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1. Introduction

In recent literature a lot of attention is given to concrete classes of finitely presented algebras A
over a field K defined by homogeneous semigroup relations, that is, relations of the form w = v,
where w and v are words of the same length in a generating set of the algebra. Of course such
an algebra is a semigroup algebra K[S], where S is the monoid generated by the same presentation.
Particular classes show up in different areas of research. For example, algebras yielding set theo-
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retic solutions of the Yang-Baxter equation (see for example [7,9,10,12,18]) or algebras related to
Young diagrams, representation theory and algebraic combinatorics (see for example [1,5,8,11,14]). In
all the mentioned algebras there are strong connections between the structure of the algebra K[S],
the underlying semigroup S and the underlying group G, defined by the same presentation as the
algebra.

In [3] the authors introduced and initiated a study of combinatorial and algebraic aspects of the
following new class of finitely presented algebras over a field K:

A=K(ar,ay,...,ap | @102 - ah =d51)Ao2) - - - Aom), O € H),

where H is a subset of the symmetric group Sym,, of degree n. So A = K[S,(H)] where

Sn(H)=(ay,az,...,0p | @102 -+ -y = A5 (1o (2) - - Ao(n), O € H),

the monoid with the “same” presentation as the algebra. By G,(H) we denote the group defined by
this presentation. So

Gn(H) =gr(ay,az,...,0n | 0102 -+ -Gy = A5 (1)0g(2) - - Aoy, O € H).

Two obvious examples are: the free K-algebra K[S,({1})]=K(a1,...,an) with H={1} and S,({1}) =
FMjy, the rank n free monoid, and the commutative polynomial algebra K[S2(Sym,)] = K[ay, az] with
H = Sym, and Sp(H) = FaMj, the rank 2 free abelian monoid. For M = S;(Sym,,), the latter can
be extended as follows [3, Proposition 3.1]: the algebra K[M] is the subdirect product of the com-
mutative polynomial algebra K[aq,...,a,] and a primitive monomial algebra that is isomorphic to
K[M]/K[Mz], with z=aja; - - -a,, a central element.

On the other hand, let M = S,(H) where H = gr({(1,2,...,n)}), a cyclic group of order n.
Then [3, Theorem 2.2] the monoid M is cancellative and it has a group G of fractions of the
form G = M(a;---ap)~' = F x C, where F = gr(ay,...,ay—1) is a free group of rank n — 1 and
C =gr(ay---ap) is a cyclic infinite group. The algebra K[M] is a domain and it is semiprimitive.
Moreover [3, Theorem 2.1], a normal form of elements of the algebra can be given. It is worthwhile
mentioning that the group G is an example of a cyclically presented group. Such groups arise in a
very natural way as fundamental groups of certain 3-manifolds [6], and their algebraic structure also
receives a lot of attention; for a recent work and some references see for example [2].

In this paper we continue the investigations on the algebras K[S,(H)] and the groups G,(H).
First we will prove some general results and next we will give a detailed account in case H is the
alternating group Alt, of degree n. It turns out that the structure of the group G,(H) can be com-
pletely determined and the algebra K[S,(H)] has some remarkable properties. In order to state our
main result we fix some notation. Throughout the paper K is a field. If bq, ..., by are elements of a
monoid M then we denote by (b1, ...,b;) the submonoid generated by bq,...,by. If M is a group
then gr(bq, ..., bn) denotes the subgroup of M generated by b1, ..., by,. Clearly, the defining relations
of an arbitrary S,(H) are homogeneous. Hence, it has a natural degree or length function. This will
be used freely throughout the paper. By p = ps we denote the least cancellative congruence on a
semigroup S. If n is a congruence on S then I(n) =ling{s—t|s,t € M, (s,t) € n} is the kernel of the
natural epimorphism K[S] — K[S/n]. For a ring R, we denote by [J(R) its Jacobson radical and by
B(R) its prime radical. Our main result reads as follows.

Theorem 1.1. Suppose K is a field and n > 4. Let M = Sy (Altp), z=a1a ---a, € M and G = G, (Alty). The
following properties hold.

(i) c=1{1, a1a2a1_1a2_1} is a nontrivial central subgroup of G and G/C is a free abelian group of rank n.
Moreover D = gr(ai2 |i=1,...,n) is a central subgroup of G with G/(CD) = (Z/27)".
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(ii) K[G] is a noetherian algebra satisfying a polynomial identity (PI, for short). If K has characteris-
tic # 2, then J(K[G]) = 0. If K has characteristic 2, then J(K[G]) = (1 — a1a2a1’1a2’1)1<[G] and
JEKIGD? =0.

(iii) The element z?% is central in M and z2M is a cancellative ideal of M such that G = (z>M)(z%)~1. Further-
more, K[M/p] is a noetherian Pl-algebra and 7 (K[M]) is nilpotent.

(iv) Supposen isodd. Then z is centralin M and 0 # J (K[M]) = I(n) for a congruence n on M and 7 (K[M])
is a finitely generated ideal.

(v) Suppose n is even and n > 6. If K has characteristic # 2, then 7 (K[M]) = 0. If K has characteristic 2,
then 0 £ J (K[M]) = I(n) for a congruence n on M and 7 (K[M]) is a finitely generated ideal.

Part (v) of Theorem 1.1 is also true for n =4, but its proof is quite long for this case and it requires
additional technical lemmas. (The interested reader can find a proof of this in [4].)

So, in particular, the Jacobson radical is determined by a congruence relation on the semigroup
Sn(Alty), it is nilpotent and finitely generated as an ideal. In [3] the question was asked whether
these properties hold for all algebras K[S,(H)], for subgroups H of Sym,,.

2. General results

In this section we prove some preparatory general properties of the monoid algebra K[S,(H)] for
an arbitrary subset H of Sym,, with n > 3. To simplify notation, throughout this section we put

M={aj,az,....ay |@1az---an =g (1)d5(2) - - - Aoy, O € H). (1)

If o =3, kxx € K[M], with each ky € K, then the finite set {x € M | kx # 0} we denote by supp(c).
It is called the support of «.

Proposition 2.1. Suppose that there exists k such that 1 <k <n and, forall o € H, 0 (1) # k and o (n) # k.
Then J (K[M]) = 0.

Proof. Suppose that J(K[M]) # 0. Let o € J(K[M]) be a nonzero element. Because, by assumption,
o (1) #k for all o € H, we clearly get that a,%a #0. As a,%a € J(K[M]), there exists g € K[M] such
that aﬁa +B8+ ﬂai(x =0. Obviously, B ¢ K. Let o1, B1 be the homogeneous components (for the natu-
ral Z-gradation of K[M]) of @ and 8 of maximum degree respectively. Then ﬂlaﬁal =0. In particular,
there exist wq, wa in the support of 81 and w/, w) in the support of oy such that

2.4,/ 2.,/
w1apwy = waaqw,)

and either wq # w; or a,% wi # aiw’z. But, because o (n) # k for all o € H, this is impossible. Therefore
JK[M])=0. O

Corollary 2.2. If H is a subgroup of Sym,, and .7 (K[M]) # 0 then H is a transitive subgroup of Sym,,.

Proof. Suppose that H is a subgroup of Sym, and J(K[M]) # 0. By Proposition 2.1, for all k there
exists 0 € H such that either o(1) =k or o(n) = k. Suppose that H is not transitive. Then there
exists 1 < j <n such that j ¢ {o(1) | 0 € H}. Hence there exists o € H such that o (n) = j. Thus the
orbits I ={o(1) |oc € H} and I, = {o(n) | 0 € H} are disjoint nonempty sets such that I; U I, =
{1,2,...,n}. So, there are no defining relations of the form a;---=a,---, nor of the form --.a; =
---ap. Consequently, if 0# o € K[M] then a2« # 0 and aa? # 0.

Let o € J(K[M]) be a nonzero element. Then, a?a2c # 0, and there exists g € K[M] such that
a%a%oz + 8+ ﬂa%a,%oc = 0. Clearly, it follows that 8 ¢ K. Let o1, 81 be the homogeneous components
of @ and B of maximum degree respectively. We obtain that ﬂm%a%o{l = 0. In particular, there exist



FE. Cedé et al. / Journal of Algebra 324 (2010) 1290-1313 1293

w1, wy in the support of 81 and w/, w), in the support of oty such that (wy, w)) # (w3, w)) and

wid2aiw) = waalaiwh.

Again, because there are no defining relations of the form a; --- =ay - - - nor of the form ---a; =---ay,
this yields a contradiction. Therefore H is transitive. 0O

Let z=ajay---a, € M. The fact that z is central in M = S,(H) for the case of the cyclic group H
generated by (1,2,...,n) was an important tool in [3]. In Section 4 we will show that z2 is central
if M = S, (Alt,). We start by showing that the centrality of z", for some positive integer m, has some
impact on the algebraic structure of M and K[M] and we determine when z is central in case H is a
subgroup of Sym,,.

Proposition 2.3. Suppose H is a subgroup of Sym,, and put z = ajay - - -a,. The following conditions are
equivalent.

(i) ziscentralin M = Sp(H),
(ii) a1z = zaq,
(iii) H contains the subgroup of Sym,, generated by the cycle (1,2, ...,n).

Proof. Let Ho denote the subgroup of Sym, generated by the cycle (1,2,...,n). Assume Ho € H.
Then M = S, (H) is an epimorphic image of S,(Hp). As a1ay - --a, is central in S,(Hp), it follows that
z indeed is central in M.

Assume now that ayz = za;. We need to show that Hy C H. Every defining relation can be written
in the form: z=aycy, with 1 <k <n, ¢y = ]_[,-:1,,#,< azq), T € Sym({1,...,n}\ {k}) € Sym,. By assump-
tion, a%az -o-0p = a1Z = zay = agCay. Since agcy is a product of distinct generators, there must exist
a relation of the form cya; = z. Since also z is a product of distinct generators, it follows that k = 1.

Thus z =ajc1 = cia;. The former equality yields that o1 = (1 1(22) r?n:]n r(r;)) € H and the equality

zZ=cC1ay gives 0y = (1(12) 1(23) :;11) ;’) € H. Hence (1,2,...,n) = 01’102 € H and so Hy C H. The result
follows. O

Assume now that z™ is central, for some positive integer m. Note that then the binary relation
P’ on M, defined by sp't if and only if there exists a nonnegative integer i such that sz =tzZl, is a
congruence on M. We now show that Gn(H) is the group of fractions of M = M/p’. We denote by a
the image in M of a € M under the natural map M — M.

Lemma 2.4. Suppose that z™ is central for some positive integer m. Then, o’ = p is the least cancellative
congruence on M and Ma NaM N (z™) # @ for every a € M.

In particular, M = M/ p is a cancellative monoid and G = M(z™)~ is the group of fractions of M. More-
over, G = Gp(H)=gr(ay,...,ap |a1az - -y = A5 (1)do2) - - Ao (n), O € H).

Proof. Since z™ is central, we already know that the binary relation p’ is a congruence on M.
Let a = aj,a, ---a;, € M. We shall prove that aM N (Z") # ¥ by induction on k. For k = 0, this
is clear. Suppose that k > 0 and that bM N (zZ™) # @ for all b € M of degree less than k. Thus
there exists r € M such that a;, ---a;,_,r € (Z™). Since q;, zZ™ = z"a;,, it follows easily from the type
of the defining relations for M that there exists w € M such that a;, w = z. We thus get that
awz™ r =a;, ...a;_,2"r =aj, ...a;,_,rz™ € (z"). Similarly we see that Ma N (z™) # . Therefore p’
is the least cancellative congruence on M and M(z™)~! is the group of fractlons of M and the second
assertion also follows. O

Proposition 2.5. Suppose that z™ is central for some positive integer m. Let a1, ..., a, € [(p) N K[Mz™].
Then the ideal Zi‘;] K[M]o; K[M] is nilpotent. In particular, I(p) N K[Mz™] C B(K[M]).
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Proof. Let «y, ..., ay € I(p) N K[Mz™]. Clearly there exists a positive integer N such that o;z™N =0,
for all i =1,...,k. Since z™ is central and &; € K[Mz"], we have that (O_I_; K[M]a;K[M])N*! =0
and the result follows. O

Proposition 2.6. The following properties hold.

(i) J(K[M]/K[MzM]) = 0.
(ii) J(K[M]) € K[MzU zM].
(iii) J(K[M])3 C K[MzZMzM U MzMz2M] C K[Mz2M].

If, furthermore, z™ is central and Mz¥M is cancellative for some positive integers m, k, and char(K) = 0 then
K[Mz*M] has no nonzero nil ideal. In particular, B(K[Mz“M]) = 0. Furthermore, ifk = 2 then B(K[M])3 = 0.

Proof. To prove the first part, let X be the free monoid with basis x1, X2, ..., x,. Then

K[M]1/K[MzM] = K[X]/K[]],

where | = Jyepuy XXo(1) - Xo(m) X. Note that X/] has no nonzero nilideal. Hence, by [15, Corol-
lary 24.7], K[M]/K[MzM] is semiprimitive. Therefore 7 (K[M]/K[MzM]) = 0.

To prove the second and third part, suppose that o = Z?:] Aisi € J(K[M]), with supp(x) =
{s1,...,8q} of cardinality g and A; € K, is a homogeneous element (with respect to the gradation de-
fined by the natural length function on M). Then « is nilpotent (see for example [17, Theorem 22.6]).
Suppose that s; ¢ zM and s; ¢ Mz. Let i, j be such that s; € ;M N Maj. Then, for every I > 1, the
element (s1ajaf)l = $1a;a;$1a;a; --- can only be rewritten in M in the form (s’ajai)’, where s' e M
is such that s = sq. Therefore, aaja; € J(K[M]) is not nilpotent, a contradiction. It follows that s,
and similarly every s; € Mz U zM. Again by [17, Theorem 22.6], we know that [J(K[M]) is a ho-
mogeneous ideal. This implies that J(K[M]) € K[Mz U zM]. Hence J(K[M1)3 € MzJ (K[M])zM C
K[MzZMzM U MzMz*M]. This finishes the proof of statements (ii) and (iii).

To prove the last part, assume char(K) =0, Mz*M is cancellative and z™ is central for some pos-
itive integers m, k. Since a;z™ = z"q;, it follows from the type of the defining relations for M that
z € a;M N Ma; for every 1< i< n. Hence, by Lemma 2.4, we know that MzXM has a group of frac-
tions G (that is obtained by inverting the powers of the central element z¥™). Let I be a nil ideal
of K[MzKM]. Then K[G]IK[G] = I(z™*™) is a nil ideal of K[G]. Since, by assumption, char(K) = 0,
we know from [16, Theorem 2.3.1] that then I = 0. So, if k = 2 then, by the first part of the result,
B(K[M])® € K[Mz2M] N B(K[M)). Since K[Mz2M] N B(K[M]) is a nil ideal of K[Mz2M], the result
follows. O

Corollary 2.7. Suppose z is central. The following properties hold.

(i) If J(K[M]) = 0 then J (K[M]) = I(p) N K[Mz].
(i) If B(K[M]) = 0 then B(K[M]) = I(p) N K[MZz].
(iii) If B(K[M]) = 0 then Mz is cancellative. The converse holds provided char(K) = 0.

Proof. (i) By Proposition 2.6, J(K[M]) € K[Mz]. Note that K[M] = K[M/p] = K[M]/I(p). Hence,
if J(K[M])=0, we get that J(K[M]) € I(p) N K[Mz]. By Proposition 2.5 we thus obtain that
J(KIM]D = I(p) N K[Mz].

(ii) If K[M] is semiprime, then, by Proposition 2.6, B(K[M]) € I(p) N K[Mz]. Thus, by Proposi-
tion 2.5, B(K[M]) = I(p) N K[Mz].

(iii) Because of Proposition 2.5, we know that I(p) N K[Mz] € B(K[M]). Suppose now that
B(K[M]) = 0. Then, p restricted to Mz must be the trivial relation, i.e., Mz is cancellative. Con-
versely, assume that char(K) =0 and Mz is cancellative. Then, by Proposition 2.6, B(K[M]) is a nil
ideal of K[Mz], and thus (also by Proposition 2.6) B(K[M]) =0, as desired. O



FE. Cedé et al. / Journal of Algebra 324 (2010) 1290-1313 1295

3. The monoid S, (Alt,)

In this section we investigate the monoid S, (Alt,) with n > 4. The information obtained is essential
to prove our main result, Theorem 1.1. Note that the cycle (1, 2,...,n) € Alt, if and only if n is odd.
Hence by Proposition 2.3, z =aja;---a, is central if and only if n is odd. However, for arbitrary n,
we will show that z2 is central and that the ideal S, (Alt;)z? is cancellative as a semigroup and we
also will determine the structure of its group of fractions G,(Alt,). This information will be useful to
determine the radical of the algebra K[S,(Alt,)].

Throughout this section n >4, M = S, (Alt,) and G = G, (Alt,). Let o € Alt,. Since the set of defin-
ing relations of M (of G, respectively) is o-invariant, 0 determines the automorphism of M (of G
respectively) defined by o (aj| ---a;™) =ap'; - ayt; .

We will use the same notation for the generators of the free monoid FM, and the generators of M,
if unambiguous. Throughout the rest of the paper, z denotes the element z=ayay---a, € M.

Let w =aj,aj, - - -aj,, be a nontrivial word in the free monoid FM; on the set {ay,a, ..., ay}. Let
1< p,qg<m and r,s be nonnegative integers such that p +r,q + s <m. We say that the subwords
Qi,Qi, ., -~ Gip,, and @ Qi - Gj,,; overlap in w if either p <q < p+r or ¢ < p < q+s. For example,
in the word asazajaszay the subwords ayajasz and ajaszayq overlap and the subwords asa, and ajas
do not overlap. Let u,u’ be words in the free monoid FM,. We say that u’ is a one step rewrite
of u if there exist uy, uz,us3, u, € FM, such that u; and u/, represent z in M, and u = uqupu3 and
u' =uqubus.

Lemma 3.1. Let z=aqay ---a, € M.
(i) Ifn > 4 then ajajz = za;aj, for any different integers 1 <1i, j <n.
(ii) Ifn > 5 then ajajarz = ajaxa;z and za;aja, = zajaxa;, for any three different integers 1 <1, j, k <n.
(iii) Ifn=4and 1 <1, j, k < n are three different integers then
1. ifajajara; = z then a;ajayz = a;aa;z = aya;a;z = za,a;a;,

. 2. ifa;a,-.ajak =z then za;a;a, = zajara; = zaga;aj = gkaja,'z.. o
(iv) Ifn > 6 is even then a;ajayz = zaja;ay, for any three different integers 1 <1, j, k <n.

Proof. (i) If 1 <i, j <n are different then there exists o € Alt, such that (1) =i and o(2) = j.
Hence

aajz =aiajo(1,2,...,nm?(@az - an)
=0i0jlds3) - Ao n)lo (1)o (2) = 20i0j.
(ii) and (iv) Suppose that n > 5. In this case, for any three different integers 1 <1i, j,k <n there

exists o € Alt, such that o (1) =i,0(2) = j,0(3) =k. Let T = 7, € Sym, be defined by 7 =id if n is
odd, and T = (i, j) if n is even. So To (1,2, ...,n)> € Alt,. Hence in M we get

aiajagz = aiajato (1,2,..., n)3(a1a2 - -dp)
= (46 (1)00 (2)05 3)) (Ao (4) * * * Qo (m) O (i) A (j)Tk)

= a(z)af(i)a,(j)ak.

In particular, (iv) follows. Since (1, 2, 3) € Alty,, this yields

aiajaxz = (o (1,2,3)(@10z - - - p))ar (i) 0z () Ak

= (ajaxa;)ag 4) - - - Ao (n) Az (i) Az (j) Ak = AjAKA;Z.
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Similarly one proves that

Zaiajax = za;agai,
for n > 5.
(iii) Suppose that n =4. Let {i, j,k, I} = {1,2,3,4}. Then either a;ajaxaq =z or qa;ajay = z. If
ajajaaq; = z, then

Z =a;ajaiq) = ajaga;a; = aga;a;a,

and, since z € aM, we get

aiajaxz = a;axa;z = aga;a;z.

Clearly, a;jajarz = ajajai(aiara;ja;) = zaga;a;.
Similarly, if aqja;a;a, = z, we get

za;a;ja = za;ja,a; = zZaxa;d;j = (a,a;a;a)aa;d; = axd;a;z. O
Lemma 3.2. Let z = a1ay - - - ay € M. Then z2 is central in M.

Proof. If n > 6 and n is even then

720y = za10y - - - Apdq = 1020304205 - - - Apdy (by Lemma 3.1(i))
= a1a2a3a4((1, 5)(2,3)(2,3,...,m)3(@a - ~an))a5 -+ Opaq
= (1020304(A50106 - - - An30204)ds5 - - - Apdq
=a1((1,2,3,4,5)(@az---a,))(2,3)(1,2,...,n)(a1az . .. ap)

=a,2%.

If n=4 then

a1z2 =aq(azasa1a3)z = ayaszaszaiaz (by Lemma 3.1)
= 10304(02030104)aA102 = 2a301040102
=asajzagaia; (by Lemma 3.1)
= a3a1(a2a10403)a4010 = A3a1020104(a3020407)
=a3012a30407 = zaszaiazasa; (by Lemma 3.1)

= 22(11.

Since Alt, is transitive, we get that z2 is central for all even n. Since z is central in M for all odd n,
the assertion follows. O

Lemma 3.3. For n = 4, a1a,a4a3z = 0(a1020403)z, for all o € Alty, and it is central in M. In particular,
0(2)z=120(z) =zy(z) =y (2)z forany o,y € Symy of the same parity.
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Proof. By Lemma 3.1, we have

10204032 = a1(A30204)Z = a1(a4a302)Z,
and also

10204032 = 2a1a20403 = z(A20401)0d3 = 20401032,
a1020403Z = ZA1020403 = 2(0401(12)(13 = a40a10a0a32,

10204032 = 010302042 = zA1a30204 = z(A3001)04 = A300104Z.

Thus ajaxasasz = o (ajazasaz)z for all o € Alty. In particular, o (z)z = y(z)z for odd permutations
o, y. Of course such an equality also holds if y, o are even. Note that, because of Lemma 3.1, zo (z) =

o (z)z for any permutation o.
In order to prove that ajayasasz is central we only need to show that ayaasaszza; = ajajazasasz.

By Lemma 3.1, we have
1020403201 = A1022040301 = A10d22(A10403)
=a1aa1a4za3 = a1 (a1a4az)zas
= (1012040203 = A101(02040301)040203

=a10a10a20403Z. Od

Lemma 34.letz=aqay---a, € M.

(i) If n > 6 is even then al.zaj(akalarz) = ajaiz(akalarz) and ajaja;iaj(axqarz) = a;ja;a;a;(aaarz), for all
1 <1, j <nand for any three different integers 1 < k,l,r <n.
(i) Ifn > 4, then aa;z*> = aja?z? and a;aj0;0;2* = ajaiaja; 2%, forall 1 <i, j <n.

Proof. (i) Suppose that n > 6 is even. Applying Lemma 3.1 several times, we get

(101020102032 = a1a10d2(A30102) = a1a1dz(zasaxay)
= a1(za1az)asaa, = a;(zaxasa,)d,a,
= a1(aza32)a1a,a; = (2a2a1a3)a1aa
= (a2012)a3a102a1 = a201(2010203)01
= 201 (010203012) = d20101(0102032),
a1020102010203Z = (1020102(2030201) = a102(2a102)a30201
= a1a(a3a2a12)aa1 = a1a2a3(zaay)axa;
= (zaza1a3)axaa;ay = (a2a12)aza,a1a;a;
= a01(2a20103)0201 = a2a1(a2a12)A30201

= axa1a2a1(a1a2a32)

and, for every i € {1,2,...,n}\ {3, 4},
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(101020i0304Z = A10102(A3040;2) = A1010203(2a40;)
= a1(2a20103)a40; = a1(2a3a201)040;
= a1(a3a2)a1a4a; = (a201a32)a1040;
= a201a3(a1042)a; = a201(a104032)4a;
= a20101(20403)0; = 020101(0;03042),
(10201020;a304Z = A1020102(Z04030;) = A102(2a102)A4030;
= a102(a402012)030; = 010204(20201)a30;
= (za2a104)a201a30; = (A2012)040201030;
= 201 (2a20104)a30; = A201(A2012)A4030;
= aya1a3a1(a;asasz).
Hence, in each case applying an appropriate o € Alt, and using Lemma 3.1, we obtain aiza jlaaarz) =
ajaiz(akalarz) and a;a;a;aj(ayaar;z) = aja;aja;(agaar;z), for all 1 < i, j <n and for any three different
integers 1 <k,[,r<n.
(ii) Suppose that n is odd. Let z = agaz---a, (so Z' is the identity element if n = 5). Since z is
central in M, by Lemma 3.1, we have
(11(11(1222 =aiaiay ((13(14(15(11(12)2/2 =a ((12(13(11 )a4a5a1azz/z
= (a20301)(a40501)a1022'Z = A2(A10403)A50101022'Z
= ap01a4(a10305)a1027'Z = apa1 (a1a304)asa1022 2

=aya1a12%

and

a1a2a1azz2 = 01020102 (A3a5040201)Z' 2 = a1a(a3a1 0350402012 Z
= 010203(a5a102)0402012'Z = a1 (a50203) (A20401)0201Z 2
= (a20105)a302040102012'Z = 0201 (020503 ) (a10204)01Z'Z

= apa1a(a105a3)0204012' 2 = a2a1a2a1zz.
For n =4, we have
2_ .2 _
a101a22° = a1z°a1a; = a;(a03a10a4)(A2a3a104)a1az
= a102a3(a4020103)01040102 = (A2010403)02010301040103

= (201 (a1030402)030104010 = A201010304(A1020304)A102

=aya1a12%

and, by Lemmas 3.1 and 3.3,
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a1a2a1a222 = zay1azza1a; = aai(asasaiazz)aaz
=aa1(aa1a3a42)a1ay; = axa1aza1asaga102

= 450102012

Hence, if n is odd or n =4 and for o € Alt, we have that

ao(1)aa(1)aa(2)22 = aa(Z)aa(l)aa(l)Zz

and

aﬂ(])an(Z)aa(Ua(r(Z)Zz =aa(2)aa(1)aa(2)aa(1)22-
So

20.7%2 — q:a27> Q0072 = i 22
a;ajz° =aja;z® and @;aja;ajz° = aja;a;a;z

for all 1 <1, j<n, and (ii) follows.
Suppose that n > 6 is even. By Lemma 3.1, z2 = a,a;a3za4as - - - a,. Consequently, by (i), we get that

20.7% — q:a27> 40072 = a:0ia i 22
a;ajz =aja;z® and a;aja;a;z° = ajaia;a;z

for all 1 <1, j<n, as desired. O

We define the map f:FM, — {—1,1} by

i — i
fa@, ---a,) = || —, (2)
< lix — i}
<j<k<m
ij7#ik

Note that if two words w, w’ € FM, represent the same element in M then f(w) = f(w’).
Lemma 3.5. Let z=a1a; - - -ap € M. Let t be a positive integer. For 1 <i < j <n, let Fjj = (a;, aj). Then
(i) The elements in szFU- are of the form

2t 2ng

22gPmgmy, (3)

i Y

where w € {1,a;,a;,a;a5, aja;, aiaja;, aja;a;, a;a;a;a;} and ny, ny are nonnegative integers.
(ii) The elements in z2{(M \ U1<i<j<n F;j) are of the form

2t 2n1 2np mp  _my Mp—i,
Z7a; At way a4t ay (4)
. . 2n1 _2np
where iy < iy <mn, a;'a; " w € Fipi, \ ((ai;) U (ai,), w € {1, a4, a3, i, @iy, 03,045, G4, Qi Oy, Qi 4 G
. . nfiz
@i, @iy @i Gy }, N1, N2, M1, My, ..., Mn_j, are nonnegative integers, and 3 ;_y* m; > 0.

Furthermore, every element s € z>'M has a unique representation as a product of the form (3) or (4).
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Proof. (i) We may assume that t = 1. By Lemma 3.2, z? is central in M. Now, by Lemma 3.4(ii), we
have

aiajaiajaiz* = (ajaia;a;)aiz?,

aiajaiajaia;z* = (aja;a;a;)a;a,z* = aja;aja;a’ 2%,
a;a;a;a;a;a;a; z = (aja;aja;)a;a;a; 22 = aja‘la?z2

4.2 2 2.2 4.4.2
(ajaj)*z° = (aja;)*(aja;)°z" = q; a;z".

Therefore

2.2 2.2
(ajaj)aiz” = aja;jaja; z°,
2.2.2 a2
(aa]) z =a;a;a;a;z" = a;a;a;a;z",
@aj)’aiz? = a]a‘lazz2 = a]aza“z2

NA2 A 4D A 4D
(ajaj)*z° =q; a2z =a;a;z%,

for all 1<i, j <n. The above easily implies that the elements in z2 F;; are of the form

2y 2
Za™ aj'12

w,
where w € {1,q;,qaj,a;aj,a;a;, a;a;a;, ajaia;, a;aja;aj} and ny,ny are nonnegative integers. Hence (i)
follows.

(ii) We may assume that t =1. Let 1<i< j<n and me {1,...,n}\ {i,j}. Then, by (3) and
Lemmas 3.1, 3.2 and 3.4(ii), it is easy to see that

amz*(Fij \ ((@i) U (@;))) = 22(Fij \ ({ai) U (a;)))am, (5)

foralln>4

Let s € M\U1<,<j<n Fij. Then s =aj aj,---aj,, where {ji,..., ji} is a subset of {1,...,n} of
cardinality > 3. We shall prove that z2s is of the form (4) by induction on the total degree k >3 of s.
For k = 3, we have that j1, j», j3 are three different elements and, by Lemmas 3.1 and 3.2,

2 . 2 A — 2 ..
Z270j,0j,0j; =Z70j,0j30j; = 2703, Ajy,

thus the result follows in this case.

Suppose that k > 3 and that the result is true for all elements in M \ U1<,-<j<n Fjj of total
degree less than k. Then either aj,---aj, € Fi;i, \ ({(ai;) U (a;,)), for some i < i, or aj,---aj, €
M\ U1<i<j<n Fjj. Thus, by (i) and by the induction hypothesis

2 2 2

2 Mn—i
Zaj,---aj, =2a;"a P wa) ap? "

iy 142" {n ’

2n1 2112

where i1 < iy <n, a, a;, we Fii, \ ({ai;) U (ai,)), w € {1,a4,ai,,ai,0i,, Qi,0i,,0j,0i,0j;, Aj, 0j; i,
a;,0;,0;,aj,} and nl,nz,m1,.. ,Mp_j, > 0. By (i) and Lemma 3.2, we may assume that ji ¢ {iq,i2}
and, by (5), we also may assume that

m,
225 = Z22a*M g®™ waj,di ai? i

ir+1%+2 "
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Suppose that j; < ip. Note that in this case, by Lemmas 3.1, 3.2 and 3.4(ii), we get

zzaizln1 aizzn2 aj, = zzaizl"1 aj, a,-zzn2 ,
zzainlaznza aj, = 22a42'“a,-1aj1ai22"2
22a2n102n2a12a“ = Zzai21n1ai2ajla122nz = zzaizl("lfl)a] a; aZ"ZJrl
zza,.zlnlaznzal]a,za]1 :zzaizl'“a,-la,'zaj](11.22"2 zzaznlahal]az”ZH,
22(12"1 2"za,za,]ah :zzai21'”a,-2a,-la11aizzn2 :zzaiz]ma aj, aZ"ZH
2" a0, 0,005, = 26" 01, 01,01, 05,00 = 22} Vg
2" a0, 0,05,05, = 220" 0,01, 01,0, 00 = 2207 0,05, 0,050
zza2"1a“a,1a2anr2
Zzai21n1 al.zzr'2 (@i, a,)%aj, = zzaiz]'11 (ai,ai,)’aj, a2
:zza2 a“a,za“allaznz’H zzaiz]ma a]1a11a2"2+2.
Hence
s = zzai2 w'alal jal? - g,

for some w’ € {aj,,a;,a;,, aj,a;,,a;,a;,a;,} and some nonnegative integers nj and mo, and therefore
z%s is of the form (4) (if i{ < ji < i, then we take the pair (i1, j1) in place of the pair (i1,i2) in
formula (4), and if j; < iy < i, then the degree of s with respect to aj, is equal to 1, so by taking the
pair (ji1,11) in place of the pair (11 ,i») in formula (4) we also get that z2s is of the form (4) because
we can then write z%s = zza§ 0a2 wad . ---a)_jalal al? -

Suppose that j; > iy. By Lemma 3.4(ii), z2a 2"‘ 2"zw € (Z2Fy,i,ai,ai,) U (2% Fi,i,i,01,). Note that if

ip <l < ji, then, by Lemmas 3.1 and 3.2,

amn iy )

2 A s = A e (O — 72 A (O — 1720 (s
7°a;,a;,0j,0] = Z2°0;, 10,0}, = 2°0;,0, 0}, = 0120}, 04, 0],
and
220 @ di ) = 220 d- d;. = 22 @i = QZ2d:. Qi d
% G 4= %l = 1Gi i 0y = G2 Gig iy Uy -

Therefore, by using (5) and Lemmas 3.4(ii), 3.2 and 3.1, we can move the aj, of

2. 2. 2m 2np my _mp Mp—i,
Z's=2za; ', waja; 0%,y
to the right. Hence, if j; =iy + p, then
2. 2.2 2wy o mp+1 My i,
ZS=1Z ai1 iz ir+1" " "Yiy4p ©ln ’

2n, 2n!
1 2 !/
where a; "a; *w' € Fiji, \ ((aiy) U (ai,)), W' € {1, ai,, i, 0;, i, 03, G5y , Qi 03y iy, 03,05, iy, G, Qi Gy Gy }

and n1,n2 are nonnegative integers. Thus (ii) follows by induction.
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Let
2ny 2ny mq my Mp—i,
w1 = ail iz Wai2+1 i+2 " {n
and
m/
) 2n, , omy m) n—if
Wy = a a, Waz’2+1az’+2 -y

be two words in FM, such that iy <ip <n, i} <i, <n,
€{1,a,, ai,, a;,a,, i, Qj; , Aj, A5, A, Aj, A, Qi , Aj Aj, Aj, Ay }
and
/
w'e(1,ay,ay,aay, ap air, ay Ay 4y, Ay Ay Ay , Qi Ay A Ay .

n—i, 2n1 2ny

Suppose that if Z _{ mj >0, then a; latw e (ai,aiy) \ (ai,) U (aiy), and if Z m > 0, then

on, 2n!
nla,n w' e (a,-/l,a,-/2 \(a,-/l) U (a,-/z)). Suppose that (a1a2~~-an)2tw1 and (a1a2~~~an)2fwz represent
the same element in M.

In order to prove the last part of the lemma it is sufficient to prove that wq = wy. Note that the
degree of wy in a; is equal to the degree of w; in aj, for all i =1,...n. Let f be the map defined
by (2). By the definition of f, we have that fwy) = f(wy).

Note that 1f27 ﬁzm] > 0, then Z] 1 m}; >0, iy =i}, ip =iy and mj =m/, for all 1 <j<n—ia.
Furthermore, since f(w1) = f(w3), by the definition of f, we have that f(az’“ 2"2 f(a2"1 2"2 w)

in this case. Thus we may assume that

2n1 2112

wi =a?"a®w  and wy=a, ' w'.

I

2
a”2

Then the definition of f implies that f(wq) = f(w) and f(w3) = f(w’). Hence f(w) = f(w')

Suppose that 1= f(w) = f(w’). In this case, w € {1,a;,,ai,,a;,a;,} and w’ € {1,a,-/1,a,-/2,a,-/1a1/2}. If
w =1, then the degree of w; in each generator is even. Since w1, wy have the same degree in each
generator, we have w’ =1 and wq = w3 in this case.

If w = aj,a;,, then the degree of wy in a; is odd and the degree of wy in a;, is odd. Since
i1 <ip and i} < i}, and wy, w have the same degree in each generator, we have that i =i, iy =i},
w’ =aj,a;, and wi = wy, in this case.

If w=a;, and n;, =0, then clearly wi = w» € (a;,).

If w=a;, and n;, # 0, then by a degree argument it is easy to see that i} =i}, i =i}, w' =a;,
and wq = wy, in this case.

Similarly, if w = a;,, we can see that wq = wy.

Suppose that —1 = f(w) = f(w’). In this case,

w € {a;,a;,, G, 0i,0j, , Qj, i, Qi , Aj; i, 0, Qi }
and

!
w' € {ay,ay . ay, ay air , 4y Ay Ay , Ay Ay g Ay .
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As above, using f and a degree argument we can also see that w{ = wj.
Therefore the result follows. 0O

Lemma 3.6. Suppose that n > 6 is even. Let t be a nonnegative integer. Let z =aa ---a, € M. For 1 <i <
Jj <n,let Fij = {(a;,aj). Let k, I, r be three different integers such that 1 <k, l,r <n. Then

(i) (akaiarz)a; = aj(agaiarz), forallie {1,2,...,n}\ {k,I,r}.
(ii) (axaiarz)a; = a;j(qagarz), foralli € {k,1,r}.
(iii) The elements in z* agaja; zFjj are of the form

2nq

2 awaia,za a?”zw, (6)

where w € {1, a;, aj, a;aj, aja;, a;a;a;, aja;aj, a;a;ja;a;j}y and nq, ny are nonnegative integers.
(iv) The elements in z%ayaa,z(M \ U1<i<]<n Fjj) are of the form

e
z2takalarzai2]”1aizzn2 m g2 "2 (7)

Wa;, 1840 n 7

2n1 _2n
i 0w e Figiy \ ((aiy) U aiy)), w € {1, aiy., iy, G4, a3y, 03,05y, Qi G5, Gy, 03,03, iy

. . n—ip
aj, a;,q;, Aj, }, N1, N2, My, My, ..., My_j, are nonnegative integers, and Zj:1 m;j>0.

where i] <iy <n,a

Furthermore every element s € z%a,a;a-zM has a unique representation as a product of the form (6) or (7).
Proof. (i) Leti e {1,2,...,n}\ {k,I,r}. By Lemma 3.1, we have
(axaarz)a; = ag(zaar)a; = a,z(a;adr) = a,(a;az)ay
= (aiqiax)zar = a;(za;a)ar = a;(ax1arz).

(ii) Let i € {k, 1, r}. By Lemma 3.1, we may assume that i =k, and we have

(axaiarz)ay = ax(zaiar)ax = agz(axaar) = ax(aaxarz).
To prove (iii) and (iv) we may assume that t = 0. Then the proof of (iii) and (iv) is similar to the
proof of Lemma 3.5. Namely, it is obtained by using (i) and (ii) in place of the fact that z% is central

and using Lemma 3.4(i) in place of Lemma 3.4(ii). The proof of the last part of the lemma is similar
to the proof of the last part of Lemma 3.5. O

Lemma 3.7. Suppose that n > 6 is even. Then

U (MzN Mzay) = U (MajajarzU Maja;a,z).
1<r<n 1<i<j<k<n

Proof. By Lemma 3.1, we have that

a10203Z = zZazaq10a3 = azazas.

Note that if 1 <1, j, k <n are three different integers then, since n > 6, there exists o € Alt, such that
o(1)=1i, 0(2) =j and o (3) = k. Therefore
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aajgze | ) (MznMzay), (8)
1<r<n

for all different 1 <1, j,k <n.
Suppose that U1<r<n(Mz N Mzay) ¢ U1<i<j<k<n(Ma,-ajakz U Maja;aiz). Let s € Ulgrgn(MZ n
Mzay) \ U1<i<j<k<n(Maiajakz U Majaijarz) be an element of minimal length. There exist 1 <

r<n, s =aj--aj , €M and s =aja;,---a;, such that s = s'za, = s”z. Thus there exist

Wi, W2,..., W in the free monoid FM, on {ai,...,ay}, such that wy =aj, ---a;,_,a1az---apar,

Wm =@, -+~ Q@102 - - -Gy and w; = wy;wp w3 ; = wi W) ;w5 ;, where wy; and w); represent the
. . o ! P —

element zin M foralli=1,...,m, and wy j =Wj i and w3 ; =W3 i forall j=1,...,m—1.

Let g:{1,2,...,m} x {1,2,...,n4+k} — {1,2,...,n} be such that w; = ag 1)ag( 2) - Ag(in+k fOr
all i=1,...,m. Let t be the least positive integer such that ag« k+1)dg( k+2) - Ag(t,n+k) TEPresents z
in M. Since n is even, by Proposition 2.3, t > 1 and g(i,n+k)=r, forall i=1,...,t. Hence

0g(1,1)0g(1,2) =" Ag(1,n+k—=1)> - - - » Ag(t—1,1)0g(t—1,2) * " Ag(t—1,n+k—1)

represent the same element in M. Furthermore, the length of ws3:—q is less than n and greater
than 0.

Suppose that ws 1 =ay. In this case, w’z’tar =gk Ag(t,n+ky and Wy qa, represent the same
element in M, but, by Proposition 2.3, in M we have that za, # ag i)z, a contradiction. Therefore the
length of w31 is greater than 1.

Suppose that w3 ;1 = ag(—1,n+k—1)ar. In this case, wy ¢ 1ag—1,n4+k—1)ar and W/z’tag(t_lqu_])ar =
Ag(t k—1)0g(t,k) - - - Ag(t,n+k) TEPresent the same element in M. Since

(g(1,1)0g(1,2) " Ag(1,n+k—=1)» - - - » Ag(t—1,1)Ag(t—1,2) * * * Ag(t—1,n+k—1)

represent the same element in M, we have in M that

Qg(1,1) -+~ Ag(1,k—1)%Z = Ag(1,1)0g(1,2) - Ag(1,n+k—1)
=0gt-1,1)0g(t-1,2) " Ag(t—1,n+k—-1)
=0g(t-1,1)0g(t—-1,2) * - - Ag(t—1,k—2)ZAg(t—1,n+k—1)-

Thus agq,1y -+ - Ag(1,k—1)Z € Mz N Mzag—1,nyk—1)- By the choice of s, we have that

ag(1,1) g1 k-1)Z € U (MajajarzU Majaia,z).
1<i<j<k<n

Since s =ag(,1y - - - Ag(1,k—1)2ar, by Lemma 3.6(i) and (ii),

S U (Majajarz U Majaja,z),
1<i<j<k<n

a contradiction. Therefore the length of w3 _q is greater than 2.
Thus W3¢ 1 =ag—1,n+k—1I) - - - Agc—1,n+k—1)ar for some 1 <! <n. In this case,

/
W) tdgt—1,n+k-1) -+ Ag(t—1,n+k—1)r = Ag(t.k—1) - - Ag(t.k—1)Ag(t.k) * * * Ag(t,n+k)-

Hence s € Mzag—1 ntk—I) - - - Ag(t—1,n+k—1)Ar. SINC€ Ag(r k+1) - - - g(r,n+k) TEPresents z in M and I <n,
we have that g(t —1,n+k—1),...,gt—1,n+k—1),r are [ + 1 different integers. By Lemma 3.1,
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se U (Majajarz U Majaia,z),
1<i<j<k<n

a contradiction. Therefore

U (MzN Mzay) C U (MajajarzU Majaia,z).
1<r<n 1<i<j<k<n

By (8), the result follows. O

Lemma 3.8. Suppose thatn > 6 is even. Let s = aj,aj, - - -aj,, € M\ MzM be such that

sz ¢ U (Majajarz U Majaia,z).
1<i<j<k<n

Then, for s1, S2 € M, sz = s1zsy implies that s153 = s.

Proof. Let s1,s; € M be such that sz = s1zs,. Then, by an easy degree argument, s; =a;, ---a;, and
$2 =Gj ., - diy, for some k and some a;,, ..., a;,. Thus there exist w1, wa, ..., w; in the free monoid
FM, on {ay,...,an}, such that w; = wq;wy w3 ; = W/l,iw/z,iW/B,i' where w;; and W/Z,i represent the
element z in M for all i=1,...,t, wyj = W’l’j_H and ws j = Wé’j_H, forall j=1,...,t —1, and
W’L1 =aj,aj, - aj,, w’3,1 =1, wi¢=aj ---a;, and w3 =aj,, ---a;,. Thus, wy =aj, »-«ajmw’z’1 and
We = Qj; -+ A, W2 ¢Qjy,, -~ @y, It is enough to prove that wy ;w3 =aj, ---aj,, forall i=1,...,¢t, by
induction on i.

If the two subwords wy; and W/Z.1 of the word wy =aj,aj, ~~-ajmw/2.1 = wi,1W2,1w3,; do not
overlap, then wy 1 is a subword of aj, ---aj,, which is not possible because the latter represents s in
M and s ¢ MzM. Therefore they overlap and hence the degree of ws 1 is less than n and w31 is a
product of distinct letters. Since w; represents sz in M and sz ¢ U1<i<j<k<n(Ma,'ajakz U Maja;ayz),
it follows that w3 1 cannot have degree 1 by Lemma 3.7 and it cannot have degree greater than 2
by Lemma 3.1. Hence, the degree of w31 is 0 or 2. In the former case, clearly wq1ws1=wi 1=
W’L1 =aj,aj, ---aj,. Suppose that ws 1 has degree 2. From the equality of words a;,aj, ---aj, W/z,1 =
wi,1wp1ws3q it follows that ajm_lajmw/z,] = wy 1w3. Let W/2,1 =aj,,, Then there exist
o, T € Alt, such that

© i

o) =jm-1, 02)=jm, ..., (M) = jmin—2
and
(D) = jms1, TQ) = jmt2, ..., T = jmyn.
Hence
A,....m 2 't =1,...,0,....n 26 'tm—2)=n—-2.
Since n is even and (1,...,n)"20 !t € Alt,, we have that (1,...,n)" 20!t = id. Therefore T =0 o

(1,...,m)? and then

Jmin—1=tM =1 =01) = jm—1 and jmin=1t(M)=0(2) = jm.

Thus W3,1 = ajm+n—1afm+n = a]‘mflaj
W1,1W31 =aj1 ~-~a]‘m.

and clearly wq 1 = ajaj,---aj, ,. Hence, also in this case,

m
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Suppose that t > i > 1 and wq w3 ; =aj ---aj,, for all j=1,...,i — 1. We have that
Wi = w1 =aj--aj, and wi; = w31 = aj,,---aj,, for some 0 <q < m. Hence w; =
ajy -+ jgWy j, -+ - Aj, = W1 iW2 W3 . Since aj, ---aj,, ¢ MzM by the hypothesis, as above we get
that the subwords w;; and W/2,i of the word w; have to overlap.

Let r be the absolute value of the difference of the lengths of the words wy ; and W/H. Then r <n.
The equality of words Wﬁ,iW/z,iW/a_i = wq,iwy iws,; implies that either le,i”/ = uwz,,i or u/w/zyi =
wy ju for some words u,u’ of length r. Then all the generators involved in u (and also in u’) are
different. Since w; represents sz in M and sz ¢ | J; ¢;j<n(Maiajaxz U Majaia,z), by Lemma 3.1 we
get that r < 2. If r =1 then we get za, =apz in M for some p, which is impossible since n is even.
Hence, r =0 or r = 2. As above we can see in the both cases that wi w3 =aj, ---a;,,. The result
follows. O

let I={seM|sMC Mz} and I'’={s € M| Ms C zM}. Clearly, I and I’ are ideals of M. Let I; =
{seMz|saje Mz, foralli=1,2,...,n}, I} ={sezM|ajsezM, foralli=1,2,...,n} and

T= (Ma;aiarz U Ma;a;az).
J J

1<i<j<k<n

Lemma 3.9. Suppose thatn > 6iseven. Then | =1'=1; =1 =T.
Proof. From Lemma 3.6(i) and (ii), it follows that T is an ideal of M. Hence T C I. Suppose that these
two ideals are different. Let s € I \ T. Since s € I, there exists s’ € M such that s = s’z. We consider
two cases.
Case 1. s’ € MzM.

Then let s” € M be an element of minimal degree such that s’ € Mzs”. Thus there exists t € M
such that s’ =tzs”. Since s =tzs"z ¢ T, we have that s” has degree greater than or equal to 2. Let
s” =aj, ---aj,. By the choice of s”, we know that s” ¢ MzM. Since s=s'z=tzs"z ¢ T, clearly s"z ¢ T.

Hence, by Lemma 3.8, the words in the free monoid FM,, on {a;, ..., a,} that represent s”z in M are
of the form

Ajy = QjgWajgy - Qs (9)

where w represents z in M. Note that zz,zajlz € T. Therefore, since s=tzs"z¢ T and T is an ideal
of M, we have that ¢ > 2 in (9). By Lemma 3.1 and the choice of s”, j; = j,. Note also that by the
choice of s”, the words in FM, that represent s’ =tzs” in M are of the form

waj, ---aj,, (10)

where w’ represents tz in M. It follows from the form of the words (9) and (10) that the words in
FM,, that represent s =tzs”z in M are of the form

!
waj, ---aj, waj -, (11)

where w’ represents tz in M, w represents z in M and q > 2. Since n is even, we know by Proposi-
tion 2.3, that zaj,, ¢ Mz. Therefore, by the form of the words (11) that represent s in M, the words
that represent saj, in M are of the form

/
w a]l o 'a]qwa]qul T a]ma]m’
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where w’ represents tz in M, w represents z in M and q > 2. In particular, it follows that sa;, ¢ Mz,
a contradiction since s € I.

Case 2. s’ ¢ MzM.

Let s’ =aj, ---aj, for some m > 0. Since s =s'z ¢ T, by Lemma 3.8 we get that the words in FMj
that represent s in M are of the form

Ajy -+ ajq Wajq+1 Qs

where w represents z in M. If m =0 then s =z and sa; = za; ¢ Mz, a contradiction, because s € I.
Hence m > 0. Since zaj,, ¢ Mz, by the form of the words that represent s, it is easy to see that the
words that represent saj,, are of the form

Ajy = AjgWjoq - A A s

where w represents z in M. Therefore sa;, ¢ Mz, a contradiction since s € I. Therefore I =T.

Clearly, we have I C I7. Let s€ I; and let t € M \ {1}. Then t = a,t’ for some 1 <r<n and t’' € M.
Since sar € Mz N Mza,, by Lemma 3.7 it follows that st = sa,t’ € Tt' € T € Mz. Therefore s € I and so
I=1.

By Lemma 3.1 and Lemma 3.6(i) and (ii),

U (zajajarM U zajajaeM) = U (Majajarz U Majajarz) =T.
1<i<j<k<n 1<i<j<k<n

Thus, by symmetry,

4. Proof of Theorem 1.1

In this section we prove our main result, Theorem 1.1. So again, n >4, M = S,(Alt,) and G =
Gn(Alty).

Recall that p’ is the binary relation on M, defined by sp’t if and only if there exists a nonnegative
integer i such that sz' = tz!. By Lemma 3.2, z2 is central in M. By Lemma 2.4, p’ = p is the least
cancellative congruence on M.

Proof of (i). Let {i, j, k} be a subset of {1,2,...,n} of cardinality three. By Lemma 3.1, in G, we have

aia;a = a;ja,a; = ad;d;. (12)

2

By Lemma 3.4, in G, we also have ajajajaj = ajajaja; and a?aj = aja?, for all 1 <i, j < n. Therefore

(a,lajai’laj’l)2 =1.
Let T € Sym, \ Alt,. Suppose that n = 7(j). If j =n —1 then, by (12),

Ar(1)ar2) -+ -Arm) =ar(1)Ar @) " Ar(n-3)Ar(n)dr(n-2)an-

If n— j is even and greater than 1 then, by (12),

ArAr2) Az = Az e (j-DAr(j+1) - Ardn-
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If n— j is odd and greater than 1 then, by (12),

Ar(1)Ar2) -+ -Arm) =0ar) - - Ar(j-1)Ar(j+1) - " Az (n—2)Ar ()t (n—1)0n-

So, we have shown that a;1)a:2)---arm) = do(1) - - -Go@m-1)an for some o € Sym,_;. Repeating the
above argument at most n — 3 times, we get that a;)ac) - - rm) = do(1)do(2)d0(3)0405 - - - Ay for
some o € Syms. Because 7 is odd, it follows from (2), that also o is odd. Hence, o is a transposition,
and thus, again using (12), a;(1)az) - - - dr@my = 0103020405 - - - dy.

Hence we have shown that, in G,

ar(1)ar2) - - Ar(n) = 0A103020405 - - - Ap,

for all T € Sym, \ Alt,.
Hence we have the following presentations of the group G.
G=gr(@,....an | a102 -G = A (1)ds(2) - - - Ao ) O € Alty)
=gr(a,...,0p |10z -+ - ap =g (1)Ao(2) - * * Ao (n), A1030204 - - - Ap = A7 (1)A72) -+ Az ()

o € Alty, T € Sym, \ Alty).
Note that, by (12), a,-(a1a2al’1a2’1)ai’1 = a1a2a1’1a2’1, for all 2 < i < n. Furthermore

1,1y 1 11,1\ —1
ai(aiazay'a; )ay ' =ai(a1aza3) (a3 'aj 'a; )a;

=a ((12(13(11)((11_1(12_1(13_])(11_1 by (12)
= a1a2a3,a2_]a3_1a]_1
= a1a2a3(a3_1a1_1a2_1) by (12)

= a1a2a1_]a2_1
and

1,1y -1 11 -1y 1
ay(maxay ' ay " )ay ' = ax(aqazaz)(az 'aj 'ay ' )a;
=az(a3a1a2)(a2’1a3’]a1’1)a2’] by (12)

1,.-1

= a2a3a1a3_1a1_ a,

-1.-1,-1
= (maxa3)a; aj a, by (12)
:a1a2af]a;].

Therefore a1a2a1_1a2_ 1 is a central element of order at most 2 in G. Let C be the central subgroup

c={1, a1a2a1_1a2_1}. Then G/C has the following presentations.
G/C=gr(by,...,by | b1ba =bob1, biby---by =bs1)bs2) - - bom),
b1bsbyby-- by = b-[(1)b-,;(2) . "br(n)’ ocAlt, T¢e Sym,, \Altn)
=gr(by,...,by |b1by-- by =bs)bs2) - - -bom), 0 € Symy).
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Hence G/C is a free abelian group of rank n and, since C =G/, in G we have

1,1 _ =11
a0y 4, =aaje; a;,

for all i # j, because there exists o € Alt, such that (1) =i and o (2) = j.
We now show that a1a2a1_]a2_1 # 1. Let f be the map defined by (2). Note that if two words
w, w’ € FM,, represent the same element in M, then f(w) = f(w’). In particular,

a1a2™ # aya,1z2™

in M, for all m. Now, by Lemmas 3.2 and 2.4, we have that aja; # aa; in G, as desired.
By Lemma 3.4, every a,.2 is a central element in G. Let D be the central subgroup of G generated
by a2, ...,a2. Now G/(CD) = (Z/2Z)". Hence (i) follows. O

Proof of (ii). By (i) and [16, Lemma 5.1.11, Corollary 10.2.8], K[G] is a noetherian Pl-algebra for
any field K. Furthermore, by [16, Theorem 7.3.1] J(K[G]) € J(K[C]K[G]. Thus, if K is a field
of characteristic # 2, then J(K[G]) = 0. If K is a field of characteristic 2, then J(K[G]) =
(1 —ajaza;'a; HK[G], and J(K[G))?> =0. O

Proof of (iii). By Lemma 3.2, z2 is central in M. Thus, it follows from Lemma 2.4 that every nonempty
right ideal of M contains z% for some positive integer k. Therefore, if sx = tx for some s,t € z2M and
x € M, then sz? = tz%, for some k. Since z2 is central and s,t € z2M, by Lemma 3.5, we get s =t.
This and a symmetric argument show that zZM is cancellative and also that the ideal z2M embeds
into M/p. Hence, again by Lemma 2.4, G = (z2M)(z%)".

Since K[G] is a Pl-algebra and G is the group of fractions of M/p by Lemma 2.4, K[M/p] is a
finitely generated Pl-algebra. Let M = M/ p. It follows from part (i) that G is a nilpotent group and it
is abelian-by-finite, thus from [13, Theorem 4.3.3, and the comment following it] we know that K[M]
is noetherian. By [15, Theorem 18.1], 7 (K[M]) is nilpotent. Therefore, there exists a positive integer
m such that J(K[M])™ C I(p). By Proposition 2.6, J(K[M1])> € K[z>M]. Since z>M is cancellative,
I(p) N K[z2M] = 0. Hence 7 (K[M]) is nilpotent. O

Proof of (iv). Suppose that n > 4 is odd. We shall see that aja1a2z # aaia1z in M.
Let wo =ajajaza; ---a, € FM, and let w € FM; be a word representing the element ajaia;z € M.

Then there exist wy, ..., wy € EM, with wy = w and w; = wqjwp ;w3 ; = w} ;w, ;w5 ; such that wy
and w/, ; represent the element z in M, for alli=0,1,...,r,and wy j =w] i+ and w3 ; = W’3_i+l, for
all j=0,...,r— 1. We shall prove, by induction on r, that wy jws; =ajaiaz for all i=0,1,...,r. It

is clear that w0 =ajajaz and w39 =1, thus wy ows,g=ajajay. Suppose that i > 0 and wq ;w3 ;=
aiaiaz. Then wq; € {1,a1,aia1,ajajaz}. We shall deal with four cases separately.

Case 1. wq ; = 1. In this case, w3 ; = W/3,i+1 = a1a10ay. SiNCe Wit1 = W1 j+1W2,it1 W3 it1 =W/2,,-+1010102
and wy iy and W/ZJ.+l represent z € M, we have that ws ;11 € {a1a1az, a1az2}. If w3 ;11 =ajaqay, then
clearly wq,i+1 =1 and wjq,j11W3,i41 = ajaidz. Suppose that ws ;1 =ajap. Since the degree in a; of
wiy1 is 3 and the degree in a; of wy ;41 is 1, we have that wy ;11 =aq. Hence wq j11w3 41 = a1a1a2
in this case.

Case2. wi; =ay. In this case, w3 ; = W,3,i+1 =ajay. Since Wit1 = W1 i1 W2 ir1W3,it1 = a1w/2’i+1a1a2,
we have that either wq ;y; =1 or wy i+ begins with a;. If wy ;41 =1 then, using the degree in a;
and that ws ;41 finishes with ajaz, we see that ws ;11 =ajaija; and wq jiy1Ww3 iq1 =ajaiaz. Suppose
that wq ;41 begins with aj. Then wq ;41 =aqu for some u € FM,. Thus uwy j11W3 it1 = w’2,i+1a1a2.
Now w3 i1 € {1, a2, a1az2}. If wsi+1 € {az, ajaz}, then using the degree in a;, we have that uws ;11 =
ajay. Suppose that wsz ;11 = 1. Then uwy i1 = W/z,i+1a1a2 and, using the degree in a; and in ajy,
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we have that u € {ajay, apaq}. Since wy ;41 and W’2 ;41 Tepresent z € M, f(aaiwyit1) =1 and
fw), i41@102) = —1, where f is the map defined by (2), thus u = aqa;. Hence wq j41ws3 41 = a101a2
in this case.

Case 3. wy ; =ajay. In this case, ws ; = W/3,i+l =0ay. SINCe Wit1 = W1 i1 W2 it1 W3 i1 = a1a1w/2’i+1a2
and wy ;41 represents z € M, we have that wy ;1 begins with a;. Then wq 41 = aqu for some
u € FMy, and uwy i1 w3 i1 = a1w/2’H_1a2. Thus, using the degree in a; and in ay, we have uws ;1 =
ajaz. Hence wq j11w3 iy1 =ajaiaz in this case.

H / H /
Case4. wq ; = ajajay. In this case, w3 ; = W3 = 1. Slqce wi~+1 = WL,‘+1W2.1'_‘HW3’1‘+1 =a10102W5 ;4
and wy ;1 represents z € M, we have that wy ;1 begins with a;. Then, as in Case 2, wy iy1 =aju
for some u € FMy, and uws j11 =ajay. Hence wq j11ws3 iy1 =ajajay in this case.

Therefore, we indeed have shown in each of the four cases that wi;ws; = ajaiay, for all i =
0,1,...,r. In particular, aja1a3z # azaja;z in M.

Note that if 1 <1i, j <n are different then there exists o € Alt, such that o (1) =i and o (2) = j.
Therefore

a;a;a;z # a;a;a;z,

for all i # j, in M.

Since n is odd, z is central in M and, by Lemma 34, (agaiaj — aja,-a,-)z2 = 0. Therefore
(ajaja; — aja;a;)z € B(K[M]) \ {0}, for all i # j and for any field K.

Let p=p N (zM x zM). So I1(p) = ling{s —t|s,t € zM and 3i > 0, sz' = tz'}. Since z2M is can-
cellative, it follows that I(p)% = 0.

Suppose that K has characteristic different from 2. We have that J(K[G]) = 0. Since J(K[M])
is nilpotent and G is a central localization of M, we get J(K[M]) = B(K[M]) € J(K[G]). Hence
J(K[M]) =0. Then J(K[M]) € I(p), and by Corollary 2.7

J(K[M]) = B(K[M]) = 1(p).

Thus J(K[M])? =0.

Assume that s, t € M are such that (s, t) € p. Because z2M is cancellative, we know that z?s = z%t.
Note that in the proof of Lemma 3.5, in order to obtain the form (3) or (4) of z2s, we only use the
centrality of z2 and the relations z2a;aja = z%a;axa;, zzaia? = zzafai and z?a;aja;a; = z%a;a;a;a;, for
1 <1, j, k <n, three distinct elements. Since z%s = 7%t, it follows that s — t € K[M]Y K[M], where

2 2 2 2
Y= U {aiajax — ajara;, afaj —aja;, (aia;)” — (aja)?}.
1<i, j.k<n
I{i,J.k}=3

This implies that Y generates I(p) as a two-sided ideal. Now, if s'z,t'z € zM are p-related, then
also (s',t") € p, so by the previous s’z —t’z € K[M]YzK[M] because z is central. In particular, I(p) =
J(K[M]) is a finitely generated ideal.

Suppose that K has characteristic 2. By Proposition 2.6, J(K[M]) € K[zM]. Thus J(K[M]) =
J (K[zM]). Note that zM/p is a cancellative semigroup and G is its group of fractions. Furthermore,
K[zM/p] = K[zM]/I(p). By (iii), we have that 7 (K[M]) is nilpotent. Hence

T (KIM1)/1() = B(K1zM))/1(5) = B(K[zM/p]) = B(KIG]) N K[zM/p],
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see [15, Corollary 11.5]. Let w:zM — G/C be the composition of the natural maps

ZM — M — G — G/C.

Let n be the congruence defined on M by snt if and only if either s=t or s,t € zM and 7 (s) = 7 (¢t).
Since B(K[G]) = w(K[CD)K[G], it follows that J(K[M]) = I(n). In particular, z(a;a; —a;a;) € J(K[M])
for all i, j. Let Q be the ideal of K[M] generated by all such elements. Then the set of all elements
of the form zall1 ...y, for nonnegative integers ii,...,ip, forms a basis of the algebra K[zM]/Q.
Therefore this algebra embeds into the algebra K[G/C], which is a commutative domain. It follows
that J(K[M]) = Q and hence it is finitely generated. O

Proof of (v). Suppose that n > 6 is and n is even. We shall prove that 7(K[M]) € K[T] (where T is
as in Lemma 3.9). Suppose that J(K[M]) € K[T]. Let o € J(K[M]) \ K[T] with |supp(c)| = m. Let
supp(e) = {s1,...,Sm}. By Proposition 2.6, s; € zM U Mz. In particular, the degree of s; is greater
than or equal to n. We may assume that sy ¢ T. Then, by Lemma 3.9, there exist i, j such that
s1a; ¢ Mz and a;s1 ¢ zM. Hence, since the degree of s is greater than or equal to n, we have that
ais1aj ¢ zM U Mz and a;sqa;j € supp(a;aa;). But this is in contradiction with Proposition 2.6. Hence
J(K[M]) € K[T].

Now we shall prove that K[T]NI(p) =0, i.e, T is cancellative. Let s,t € T be such that spt. It is
sufficient to see that s =t. In order to prove this, we first shall verify that there exist three different
integers 1 < i, j, k <n such that s, t € Ma;aja;z.

Since s,t € T, there exist integers i, j,k,I, p,q and s’,t' € M such that s = s'a;ajarz, t =t'qapa,z,
I{i, j,k}l =3 and [{l, p,q}| = 3. We claim that t € Ma;ajaiz. First we deal with the case that I ¢
{i,j,k} and i ¢ {l, p, q}. Since spt, we have that s and t have the same degrees with respect to every
generator. Therefore t’ € Ma;M. Let t1,t; € M be elements such that t’ = tya;t,. Thus t = t1a;t2qap042.
By Lemma 3.6(i) and (ii) and Lemma 3.1,

t =t1a;trq1apaqz = t10;010p g Ztr = t120;010p Ayt

=thzaapyaiayty = t1qay ajagy zty = t1ait2a;apragqr z,

where {p,q} ={p’,q'} = {p”,q"}. Therefore t € Ma;a,raq z. Now, if p” ¢ {j,k} and j ¢ {p”,q"}, then,
since i, p”,q” are three different integers, we can apply the same argument to get that t € Ma;a,a,z,
with {u’, v’} = {i, ¢"}. Thus, applying this argument at most one more time, we get that t € Mayajayz,
with {i, j,k} = {i’, j/,k’}. By Lemma 3.1, we may assume that i’ =i. If (j’,k’) = (j, k) then we have
proved the claim. So we may also assume that (j’, k') = (k, j). Thus there exists t” € M such that
t=t"ajara;jz.

If t" e Ulgrgn(‘m then, since s and t have the same degrees with respect to every generator,
there exists 1 <r<n, and a nonnegative integer v such that s’ =t"” =a/. Hence, since spt, we have
that s =t in G. Therefore ajay = aa; in G, a contradiction. So, t” ¢ (J; <,<,(ar). Hence there exist
different 1 <r, p <n and t{, ), € M such that t” =t{a;apt,. We denote by deg,(x) the degree in a, of
x € M. Let u = deg;(t}) + deg;(t},) + degy (). If u is odd and i ¢ {r, p} then, by Lemma 3.6(i) and (ii)
and Lemma 3.1,

t =tharaptha;axa;z = tya,apa;aax 2t = t1ar0,0;20;0xt,
= t}2a,0,0iajarty, = t10,0,2a;0jaxt), = t1a,0,0;0,0;2t)

= tyapa,thaiajaz € Majajaz.

If u is odd and j ¢ {r, p} then, by Lemma 3.6(i) and (ii) and Lemma 3.1,
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t =tiarapthaagajz = tyarapajaa;zty = tya,apa;zaiait,
= tizaparajaga;t, = tya,a;zajaa;t, = tiapa,a;aca;zt)
= thaparthaiajaxz € Majajayz.

If u is odd and k ¢ {r, p} then, similarly, we get that t € Ma;ajayz. If u is even then, by Lemma 3.6(i)
and (ii) and Lemma 3.1, we also get that t € Maja;a,z.

Therefore s, t € Majaiajz, as claimed.

Hence, we have that s = s'ajajaxz and t ="ta; iajaxz, for some s’ ,f € M. Since spt, there exists a
nonnegative integer | such that z2s = z2t. Let v = deg;(s") + deg; (s + degk(s) Since s and t have
the same degrees with respect to every generator, it follows that v = deg;(f) + deg; ;i (®) + deg, (6. If v
is odd then, by Lemma 3.6(i) and (ii),

s=s'aiajaxz = ajaxa;zs’,

t :?aiajakz = a,-akajz?,
and if v is even then, by Lemma 3.6(i) and (ii),

s =s'ajajaxz = ajajaizs’,

t =ta;ajaxz = aia;agzt.

Therefore, if v is odd, since ZZlaiakajZS/ = zﬂa,-akajz?, from Lemma 3.6 it follows that a;axajzs’ =
ajaia;zt, i.e. s =t. Similarly, if v is even we also get s =t. Hence K[T]1NI(p) =0.
Note that, since T is a cancellative ideal in M, we have that G = T (z2)~!. Furthermore, J (K[M]) <

K[T] implies that J(K[M]) = J(K[T]). Therefore by [15, Corollary 11.5],
J(K[M]) = B(K[M]) = B(K[T]) = 7 (K[G]) N K[T].

If K has characteristic # 2, then we know (from part (ii) of Theorem 1.1) that 7 (K[G]) = 0. Thus,
in this case, it follows that 7 (K[M]) =0.
Suppose that K has characteristic 2. Let w: T — G/C be the composition of the natural maps

T <> G— G/C.

Let n be the congruence defined on M by snt if and only if either s=t or s,t € T and 7 (s) = 7w (¢).
Since B(K[G]) = w(K[C])K[G], it follows that J(K[M]) = I(n). Note that ajaazz — aaijazz € K[T]1N
B(K[G]) and it is nonzero (because aja; # aay in G).

Let P be the ideal of K[M] generated by all elements of the form a;a;axz — a;ja;a,z, with different
i,j,k.Let s,t € T be such that snt. We shall prove that s —t € P, and therefore J(K[M])=1(n) =P
is finitely generated.

By the definition of 7 it is clear that s and t have the same degrees with respect to every ;. Thus,
as in the proof of the cancellativity of T, one can see that there exist three different integers i, j, k
and w, w’ € M such that s = g;a;azw and t = ayajyapzw’, where {i, j, k} = {i’, j’,k’}. Note that in
K[M], it follows by Lemma 3.1 that

aiajaiza; — aizajakz =Qaia;jaxza; — a;a;aia;z
=aia;jaiza; — za;ajaa;
= aja;jaxza; — a;ja;aza; € P.

Therefore by Lemma 3.1 and Lemma 3.6(i), a;a;ayz is central in K[M]/P.
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Let deg,(w) = m,. We shall prove that s—a,'ajakzaq” ...ap™ e P. Since aja;az is central in K[M]/P,
it is sufficient to prove that a;ajarzapaq — a;ajarzaqa, € P, for all p,q. Clearly, we may assume that
p # q. Then by Lemma 3.1, we may assume that k ¢ {p, q}, and again by Lemma 3.1,

a;ia;jagzapaq — 0iaa,zaqap = a;a;(axdpagz — aragdpz) € P,

as desired.
Similarly we obtain that t — airajrakrzaTl -..ap™ € P, because deg,(w’) =m;,. Thus, since a;a;agz —
apyajapz € P, it follows that

s—t=s—aajgza]" - -ay" — (t —apajapzalt - -ay")
+(jajaxz — apayapz)ay’ ---ap" € P.
Therefore assertion (v) follows. O

This finishes the proof of Theorem 1.1.
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