

K [G]) ∩ K [T ].
If K has characteristic �= 2, then we know (from part (ii) of Theorem 1.1) that J (K [G]) = 0. Thus,

in this case, it follows that J (K [M]) = 0.
Suppose that K has characteristic 2. Let π : T → G/C be the composition of the natural maps

T ↪→ G → G/C .

Let η be the congruence defined on M by sηt if and only if either s = t or s, t ∈ T and π(s) = π(t).
Since B(K [G]) = ω(K [C])K [G], it follows that J (K [M]) = I(η). Note that a1a2a3z − a2a1a3z ∈ K [T ] ∩
B(K [G]) and it is nonzero (because a1a2 �= a2a1 in G).

Let P be the ideal of K [M] generated by all elements of the form a jaiak z − aia jak z, with different
i, j,k. Let s, t ∈ T be such that sηt . We shall prove that s − t ∈ P , and therefore J (K [M]) = I(η) = P
is finitely generated.

By the definition of η it is clear that s and t have the same degrees with respect to every al . Thus,
as in the proof of the cancellativity of T , one can see that there exist three different integers i, j,k
and w, w ′ ∈ M such that s = aia jak zw and t = ai′a j′ak′ zw ′ , where {i, j,k} = {i′, j′,k′}. Note that in
K [M], it follows by Lemma 3.1 that

aia jakzai − a2
i a jakz = aia jakzai − aia jakai z

= aia jakzai − zaia jakai

= aia jakzai − a jaiakzai ∈ P .

Therefore by Lemma 3.1 and Lemma 3.6(i), aia jak z is central in K [M]/P .
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Let degr(w) = mr . We shall prove that s−aia jak zam1
1 · · ·amn

n ∈ P . Since aia jakz is central in K [M]/P ,
it is sufficient to prove that aia jakzapaq − aia jak zaqap ∈ P , for all p,q. Clearly, we may assume that
p �= q. Then by Lemma 3.1, we may assume that k /∈ {p,q}, and again by Lemma 3.1,

aia jakzapaq − aia jakzaqap = aia j(akapaqz − akaqap z) ∈ P ,

as desired.
Similarly we obtain that t − ai′a j′ak′ zam1

1 · · ·amn
n ∈ P , because degr(w ′) = mr . Thus, since aia jak z −

ai′a j′ak′ z ∈ P , it follows that

s − t = s − aia jakzam1
1 · · ·amn

n − (
t − ai′a j′ak′ zam1

1 · · ·amn
n

)

+(aia jakz − ai′a j′ak′ z)am1
1 · · ·amn

n ∈ P .

Therefore assertion (v) follows. �
This finishes the proof of Theorem 1.1.
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