Algebras and groups defined by permutation relations of alternating type ${ }^{\text {सx }}$

Ferran Cedó ${ }^{\text {a }}$, Eric Jespers ${ }^{\mathrm{b}}$, Jan Okniński ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
${ }^{\text {b }}$ Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
${ }^{\text {c }}$ Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland

A R T I C L E I N F O

Article history:

Received 14 November 2008
Available online 27 July 2010
Communicated by Efim Zelmanov

MSC:

primary $16 \mathrm{~S} 15,16 \mathrm{~S} 36$, 20M05
secondary 20M25, 16N20

Keywords:

Semigroup ring
Finitely presented
Semigroup
Jacobson radical
Semiprimitive

Abstract

The class of finitely presented algebras over a field K with a set of generators a_{1}, \ldots, a_{n} and defined by homogeneous relations of the form $a_{1} a_{2} \cdots a_{n}=a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)}$, where σ runs through Alt ${ }_{n}$, the alternating group of degree n, is considered. The associated group, defined by the same (group) presentation, is described. A description of the Jacobson radical of the algebra is found. It turns out that the radical is a finitely generated ideal that is nilpotent and it is determined by a congruence on the underlying monoid, defined by the same presentation.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In recent literature a lot of attention is given to concrete classes of finitely presented algebras A over a field K defined by homogeneous semigroup relations, that is, relations of the form $w=v$, where w and v are words of the same length in a generating set of the algebra. Of course such an algebra is a semigroup algebra $K[S]$, where S is the monoid generated by the same presentation. Particular classes show up in different areas of research. For example, algebras yielding set theo-

[^0]retic solutions of the Yang-Baxter equation (see for example $[7,9,10,12,18]$) or algebras related to Young diagrams, representation theory and algebraic combinatorics (see for example [1,5,8,11,14]). In all the mentioned algebras there are strong connections between the structure of the algebra $K[S]$, the underlying semigroup S and the underlying group G, defined by the same presentation as the algebra.

In [3] the authors introduced and initiated a study of combinatorial and algebraic aspects of the following new class of finitely presented algebras over a field K :

$$
A=K\left\langle a_{1}, a_{2}, \ldots, a_{n} \mid a_{1} a_{2} \cdots a_{n}=a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)}, \sigma \in H\right\rangle,
$$

where H is a subset of the symmetric group Sym_{n} of degree n. So $A=K\left[S_{n}(H)\right]$ where

$$
S_{n}(H)=\left\langle a_{1}, a_{2}, \ldots, a_{n} \mid a_{1} a_{2} \cdots a_{n}=a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)}, \sigma \in H\right\rangle,
$$

the monoid with the "same" presentation as the algebra. By $G_{n}(H)$ we denote the group defined by this presentation. So

$$
G_{n}(H)=\operatorname{gr}\left(a_{1}, a_{2}, \ldots, a_{n} \mid a_{1} a_{2} \cdots a_{n}=a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)}, \sigma \in H\right) .
$$

Two obvious examples are: the free K-algebra $K\left[S_{n}(\{1\})\right]=K\left\langle a_{1}, \ldots, a_{n}\right\rangle$ with $H=\{1\}$ and $S_{n}(\{1\})=$ FM_{n}, the rank n free monoid, and the commutative polynomial algebra $K\left[S_{2}\left(\mathrm{Sym}_{2}\right)\right]=K\left[a_{1}, a_{2}\right]$ with $H=\operatorname{Sym}_{2}$ and $S_{n}(H)=\mathrm{FaM}_{2}$, the rank 2 free abelian monoid. For $M=S_{n}\left(\mathrm{Sym}_{n}\right)$, the latter can be extended as follows [3, Proposition 3.1]: the algebra $K[M]$ is the subdirect product of the commutative polynomial algebra $K\left[a_{1}, \ldots, a_{n}\right]$ and a primitive monomial algebra that is isomorphic to $K[M] / K[M z]$, with $z=a_{1} a_{2} \cdots a_{n}$, a central element.

On the other hand, let $M=S_{n}(H)$ where $H=\operatorname{gr}(\{(1,2, \ldots, n)\})$, a cyclic group of order n. Then [3, Theorem 2.2] the monoid M is cancellative and it has a group G of fractions of the form $G=M\left\langle a_{1} \cdots a_{n}\right\rangle^{-1} \cong F \times C$, where $F=\operatorname{gr}\left(a_{1}, \ldots, a_{n-1}\right)$ is a free group of rank $n-1$ and $C=\operatorname{gr}\left(a_{1} \cdots a_{n}\right)$ is a cyclic infinite group. The algebra $K[M]$ is a domain and it is semiprimitive. Moreover [3, Theorem 2.1], a normal form of elements of the algebra can be given. It is worthwhile mentioning that the group G is an example of a cyclically presented group. Such groups arise in a very natural way as fundamental groups of certain 3 -manifolds [6], and their algebraic structure also receives a lot of attention; for a recent work and some references see for example [2].

In this paper we continue the investigations on the algebras $K\left[S_{n}(H)\right]$ and the groups $G_{n}(H)$. First we will prove some general results and next we will give a detailed account in case H is the alternating group Alt_{n} of degree n. It turns out that the structure of the group $G_{n}(H)$ can be completely determined and the algebra $K\left[S_{n}(H)\right]$ has some remarkable properties. In order to state our main result we fix some notation. Throughout the paper K is a field. If b_{1}, \ldots, b_{m} are elements of a monoid M then we denote by $\left\langle b_{1}, \ldots, b_{m}\right\rangle$ the submonoid generated by b_{1}, \ldots, b_{m}. If M is a group then $\operatorname{gr}\left(b_{1}, \ldots, b_{m}\right)$ denotes the subgroup of M generated by b_{1}, \ldots, b_{m}. Clearly, the defining relations of an arbitrary $S_{n}(H)$ are homogeneous. Hence, it has a natural degree or length function. This will be used freely throughout the paper. By $\rho=\rho_{S}$ we denote the least cancellative congruence on a semigroup S. If η is a congruence on S then $I(\eta)=\operatorname{lin}_{K}\{s-t \mid s, t \in M,(s, t) \in \eta\}$ is the kernel of the natural epimorphism $K[S] \rightarrow K[S / \eta]$. For a ring R, we denote by $\mathcal{J}(R)$ its Jacobson radical and by $\mathcal{B}(R)$ its prime radical. Our main result reads as follows.

Theorem 1.1. Suppose K is a field and $n \geqslant 4$. Let $M=S_{n}\left(\mathrm{Alt}_{n}\right), z=a_{1} a_{2} \cdots a_{n} \in M$ and $G=G_{n}\left(\mathrm{Alt}_{n}\right)$. The following properties hold.
(i) $C=\left\{1, a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}\right\}$ is a nontrivial central subgroup of G and G / C is a free abelian group of rank n. Moreover $D=\operatorname{gr}\left(a_{i}^{2} \mid i=1, \ldots, n\right)$ is a central subgroup of G with $G /(C D) \cong(\mathbb{Z} / 2 \mathbb{Z})^{n}$.
(ii) $K[G]$ is a noetherian algebra satisfying a polynomial identity (PI, for short). If K has characteristic $\neq 2$, then $\mathcal{J}(K[G])=0$. If K has characteristic 2 , then $\mathcal{J}(K[G])=\left(1-a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}\right) K[G]$ and $\mathcal{J}(K[G])^{2}=0$.
(iii) The element z^{2} is central in M and $z^{2} M$ is a cancellative ideal of M such that $G \cong\left(z^{2} M\right)\left\langle z^{2}\right\rangle^{-1}$. Furthermore, $K[M / \rho]$ is a noetherian PI-algebra and $\mathcal{J}(K[M])$ is nilpotent.
(iv) Suppose n is odd. Then z is central in M and $0 \neq \mathcal{J}(K[M])=I(\eta)$ for a congruence η on M and $\mathcal{J}(K[M])$ is a finitely generated ideal.
(v) Suppose n is even and $n \geqslant 6$. If K has characteristic $\neq 2$, then $\mathcal{J}(K[M])=0$. If K has characteristic 2 , then $0 \neq \mathcal{J}(K[M])=I(\eta)$ for a congruence η on M and $\mathcal{J}(K[M])$ is a finitely generated ideal.

Part (v) of Theorem 1.1 is also true for $n=4$, but its proof is quite long for this case and it requires additional technical lemmas. (The interested reader can find a proof of this in [4].)

So, in particular, the Jacobson radical is determined by a congruence relation on the semigroup $S_{n}\left(\mathrm{Alt}_{n}\right)$, it is nilpotent and finitely generated as an ideal. In [3] the question was asked whether these properties hold for all algebras $K\left[S_{n}(H)\right]$, for subgroups H of $S y m_{n}$.

2. General results

In this section we prove some preparatory general properties of the monoid algebra $K\left[S_{n}(H)\right]$ for an arbitrary subset H of Sym_{n} with $n \geqslant 3$. To simplify notation, throughout this section we put

$$
\begin{equation*}
M=\left\langle a_{1}, a_{2}, \ldots, a_{n} \mid a_{1} a_{2} \cdots a_{n}=a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)}, \sigma \in H\right\rangle . \tag{1}
\end{equation*}
$$

If $\alpha=\sum_{x \in M} k_{x} x \in K[M]$, with each $k_{x} \in K$, then the finite set $\left\{x \in M \mid k_{x} \neq 0\right\}$ we denote by $\operatorname{supp}(\alpha)$. It is called the support of α.

Proposition 2.1. Suppose that there exists k such that $1<k<n$ and, for all $\sigma \in H, \sigma(1) \neq k$ and $\sigma(n) \neq k$. Then $\mathcal{J}(K[M])=0$.

Proof. Suppose that $\mathcal{J}(K[M]) \neq 0$. Let $\alpha \in \mathcal{J}(K[M])$ be a nonzero element. Because, by assumption, $\sigma(1) \neq k$ for all $\sigma \in H$, we clearly get that $a_{k}^{2} \alpha \neq 0$. As $a_{k}^{2} \alpha \in \mathcal{J}(K[M])$, there exists $\beta \in K[M]$ such that $a_{k}^{2} \alpha+\beta+\beta a_{k}^{2} \alpha=0$. Obviously, $\beta \notin K$. Let α_{1}, β_{1} be the homogeneous components (for the natural \mathbb{Z}-gradation of $K[M])$ of α and β of maximum degree respectively. Then $\beta_{1} a_{k}^{2} \alpha_{1}=0$. In particular, there exist w_{1}, w_{2} in the support of β_{1} and $w_{1}^{\prime}, w_{2}^{\prime}$ in the support of α_{1} such that

$$
w_{1} a_{k}^{2} w_{1}^{\prime}=w_{2} a_{k}^{2} w_{2}^{\prime}
$$

and either $w_{1} \neq w_{2}$ or $a_{k}^{2} w_{1}^{\prime} \neq a_{k}^{2} w_{2}^{\prime}$. But, because $\sigma(n) \neq k$ for all $\sigma \in H$, this is impossible. Therefore $\mathcal{J}(K[M])=0$.

Corollary 2.2. If H is a subgroup of Sym_{n} and $\mathcal{J}(K[M]) \neq 0$ then H is a transitive subgroup of Sym_{n}.
Proof. Suppose that H is a subgroup of Sym_{n} and $\mathcal{J}(K[M]) \neq 0$. By Proposition 2.1, for all k there exists $\sigma \in H$ such that either $\sigma(1)=k$ or $\sigma(n)=k$. Suppose that H is not transitive. Then there exists $1 \leqslant j \leqslant n$ such that $j \notin\{\sigma(1) \mid \sigma \in H\}$. Hence there exists $\sigma \in H$ such that $\sigma(n)=j$. Thus the orbits $I_{1}=\{\sigma(1) \mid \sigma \in H\}$ and $I_{2}=\{\sigma(n) \mid \sigma \in H\}$ are disjoint nonempty sets such that $I_{1} \cup I_{2}=$ $\{1,2, \ldots, n\}$. So, there are no defining relations of the form $a_{1} \cdots=a_{n} \cdots$, nor of the form $\cdots a_{1}=$ $\cdots a_{n}$. Consequently, if $0 \neq \alpha \in K[M]$ then $a_{n}^{2} \alpha \neq 0$ and $\alpha a_{1}^{2} \neq 0$.

Let $\alpha \in \mathcal{J}(K[M])$ be a nonzero element. Then, $a_{1}^{2} a_{n}^{2} \alpha \neq 0$, and there exists $\beta \in K[M]$ such that $a_{1}^{2} a_{n}^{2} \alpha+\beta+\beta a_{1}^{2} a_{n}^{2} \alpha=0$. Clearly, it follows that $\beta \notin K$. Let α_{1}, β_{1} be the homogeneous components of α and β of maximum degree respectively. We obtain that $\beta_{1} a_{1}^{2} a_{n}^{2} \alpha_{1}=0$. In particular, there exist
w_{1}, w_{2} in the support of β_{1} and $w_{1}^{\prime}, w_{2}^{\prime}$ in the support of α_{1} such that $\left(w_{1}, w_{1}^{\prime}\right) \neq\left(w_{2}, w_{2}^{\prime}\right)$ and

$$
w_{1} a_{1}^{2} a_{n}^{2} w_{1}^{\prime}=w_{2} a_{1}^{2} a_{n}^{2} w_{2}^{\prime}
$$

Again, because there are no defining relations of the form $a_{1} \cdots=a_{n} \cdots$ nor of the form $\cdots a_{1}=\cdots a_{n}$, this yields a contradiction. Therefore H is transitive.

Let $z=a_{1} a_{2} \cdots a_{n} \in M$. The fact that z is central in $M=S_{n}(H)$ for the case of the cyclic group H generated by $(1,2, \ldots, n)$ was an important tool in [3]. In Section 4 we will show that z^{2} is central if $M=S_{n}\left(\mathrm{Alt}_{n}\right)$. We start by showing that the centrality of z^{m}, for some positive integer m, has some impact on the algebraic structure of M and $K[M]$ and we determine when z is central in case H is a subgroup of Sym_{n}.

Proposition 2.3. Suppose H is a subgroup of Sym_{n} and put $z=a_{1} a_{2} \cdots a_{n}$. The following conditions are equivalent.
(i) z is central in $M=S_{n}(H)$,
(ii) $a_{1} z=z a_{1}$,
(iii) H contains the subgroup of Sym_{n} generated by the cycle $(1,2, \ldots, n)$.

Proof. Let H_{0} denote the subgroup of Sym_{n} generated by the cycle $(1,2, \ldots, n)$. Assume $H_{0} \subseteq H$. Then $M=S_{n}(H)$ is an epimorphic image of $S_{n}\left(H_{0}\right)$. As $a_{1} a_{2} \cdots a_{n}$ is central in $S_{n}\left(H_{0}\right)$, it follows that z indeed is central in M.

Assume now that $a_{1} z=z a_{1}$. We need to show that $H_{0} \subseteq H$. Every defining relation can be written in the form: $z=a_{k} c_{k}$, with $1 \leqslant k \leqslant n, c_{k}=\prod_{i=1, i \neq k} a_{\tau(i)}, \tau \in \operatorname{Sym}(\{1, \ldots, n\} \backslash\{k\}) \subseteq \operatorname{Sym}_{n}$. By assumption, $a_{1}^{2} a_{2} \cdots a_{n}=a_{1} z=z a_{1}=a_{k} c_{k} a_{1}$. Since $a_{k} c_{k}$ is a product of distinct generators, there must exist a relation of the form $c_{k} a_{1}=z$. Since also z is a product of distinct generators, it follows that $k=1$. Thus $z=a_{1} c_{1}=c_{1} a_{1}$. The former equality yields that $\sigma_{1}=\left(\begin{array}{cccc}1 & 2 & \ldots & n-1 \\ 1 & \tau(2) & \ldots \\ \tau(n-1) & \tau(n)\end{array}\right) \in H$ and the equality $z=c_{1} a_{1}$ gives $\sigma_{2}=\left(\begin{array}{cccc}1 & 2 & \ldots & n-1 \\ \tau(2) & \tau(3) & \ldots & \tau(n)\end{array}\right) \in H$. Hence $(1,2, \ldots, n)=\sigma_{1}^{-1} \sigma_{2} \in H$ and so $H_{0} \subseteq H$. The result follows.

Assume now that z^{m} is central, for some positive integer m. Note that then the binary relation ρ^{\prime} on M, defined by $s \rho^{\prime} t$ if and only if there exists a nonnegative integer i such that $s z^{i}=t z^{i}$, is a congruence on M. We now show that $G_{n}(H)$ is the group of fractions of $\bar{M}=M / \rho^{\prime}$. We denote by \bar{a} the image in \bar{M} of $a \in M$ under the natural map $M \rightarrow \bar{M}$.

Lemma 2.4. Suppose that z^{m} is central for some positive integer m. Then, $\rho^{\prime}=\rho$ is the least cancellative congruence on M and $M a \cap a M \cap\left\langle z^{m}\right\rangle \neq \emptyset$ for every $a \in M$.

In particular, $\bar{M}=M / \rho$ is a cancellative monoid and $G=\bar{M}\left\langle\bar{z}^{m}\right\rangle^{-1}$ is the group of fractions of \bar{M}. Moreover, $G \cong G_{n}(H)=\operatorname{gr}\left(a_{1}, \ldots, a_{n} \mid a_{1} a_{2} \cdots a_{n}=a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)}, \sigma \in H\right)$.

Proof. Since z^{m} is central, we already know that the binary relation ρ^{\prime} is a congruence on M. Let $a=a_{i_{1}} a_{i_{2}} \cdots a_{i_{k}} \in M$. We shall prove that $a M \cap\left\langle z^{m}\right\rangle \neq \emptyset$ by induction on k. For $k=0$, this is clear. Suppose that $k>0$ and that $b M \cap\left\langle z^{m}\right\rangle \neq \emptyset$ for all $b \in M$ of degree less than k. Thus there exists $r \in M$ such that $a_{i_{1}} \cdots a_{i_{k-1}} r \in\left\langle z^{m}\right\rangle$. Since $a_{i_{k}} z^{m}=z^{m} a_{i_{k}}$, it follows easily from the type of the defining relations for M that there exists $w \in M$ such that $a_{i_{k}} w=z$. We thus get that $a w z^{m-1} r=a_{i_{1}} \ldots a_{i_{k-1}} z^{m} r=a_{i_{1}} \ldots a_{i_{k-1}} r z^{m} \in\left\langle z^{m}\right\rangle$. Similarly we see that $M a \cap\left\langle z^{m}\right\rangle \neq \emptyset$. Therefore ρ^{\prime} is the least cancellative congruence on M and $\bar{M}\left\langle\bar{z}^{m}\right\rangle^{-1}$ is the group of fractions of \bar{M} and the second assertion also follows.

Proposition 2.5. Suppose that z^{m} is central for some positive integer m. Let $\alpha_{1}, \ldots, \alpha_{k} \in I(\rho) \cap K\left[M z^{m}\right]$. Then the ideal $\sum_{i=1}^{k} K[M] \alpha_{i} K[M]$ is nilpotent. In particular, $I(\rho) \cap K\left[M z^{m}\right] \subseteq \mathcal{B}(K[M])$.

Proof. Let $\alpha_{1}, \ldots, \alpha_{k} \in I(\rho) \cap K\left[M z^{m}\right]$. Clearly there exists a positive integer N such that $\alpha_{i} z^{m N}=0$, for all $i=1, \ldots, k$. Since z^{m} is central and $\alpha_{i} \in K\left[M z^{m}\right]$, we have that $\left(\sum_{i=1}^{m} K[M] \alpha_{i} K[M]\right)^{N+1}=0$ and the result follows.

Proposition 2.6. The following properties hold.
(i) $\mathcal{J}(K[M] / K[M z M])=0$.
(ii) $\mathcal{J}(K[M]) \subseteq K[M z \cup z M]$.
(iii) $\mathcal{J}(K[M])^{3} \subseteq K\left[M z^{2} M z M \cup M z M z^{2} M\right] \subseteq K\left[M z^{2} M\right]$.

If, furthermore, z^{m} is central and $M z^{k} M$ is cancellative for some positive integers m, k, and char $(K)=0$ then $K\left[M z^{k} M\right]$ has no nonzero nil ideal. In particular, $\mathcal{B}\left(K\left[M z^{k} M\right]\right)=0$. Furthermore, if $k=2$ then $\mathcal{B}(K[M])^{3}=0$.

Proof. To prove the first part, let X be the free monoid with basis $x_{1}, x_{2}, \ldots, x_{n}$. Then

$$
K[M] / K[M z M] \cong K[X] / K[J]
$$

where $J=\bigcup_{\sigma \in H \cup\{1\}} X x_{\sigma(1)} \cdots x_{\sigma(n)} X$. Note that X / J has no nonzero nilideal. Hence, by [15, Corollary 24.7], $K[M] / K[M z M]$ is semiprimitive. Therefore $\mathcal{J}(K[M] / K[M z M])=0$.

To prove the second and third part, suppose that $\alpha=\sum_{i=1}^{q} \lambda_{i} s_{i} \in \mathcal{J}(K[M])$, with $\operatorname{supp}(\alpha)=$ $\left\{s_{1}, \ldots, s_{q}\right\}$ of cardinality q and $\lambda_{i} \in K$, is a homogeneous element (with respect to the gradation defined by the natural length function on M). Then α is nilpotent (see for example [17, Theorem 22.6]). Suppose that $s_{1} \notin z M$ and $s_{1} \notin M z$. Let i, j be such that $s_{1} \in a_{i} M \cap M a_{j}$. Then, for every $l \geqslant 1$, the element $\left(s_{1} a_{j} a_{i}\right)^{l}=s_{1} a_{j} a_{i} s_{1} a_{j} a_{i} \cdots$ can only be rewritten in M in the form $\left(s^{\prime} a_{j} a_{i}\right)^{l}$, where $s^{\prime} \in M$ is such that $s^{\prime}=s_{1}$. Therefore, $\alpha a_{j} a_{i} \in \mathcal{J}(K[M])$ is not nilpotent, a contradiction. It follows that s_{1}, and similarly every $s_{i} \in M z \cup z M$. Again by [17, Theorem 22.6], we know that $\mathcal{J}(K[M])$ is a homogeneous ideal. This implies that $\mathcal{J}(K[M]) \subseteq K[M z \cup z M]$. Hence $\mathcal{J}(K[M])^{3} \subseteq M z \mathcal{J}(K[M]) z M \subseteq$ $K\left[M z^{2} M z M \cup M z M z^{2} M\right]$. This finishes the proof of statements (ii) and (iii).

To prove the last part, assume $\operatorname{char}(K)=0, M z^{k} M$ is cancellative and z^{m} is central for some positive integers m, k. Since $a_{i} z^{m}=z^{m} a_{i}$, it follows from the type of the defining relations for M that $z \in a_{i} M \cap M a_{i}$ for every $1 \leqslant i \leqslant n$. Hence, by Lemma 2.4 , we know that $M z^{k} M$ has a group of fractions G (that is obtained by inverting the powers of the central element $z^{k m}$). Let I be a nil ideal of $K\left[M z^{k} M\right]$. Then $K[G] I K[G]=I\left\langle z^{-k m}\right\rangle$ is a nil ideal of $K[G]$. Since, by assumption, char $(K)=0$, we know from [16, Theorem 2.3.1] that then $I=0$. So, if $k=2$ then, by the first part of the result, $\mathcal{B}(K[M])^{3} \subseteq K\left[M z^{2} M\right] \cap \mathcal{B}(K[M])$. Since $K\left[M z^{2} M\right] \cap \mathcal{B}(K[M])$ is a nil ideal of $K\left[M z^{2} M\right]$, the result follows.

Corollary 2.7. Suppose z is central. The following properties hold.
(i) If $\mathcal{J}(K[\bar{M}])=0$ then $\mathcal{J}(K[M])=I(\rho) \cap K[M z]$.
(ii) If $\mathcal{B}(K[\bar{M}])=0$ then $\mathcal{B}(K[M])=I(\rho) \cap K[M z]$.
(iii) If $\mathcal{B}(K[M])=0$ then $M z$ is cancellative. The converse holds provided $\operatorname{char}(K)=0$.

Proof. (i) By Proposition 2.6, $\mathcal{J}(K[M]) \subseteq K[M z]$. Note that $K[\bar{M}]=K[M / \rho]=K[M] / I(\rho)$. Hence, if $\mathcal{J}(K[\bar{M}])=0$, we get that $\mathcal{J}(K[M]) \subseteq I(\rho) \cap K[M z]$. By Proposition 2.5 we thus obtain that $\mathcal{J}(K[M])=I(\rho) \cap K[M z]$.
(ii) If $K[\bar{M}]$ is semiprime, then, by Proposition $2.6, \mathcal{B}(K[M]) \subseteq I(\rho) \cap K[M z]$. Thus, by Proposition 2.5, $\mathcal{B}(K[M])=I(\rho) \cap K[M z]$.
(iii) Because of Proposition 2.5, we know that $I(\rho) \cap K[M z] \subseteq \mathcal{B}(K[M])$. Suppose now that $\mathcal{B}(K[M])=0$. Then, ρ restricted to $M z$ must be the trivial relation, i.e., $M z$ is cancellative. Conversely, assume that $\operatorname{char}(K)=0$ and $M z$ is cancellative. Then, by Proposition $2.6, \mathcal{B}(K[M])$ is a nil ideal of $K[M z]$, and thus (also by Proposition 2.6) $\mathcal{B}(K[M])=0$, as desired.

3. The monoid $\boldsymbol{S}_{\boldsymbol{n}}\left(\mathrm{Alt}_{\boldsymbol{n}}\right)$

In this section we investigate the monoid $S_{n}\left(\mathrm{Alt}_{n}\right)$ with $n \geqslant 4$. The information obtained is essential to prove our main result, Theorem 1.1. Note that the cycle $(1,2, \ldots, n) \in \mathrm{Alt}_{n}$ if and only if n is odd. Hence by Proposition 2.3, $z=a_{1} a_{2} \cdots a_{n}$ is central if and only if n is odd. However, for arbitrary n, we will show that z^{2} is central and that the ideal $S_{n}\left(\mathrm{Alt}_{n}\right) z^{2}$ is cancellative as a semigroup and we also will determine the structure of its group of fractions $G_{n}\left(\mathrm{Alt}_{n}\right)$. This information will be useful to determine the radical of the algebra $K\left[S_{n}\left(\mathrm{Alt}_{n}\right)\right]$.

Throughout this section $n \geqslant 4, M=S_{n}\left(\mathrm{Alt}_{n}\right)$ and $G=G_{n}\left(\mathrm{Alt}_{n}\right)$. Let $\sigma \in \mathrm{Alt}_{n}$. Since the set of defining relations of M (of G, respectively) is σ-invariant, σ determines the automorphism of M (of G respectively) defined by $\sigma\left(a_{i_{1}}^{n_{1}} \cdots a_{i_{m}}^{n_{m}}\right)=a_{\sigma\left(i_{1}\right)}^{n_{1}} \cdots a_{\sigma\left(i_{m}\right)}^{n_{m}}$.

We will use the same notation for the generators of the free monoid FM_{n} and the generators of M, if unambiguous. Throughout the rest of the paper, z denotes the element $z=a_{1} a_{2} \cdots a_{n} \in M$.

Let $w=a_{i_{1}} a_{i_{2}} \cdots a_{i_{m}}$ be a nontrivial word in the free monoid FM_{n} on the set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Let $1 \leqslant p, q \leqslant m$ and r, s be nonnegative integers such that $p+r, q+s \leqslant m$. We say that the subwords $a_{i_{p}} a_{i_{p+1}} \cdots a_{i_{p+r}}$ and $a_{i_{q}} a_{i_{q+1}} \cdots a_{i_{q+s}}$ overlap in w if either $p \leqslant q \leqslant p+r$ or $q \leqslant p \leqslant q+s$. For example, in the word $a_{3} a_{2} a_{1} a_{3} a_{4}$ the subwords $a_{2} a_{1} a_{3}$ and $a_{1} a_{3} a_{4}$ overlap and the subwords $a_{3} a_{2}$ and $a_{1} a_{3}$ do not overlap. Let u, u^{\prime} be words in the free monoid FM_{n}. We say that u^{\prime} is a one step rewrite of u if there exist $u_{1}, u_{2}, u_{3}, u_{2}^{\prime} \in \mathrm{FM}_{n}$ such that u_{2} and u_{2}^{\prime} represent z in M, and $u=u_{1} u_{2} u_{3}$ and $u^{\prime}=u_{1} u_{2}^{\prime} u_{3}$.

Lemma 3.1. Let $z=a_{1} a_{2} \cdots a_{n} \in M$.
(i) If $n \geqslant 4$ then $a_{i} a_{j} z=z a_{i} a_{j}$, for any different integers $1 \leqslant i, j \leqslant n$.
(ii) If $n \geqslant 5$ then $a_{i} a_{j} a_{k} z=a_{j} a_{k} a_{i} z$ and $z a_{i} a_{j} a_{k}=z a_{j} a_{k} a_{i}$, for any three different integers $1 \leqslant i, j, k \leqslant n$.
(iii) If $n=4$ and $1 \leqslant i, j, k \leqslant n$ are three different integers then

1. if $a_{i} a_{j} a_{k} a_{l}=z$ then $a_{i} a_{j} a_{k} z=a_{j} a_{k} a_{i} z=a_{k} a_{i} a_{j} z=z a_{k} a_{j} a_{i}$,
2. if $a_{l} a_{i} a_{j} a_{k}=z$ then $z a_{i} a_{j} a_{k}=z a_{j} a_{k} a_{i}=z a_{k} a_{i} a_{j}=a_{k} a_{j} a_{i} z$.
(iv) If $n \geqslant 6$ is even then $a_{i} a_{j} a_{k} z=z a_{j} a_{i} a_{k}$, for any three different integers $1 \leqslant i, j, k \leqslant n$.

Proof. (i) If $1 \leqslant i, j \leqslant n$ are different then there exists $\sigma \in \mathrm{Alt}_{n}$ such that $\sigma(1)=i$ and $\sigma(2)=j$. Hence

$$
\begin{aligned}
a_{i} a_{j} z & =a_{i} a_{j} \sigma(1,2, \ldots, n)^{2}\left(a_{1} a_{2} \cdots a_{n}\right) \\
& =a_{i} a_{j} a_{\sigma(3)} \cdots a_{\sigma(n)} a_{\sigma(1)} a_{\sigma(2)}=z a_{i} a_{j}
\end{aligned}
$$

(ii) and (iv) Suppose that $n \geqslant 5$. In this case, for any three different integers $1 \leqslant i, j, k \leqslant n$ there exists $\sigma \in \operatorname{Alt}_{n}$ such that $\sigma(1)=i, \sigma(2)=j, \sigma(3)=k$. Let $\tau=\tau_{n} \in \operatorname{Sym}_{n}$ be defined by $\tau=i d$ if n is odd, and $\tau=(i, j)$ if n is even. So $\tau \sigma(1,2, \ldots, n)^{3} \in$ Alt $_{n}$. Hence in M we get

$$
\begin{aligned}
a_{i} a_{j} a_{k} z & =a_{i} a_{j} a_{k} \tau \sigma(1,2, \ldots, n)^{3}\left(a_{1} a_{2} \cdots a_{n}\right) \\
& =\left(a_{\sigma(1)} a_{\sigma(2)} a_{\sigma(3)}\right)\left(a_{\sigma(4)} \cdots a_{\sigma(n)} a_{\tau(i)} a_{\tau(j)} a_{k}\right) \\
& =\sigma(z) a_{\tau(i)} a_{\tau(j)} a_{k} .
\end{aligned}
$$

In particular, (iv) follows. Since $(1,2,3) \in$ Alt $_{n}$, this yields

$$
\begin{aligned}
a_{i} a_{j} a_{k} z & =\left(\sigma(1,2,3)\left(a_{1} a_{2} \cdots a_{n}\right)\right) a_{\tau(i)} a_{\tau(j)} a_{k} \\
& =\left(a_{j} a_{k} a_{i}\right) a_{\sigma(4)} \cdots a_{\sigma(n)} a_{\tau(i)} a_{\tau(j)} a_{k}=a_{j} a_{k} a_{i} z
\end{aligned}
$$

Similarly one proves that

$$
z a_{i} a_{j} a_{k}=z a_{j} a_{k} a_{i}
$$

for $n \geqslant 5$.
(iii) Suppose that $n=4$. Let $\{i, j, k, l\}=\{1,2,3,4\}$. Then either $a_{i} a_{j} a_{k} a_{l}=z$ or $a_{l} a_{i} a_{j} a_{k}=z$. If $a_{i} a_{j} a_{k} a_{l}=z$, then

$$
z=a_{i} a_{j} a_{k} a_{l}=a_{j} a_{k} a_{i} a_{l}=a_{k} a_{i} a_{j} a_{l},
$$

and, since $z \in a_{l} M$, we get

$$
a_{i} a_{j} a_{k} z=a_{j} a_{k} a_{i} z=a_{k} a_{i} a_{j} z .
$$

Clearly, $a_{i} a_{j} a_{k} z=a_{i} a_{j} a_{k}\left(a_{l} a_{k} a_{j} a_{i}\right)=z a_{k} a_{j} a_{i}$.
Similarly, if $a_{l} a_{i} a_{j} a_{k}=z$, we get

$$
z a_{i} a_{j} a_{k}=z a_{j} a_{k} a_{i}=z a_{k} a_{i} a_{j}=\left(a_{k} a_{j} a_{i} a_{l}\right) a_{k} a_{i} a_{j}=a_{k} a_{j} a_{i} z
$$

Lemma 3.2. Let $z=a_{1} a_{2} \cdots a_{n} \in M$. Then z^{2} is central in M.
Proof. If $n \geqslant 6$ and n is even then

$$
\begin{aligned}
z^{2} a_{1} & =z a_{1} a_{2} \cdots a_{n} a_{1}=a_{1} a_{2} a_{3} a_{4} z a_{5} \cdots a_{n} a_{1} \quad(\text { by Lemma } 3.1(\mathrm{i})) \\
& =a_{1} a_{2} a_{3} a_{4}\left((1,5)(2,3)(2,3, \ldots, n)^{3}\left(a_{1} a_{2} \cdots a_{n}\right)\right) a_{5} \cdots a_{n} a_{1} \\
& =a_{1} a_{2} a_{3} a_{4}\left(a_{5} a_{1} a_{6} \cdots a_{n} a_{3} a_{2} a_{4}\right) a_{5} \cdots a_{n} a_{1} \\
& =a_{1}\left((1,2,3,4,5)\left(a_{1} a_{2} \cdots a_{n}\right)\right)(2,3)(1,2, \ldots, n)\left(a_{1} a_{2} \ldots a_{n}\right) \\
& =a_{1} z^{2} .
\end{aligned}
$$

If $n=4$ then

$$
\begin{aligned}
a_{1} z^{2} & =a_{1}\left(a_{3} a_{4} a_{1} a_{2}\right) z=a_{1} a_{3} a_{4} z a_{1} a_{2} \quad \text { (by Lemma 3.1) } \\
& =a_{1} a_{3} a_{4}\left(a_{2} a_{3} a_{1} a_{4}\right) a_{1} a_{2}=z a_{3} a_{1} a_{4} a_{1} a_{2} \\
& =a_{3} a_{1} z a_{4} a_{1} a_{2} \quad(\text { by Lemma 3.1) } \\
& =a_{3} a_{1}\left(a_{2} a_{1} a_{4} a_{3}\right) a_{4} a_{1} a_{2}=a_{3} a_{1} a_{2} a_{1} a_{4}\left(a_{3} a_{2} a_{4} a_{1}\right) \\
& =a_{3} a_{1} z a_{2} a_{4} a_{1}=z a_{3} a_{1} a_{2} a_{4} a_{1} \quad(\text { by Lemma 3.1) } \\
& =z^{2} a_{1} .
\end{aligned}
$$

Since Alt_{n} is transitive, we get that z^{2} is central for all even n. Since z is central in M for all odd n, the assertion follows.

Lemma 3.3. For $n=4, a_{1} a_{2} a_{4} a_{3} z=\sigma\left(a_{1} a_{2} a_{4} a_{3}\right) z$, for all $\sigma \in$ Alt $_{4}$, and it is central in M. In particular, $\sigma(z) z=z \sigma(z)=z \gamma(z)=\gamma(z) z$ for any $\sigma, \gamma \in \operatorname{Sym}_{4}$ of the same parity.

Proof. By Lemma 3.1, we have

$$
a_{1} a_{2} a_{4} a_{3} z=a_{1}\left(a_{3} a_{2} a_{4}\right) z=a_{1}\left(a_{4} a_{3} a_{2}\right) z
$$

and also

$$
\begin{aligned}
& a_{1} a_{2} a_{4} a_{3} z=z a_{1} a_{2} a_{4} a_{3}=z\left(a_{2} a_{4} a_{1}\right) a_{3}=a_{2} a_{4} a_{1} a_{3} z, \\
& a_{1} a_{2} a_{4} a_{3} z=z a_{1} a_{2} a_{4} a_{3}=z\left(a_{4} a_{1} a_{2}\right) a_{3}=a_{4} a_{1} a_{2} a_{3} z, \\
& a_{1} a_{2} a_{4} a_{3} z=a_{1} a_{3} a_{2} a_{4} z=z a_{1} a_{3} a_{2} a_{4}=z\left(a_{3} a_{2} a_{1}\right) a_{4}=a_{3} a_{2} a_{1} a_{4} z .
\end{aligned}
$$

Thus $a_{1} a_{2} a_{4} a_{3} z=\sigma\left(a_{1} a_{2} a_{4} a_{3}\right) z$ for all $\sigma \in$ Alt $_{4}$. In particular, $\sigma(z) z=\gamma(z) z$ for odd permutations σ, γ. Of course such an equality also holds if γ, σ are even. Note that, because of Lemma 3.1, $z \sigma(z)=$ $\sigma(z) z$ for any permutation σ.

In order to prove that $a_{1} a_{2} a_{4} a_{3} z$ is central we only need to show that $a_{1} a_{2} a_{4} a_{3} z a_{1}=a_{1} a_{1} a_{2} a_{4} a_{3} z$. By Lemma 3.1, we have

$$
\begin{aligned}
a_{1} a_{2} a_{4} a_{3} z a_{1} & =a_{1} a_{2} z a_{4} a_{3} a_{1}=a_{1} a_{2} z\left(a_{1} a_{4} a_{3}\right) \\
& =a_{1} a_{2} a_{1} a_{4} z a_{3}=a_{1}\left(a_{1} a_{4} a_{2}\right) z a_{3} \\
& =a_{1} a_{1} z a_{4} a_{2} a_{3}=a_{1} a_{1}\left(a_{2} a_{4} a_{3} a_{1}\right) a_{4} a_{2} a_{3} \\
& =a_{1} a_{1} a_{2} a_{4} a_{3} z
\end{aligned}
$$

Lemma 3.4. Let $z=a_{1} a_{2} \cdots a_{n} \in M$.
(i) If $n \geqslant 6$ is even then $a_{i}^{2} a_{j}\left(a_{k} a_{l} a_{r} z\right)=a_{j} a_{i}^{2}\left(a_{k} a_{l} a_{r} z\right)$ and $a_{i} a_{j} a_{i} a_{j}\left(a_{k} a_{l} a_{r} z\right)=a_{j} a_{i} a_{j} a_{i}\left(a_{k} a_{l} a_{r} z\right)$, for all $1 \leqslant i, j \leqslant n$ and for any three different integers $1 \leqslant k, l, r \leqslant n$.
(ii) If $n \geqslant 4$, then $a_{i}^{2} a_{j} z^{2}=a_{j} a_{i}^{2} z^{2}$ and $a_{i} a_{j} a_{i} a_{j} z^{2}=a_{j} a_{i} a_{j} a_{i} z^{2}$, for all $1 \leqslant i, j \leqslant n$.

Proof. (i) Suppose that $n \geqslant 6$ is even. Applying Lemma 3.1 several times, we get

$$
\begin{aligned}
a_{1} a_{1} a_{2} a_{1} a_{2} a_{3} z & =a_{1} a_{1} a_{2}\left(a_{3} a_{1} a_{2} z\right)=a_{1} a_{1} a_{2}\left(z a_{3} a_{2} a_{1}\right) \\
& =a_{1}\left(z a_{1} a_{2}\right) a_{3} a_{2} a_{1}=a_{1}\left(z a_{2} a_{3} a_{1}\right) a_{2} a_{1} \\
& =a_{1}\left(a_{2} a_{3} z\right) a_{1} a_{2} a_{1}=\left(z a_{2} a_{1} a_{3}\right) a_{1} a_{2} a_{1} \\
& =\left(a_{2} a_{1} z\right) a_{3} a_{1} a_{2} a_{1}=a_{2} a_{1}\left(z a_{1} a_{2} a_{3}\right) a_{1} \\
& =a_{2} a_{1}\left(a_{1} a_{2} a_{3} a_{1} z\right)=a_{2} a_{1} a_{1}\left(a_{1} a_{2} a_{3} z\right), \\
a_{1} a_{2} a_{1} a_{2} a_{1} a_{2} a_{3} z & =a_{1} a_{2} a_{1} a_{2}\left(z a_{3} a_{2} a_{1}\right)=a_{1} a_{2}\left(z a_{1} a_{2}\right) a_{3} a_{2} a_{1} \\
& =a_{1} a_{2}\left(a_{3} a_{2} a_{1} z\right) a_{2} a_{1}=a_{1} a_{2} a_{3}\left(z a_{2} a_{1}\right) a_{2} a_{1} \\
& =\left(z a_{2} a_{1} a_{3}\right) a_{2} a_{1} a_{2} a_{1}=\left(a_{2} a_{1} z\right) a_{3} a_{2} a_{1} a_{2} a_{1} \\
& =a_{2} a_{1}\left(z a_{2} a_{1} a_{3}\right) a_{2} a_{1}=a_{2} a_{1}\left(a_{2} a_{1} z\right) a_{3} a_{2} a_{1} \\
& =a_{2} a_{1} a_{2} a_{1}\left(a_{1} a_{2} a_{3} z\right)
\end{aligned}
$$

and, for every $i \in\{1,2, \ldots, n\} \backslash\{3,4\}$,

$$
\begin{aligned}
a_{1} a_{1} a_{2} a_{i} a_{3} a_{4} z & =a_{1} a_{1} a_{2}\left(a_{3} a_{4} a_{i} z\right)=a_{1} a_{1} a_{2} a_{3}\left(z a_{4} a_{i}\right) \\
& =a_{1}\left(z a_{2} a_{1} a_{3}\right) a_{4} a_{i}=a_{1}\left(z a_{3} a_{2} a_{1}\right) a_{4} a_{i} \\
& =a_{1}\left(a_{3} a_{2} z\right) a_{1} a_{4} a_{i}=\left(a_{2} a_{1} a_{3} z\right) a_{1} a_{4} a_{i} \\
& =a_{2} a_{1} a_{3}\left(a_{1} a_{4} z\right) a_{i}=a_{2} a_{1}\left(a_{1} a_{4} a_{3} z\right) a_{i} \\
& =a_{2} a_{1} a_{1}\left(z a_{4} a_{3}\right) a_{i}=a_{2} a_{1} a_{1}\left(a_{i} a_{3} a_{4} z\right), \\
a_{1} a_{2} a_{1} a_{2} a_{i} a_{3} a_{4} z & =a_{1} a_{2} a_{1} a_{2}\left(z a_{4} a_{3} a_{i}\right)=a_{1} a_{2}\left(z a_{1} a_{2}\right) a_{4} a_{3} a_{i} \\
& =a_{1} a_{2}\left(a_{4} a_{2} a_{1} z\right) a_{3} a_{i}=a_{1} a_{2} a_{4}\left(z a_{2} a_{1}\right) a_{3} a_{i} \\
& =\left(z a_{2} a_{1} a_{4}\right) a_{2} a_{1} a_{3} a_{i}=\left(a_{2} a_{1} z\right) a_{4} a_{2} a_{1} a_{3} a_{i} \\
& =a_{2} a_{1}\left(z a_{2} a_{1} a_{4}\right) a_{3} a_{i}=a_{2} a_{1}\left(a_{2} a_{1} z\right) a_{4} a_{3} a_{i} \\
& =a_{2} a_{1} a_{2} a_{1}\left(a_{i} a_{3} a_{4} z\right)
\end{aligned}
$$

Hence, in each case applying an appropriate $\sigma \in \operatorname{Alt}_{n}$ and using Lemma 3.1, we obtain $a_{i}^{2} a_{j}\left(a_{k} a_{l} a_{r} z\right)=$ $a_{j} a_{i}^{2}\left(a_{k} a_{l} a_{r} z\right)$ and $a_{i} a_{j} a_{i} a_{j}\left(a_{k} a_{l} a_{r} z\right)=a_{j} a_{i} a_{j} a_{i}\left(a_{k} a_{l} a_{r} z\right)$, for all $1 \leqslant i, j \leqslant n$ and for any three different integers $1 \leqslant k, l, r \leqslant n$.
(ii) Suppose that n is odd. Let $z^{\prime}=a_{6} a_{7} \cdots a_{n}$ (so z^{\prime} is the identity element if $n=5$). Since z is central in M, by Lemma 3.1, we have

$$
\begin{aligned}
a_{1} a_{1} a_{2} z^{2} & =a_{1} a_{1} a_{2}\left(a_{3} a_{4} a_{5} a_{1} a_{2}\right) z^{\prime} z=a_{1}\left(a_{2} a_{3} a_{1}\right) a_{4} a_{5} a_{1} a_{2} z^{\prime} z \\
& =\left(a_{2} a_{3} a_{1}\right)\left(a_{4} a_{5} a_{1}\right) a_{1} a_{2} z^{\prime} z=a_{2}\left(a_{1} a_{4} a_{3}\right) a_{5} a_{1} a_{1} a_{2} z^{\prime} z \\
& =a_{2} a_{1} a_{4}\left(a_{1} a_{3} a_{5}\right) a_{1} a_{2} z^{\prime} z=a_{2} a_{1}\left(a_{1} a_{3} a_{4}\right) a_{5} a_{1} a_{2} z^{\prime} z \\
& =a_{2} a_{1} a_{1} z^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
a_{1} a_{2} a_{1} a_{2} z^{2} & =a_{1} a_{2} a_{1} a_{2}\left(a_{3} a_{5} a_{4} a_{2} a_{1}\right) z^{\prime} z=a_{1} a_{2}\left(a_{3} a_{1} a_{2}\right) a_{5} a_{4} a_{2} a_{1} z^{\prime} z \\
& =a_{1} a_{2} a_{3}\left(a_{5} a_{1} a_{2}\right) a_{4} a_{2} a_{1} z^{\prime} z=a_{1}\left(a_{5} a_{2} a_{3}\right)\left(a_{2} a_{4} a_{1}\right) a_{2} a_{1} z^{\prime} z \\
& =\left(a_{2} a_{1} a_{5}\right) a_{3} a_{2} a_{4} a_{1} a_{2} a_{1} z^{\prime} z=a_{2} a_{1}\left(a_{2} a_{5} a_{3}\right)\left(a_{1} a_{2} a_{4}\right) a_{1} z^{\prime} z \\
& =a_{2} a_{1} a_{2}\left(a_{1} a_{5} a_{3}\right) a_{2} a_{4} a_{1} z^{\prime} z=a_{2} a_{1} a_{2} a_{1} z^{2}
\end{aligned}
$$

For $n=4$, we have

$$
\begin{aligned}
a_{1} a_{1} a_{2} z^{2} & =a_{1} z^{2} a_{1} a_{2}=a_{1}\left(a_{2} a_{3} a_{1} a_{4}\right)\left(a_{2} a_{3} a_{1} a_{4}\right) a_{1} a_{2} \\
& =a_{1} a_{2} a_{3}\left(a_{4} a_{2} a_{1} a_{3}\right) a_{1} a_{4} a_{1} a_{2}=\left(a_{2} a_{1} a_{4} a_{3}\right) a_{2} a_{1} a_{3} a_{1} a_{4} a_{1} a_{2} \\
& =a_{2} a_{1}\left(a_{1} a_{3} a_{4} a_{2}\right) a_{3} a_{1} a_{4} a_{1} a_{2}=a_{2} a_{1} a_{1} a_{3} a_{4}\left(a_{1} a_{2} a_{3} a_{4}\right) a_{1} a_{2} \\
& =a_{2} a_{1} a_{1} z^{2}
\end{aligned}
$$

and, by Lemmas 3.1 and 3.3,

$$
\begin{aligned}
a_{1} a_{2} a_{1} a_{2} z^{2} & =z a_{1} a_{2} z a_{1} a_{2}=a_{2} a_{1}\left(a_{4} a_{3} a_{1} a_{2} z\right) a_{1} a_{2} \\
& =a_{2} a_{1}\left(a_{2} a_{1} a_{3} a_{4} z\right) a_{1} a_{2}=a_{2} a_{1} a_{2} a_{1} a_{3} a_{4} a_{1} a_{2} z \\
& =a_{2} a_{1} a_{2} a_{1} z^{2}
\end{aligned}
$$

Hence, if n is odd or $n=4$ and for $\sigma \in \operatorname{Alt}_{n}$ we have that

$$
a_{\sigma(1)} a_{\sigma(1)} a_{\sigma(2)} z^{2}=a_{\sigma(2)} a_{\sigma(1)} a_{\sigma(1)} z^{2}
$$

and

$$
a_{\sigma(1)} a_{\sigma(2)} a_{\sigma(1)} a_{\sigma(2)} z^{2}=a_{\sigma(2)} a_{\sigma(1)} a_{\sigma(2)} a_{\sigma(1)} z^{2}
$$

So

$$
a_{i}^{2} a_{j} z^{2}=a_{j} a_{i}^{2} z^{2} \quad \text { and } \quad a_{i} a_{j} a_{i} a_{j} z^{2}=a_{j} a_{i} a_{j} a_{i} z^{2}
$$

for all $1 \leqslant i, j \leqslant n$, and (ii) follows.
Suppose that $n \geqslant 6$ is even. By Lemma $3.1, z^{2}=a_{2} a_{1} a_{3} z a_{4} a_{5} \cdots a_{n}$. Consequently, by (i), we get that

$$
a_{i}^{2} a_{j} z^{2}=a_{j} a_{i}^{2} z^{2} \quad \text { and } \quad a_{i} a_{j} a_{i} a_{j} z^{2}=a_{j} a_{i} a_{j} a_{i} z^{2}
$$

for all $1 \leqslant i, j \leqslant n$, as desired.
We define the map $f: \mathrm{FM}_{n} \rightarrow\{-1,1\}$ by

$$
\begin{equation*}
f\left(a_{i_{1}} \cdots a_{i_{m}}\right)=\prod_{\substack{1 \leqslant j<k \leqslant m \\ i_{j} \neq i_{k}}} \frac{i_{k}-i_{j}}{\left|i_{k}-i_{j}\right|} \tag{2}
\end{equation*}
$$

Note that if two words $w, w^{\prime} \in \mathrm{FM}_{n}$ represent the same element in M then $f(w)=f\left(w^{\prime}\right)$.

Lemma 3.5. Let $z=a_{1} a_{2} \cdots a_{n} \in M$. Let t be a positive integer. For $1 \leqslant i<j \leqslant n$, let $F_{i j}=\left\langle a_{i}, a_{j}\right\rangle$. Then
(i) The elements in $z^{2 t} F_{i j}$ are of the form

$$
\begin{equation*}
z^{2 t} a_{i}^{2 n_{1}} a_{j}^{2 n_{2}} w \tag{3}
\end{equation*}
$$

where $w \in\left\{1, a_{i}, a_{j}, a_{i} a_{j}, a_{j} a_{i}, a_{i} a_{j} a_{i}, a_{j} a_{i} a_{j}, a_{i} a_{j} a_{i} a_{j}\right\}$ and n_{1}, n_{2} are nonnegative integers.
(ii) The elements in $z^{2 t}\left(M \backslash \bigcup_{1 \leqslant i<j \leqslant n} F_{i j}\right)$ are of the form

$$
\begin{equation*}
z^{2 t} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w a_{i_{2}+1}^{m_{1}} a_{i_{2}+2}^{m_{2}} \cdots a_{n}^{m_{n-i_{2}}} \tag{4}
\end{equation*}
$$

where $i_{1}<i_{2}<n, a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w \in F_{i_{1} i_{2}} \backslash\left(\left\langle a_{i_{1}}\right\rangle \cup\left\langle a_{i_{2}}\right\rangle\right), w \in\left\{1, a_{i_{1}}, a_{i_{2}}, a_{i_{1}} a_{i_{2}}, a_{i_{2}} a_{i_{1}}, a_{i_{1}} a_{i_{2}} a_{i_{1}}, a_{i_{2}} a_{i_{1}} a_{i_{2}}\right.$, $\left.a_{i_{1}} a_{i_{2}} a_{i_{1}} a_{i_{2}}\right\}, n_{1}, n_{2}, m_{1}, m_{2}, \ldots, m_{n-i_{2}}$ are nonnegative integers, and $\sum_{j=1}^{n-i_{2}} m_{j}>0$.

Furthermore, every element $s \in z^{2 t} M$ has a unique representation as a product of the form (3) or (4).

Proof. (i) We may assume that $t=1$. By Lemma $3.2, z^{2}$ is central in M. Now, by Lemma 3.4(ii), we have

$$
\begin{aligned}
a_{i} a_{j} a_{i} a_{j} a_{i} z^{2} & =\left(a_{j} a_{i} a_{j} a_{i}\right) a_{i} z^{2}, \\
a_{i} a_{j} a_{i} a_{j} a_{i} a_{j} z^{2} & =\left(a_{j} a_{i} a_{j} a_{i}\right) a_{i} a_{j} z^{2}=a_{j} a_{i} a_{j} a_{j} a_{i}^{2} z^{2}, \\
a_{i} a_{j} a_{i} a_{j} a_{i} a_{j} a_{i} z^{2} & =\left(a_{j} a_{i} a_{j} a_{i}\right) a_{i} a_{j} a_{i} z^{2}=a_{j} a_{i}^{4} a_{j}^{2} z^{2}, \\
\left(a_{i} a_{j}\right)^{4} z^{2} & =\left(a_{j} a_{i}\right)^{2}\left(a_{i} a_{j}\right)^{2} z^{2}=a_{i}^{4} a_{j}^{4} z^{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left(a_{i} a_{j}\right)^{2} a_{i} z^{2} & =a_{j} a_{i} a_{j} a_{i}^{2} z^{2}, \\
\left(a_{i} a_{j}\right)^{3} z^{2} & =a_{j} a_{i} a_{j}^{2} a_{i}^{2} z^{2}=a_{j} a_{i} a_{i}^{2} a_{j}^{2} z^{2}, \\
\left(a_{i} a_{j}\right)^{3} a_{i} z^{2} & =a_{j} a_{i}^{4} a_{j}^{2} z^{2}=a_{j} a_{j}^{2} a_{i}^{4} z^{2}, \\
\left(a_{i} a_{j}\right)^{4} z^{2} & =a_{i}^{4} a_{j}^{4} z^{2}=a_{j}^{4} a_{i}^{4} z^{2},
\end{aligned}
$$

for all $1 \leqslant i, j \leqslant n$. The above easily implies that the elements in $z^{2} F_{i j}$ are of the form

$$
z^{2} a_{i}^{2 n_{1}} a_{j}^{2 n_{2}} w
$$

where $w \in\left\{1, a_{i}, a_{j}, a_{i} a_{j}, a_{j} a_{i}, a_{i} a_{j} a_{i}, a_{j} a_{i} a_{j}, a_{i} a_{j} a_{i} a_{j}\right\}$ and n_{1}, n_{2} are nonnegative integers. Hence (i) follows.
(ii) We may assume that $t=1$. Let $1 \leqslant i<j \leqslant n$ and $m \in\{1, \ldots, n\} \backslash\{i, j\}$. Then, by (3) and Lemmas 3.1, 3.2 and $3.4(\mathrm{ii})$, it is easy to see that

$$
\begin{equation*}
a_{m} z^{2}\left(F_{i j} \backslash\left(\left\langle a_{i}\right\rangle \cup\left\langle a_{j}\right\rangle\right)\right)=z^{2}\left(F_{i j} \backslash\left(\left\langle a_{i}\right\rangle \cup\left\langle a_{j}\right\rangle\right)\right) a_{m}, \tag{5}
\end{equation*}
$$

for all $n \geqslant 4$.
Let $s \in M \backslash \bigcup_{1 \leqslant i<j \leqslant n} F_{i j}$. Then $s=a_{j_{1}} a_{j_{2}} \cdots a_{j_{k}}$, where $\left\{j_{1}, \ldots, j_{k}\right\}$ is a subset of $\{1, \ldots, n\}$ of cardinality $\geqslant 3$. We shall prove that $z^{2} s$ is of the form (4) by induction on the total degree $k \geqslant 3$ of s. For $k=3$, we have that j_{1}, j_{2}, j_{3} are three different elements and, by Lemmas 3.1 and 3.2,

$$
z^{2} a_{j_{1}} a_{j_{2}} a_{j_{3}}=z^{2} a_{j_{2}} a_{j_{3}} a_{j_{1}}=z^{2} a_{j_{3}} a_{j_{1}} a_{j_{2}},
$$

thus the result follows in this case.
Suppose that $k>3$ and that the result is true for all elements in $M \backslash \bigcup_{1 \leqslant i<j \leqslant n} F_{i j}$ of total degree less than k. Then either $a_{j_{2}} \cdots a_{j_{k}} \in F_{i_{1} i_{2}} \backslash\left(\left\langle a_{i_{1}}\right\rangle \cup\left\langle a_{i_{2}}\right\rangle\right)$, for some $i_{1}<i_{2}$, or $a_{j_{2}} \cdots a_{j_{k}} \in$ $M \backslash \bigcup_{1 \leqslant i<j \leqslant n} F_{i j}$. Thus, by (i) and by the induction hypothesis

$$
z^{2} a_{j_{2}} \cdots a_{j_{k}}=z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w a_{i_{2}+1}^{m_{1}} a_{i_{2}+2}^{m_{2}} \cdots a_{n}^{m_{n-i_{2}}}
$$

where $i_{1}<i_{2} \leqslant n, a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w \in F_{i_{1} i_{2}} \backslash\left(\left\langle a_{i_{1}}\right\rangle \cup\left\langle a_{i_{2}}\right\rangle\right), w \in\left\{1, a_{i_{1}}, a_{i_{2}}, a_{i_{1}} a_{i_{2}}, a_{i_{2}} a_{i_{1}}, a_{i_{1}} a_{i_{2}} a_{i_{1}}, a_{i_{2}} a_{i_{1}} a_{i_{2}}\right.$, $\left.a_{i_{1}} a_{i_{2}} a_{i_{1}} a_{i_{2}}\right\}$ and $n_{1}, n_{2}, m_{1}, \ldots, m_{n-i_{2}} \geqslant 0$. By (i) and Lemma 3.2, we may assume that $j_{1} \notin\left\{i_{1}, i_{2}\right\}$ and, by (5), we also may assume that

$$
z^{2} s=z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w a_{j_{1}} a_{i_{2}+1}^{m_{1}} a_{i_{2}+2}^{m_{2}} \cdots a_{n}^{m_{n-i_{2}}}
$$

Suppose that $j_{1}<i_{2}$. Note that in this case, by Lemmas 3.1, 3.2 and 3.4(ii), we get

$$
\begin{aligned}
z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} a_{j_{1}} & =z^{2} a_{i_{1}}^{2 n_{1}} a_{j_{1}} a_{i_{2}}^{2 n_{2}}, \\
z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} a_{i_{1}} a_{j_{1}} & =z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{1}} a_{j_{1}} a_{i_{2}}^{2 n_{2}}, \\
z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} a_{i_{2}} a_{j_{1}} & =z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}} a_{j_{1}} a_{i_{2}}^{2 n_{2}}=z^{2} a_{i_{1}}^{2\left(n_{1}-1\right)} a_{j_{1}} a_{i_{1}} a_{i_{2}}^{2 n_{2}+1}, \\
z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} a_{i_{1}} a_{i_{2}} a_{j_{1}} & =z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{1}} a_{i_{2}} a_{j_{1}} a_{i_{2}}^{2 n_{2}}=z^{2} a_{i_{1}}^{2 n_{1}} a_{j_{1}} a_{i_{1}} a_{i_{2}}^{2 n_{2}+1}, \\
z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} a_{i_{2}} a_{i_{1}} a_{j_{1}} & =z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}} a_{i_{1}} a_{j_{1}} a_{i_{2}}^{2 n_{2}}=z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{1}} a_{j_{1}} a_{i_{2}}^{2 n_{2}+1}, \\
z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} a_{i_{1}} a_{i_{2}} a_{i_{1}} a_{j_{1}} & =z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{1}} a_{i_{2}} a_{i_{1}} a_{j_{1}} a_{i_{2}}^{2 n_{2}}=z^{2} a_{i_{1}}^{2\left(n_{1}+1\right)} a_{j_{1}} a_{i_{2}}^{2 n_{2}+1}, \\
z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} a_{i_{2}} a_{i_{1}} a_{i_{2}} a_{j_{1}} & =z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}} a_{i_{1}} a_{i_{2}} a_{j_{1}}{a i_{2}}_{2}^{2}=z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}} a_{j_{1}} a_{i_{1}}^{2 n_{2}+1} \\
& =z^{2} a_{i_{1}}^{2 n_{1}} a_{j_{1}} a_{i_{1}}^{22 a_{2}} 2, \\
z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}}\left(a_{i_{1}} a_{i_{2}}\right)^{2} a_{j_{1}} & =z^{2} a_{i_{1}}^{2 n_{1}}\left(a_{i_{1}} a_{i_{2}}\right)^{2} a_{j_{1}} a_{i_{2}}^{2 n_{2}} \\
& =z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{1}} a_{i_{2}} a_{j_{1}} a_{i_{1}} a_{i_{2}}^{2 n_{2}+1}=z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{1}} a_{j_{1}} a_{i_{1}} a_{i_{2}}^{2 n_{2}+2} .
\end{aligned}
$$

Hence

$$
z^{2} s=z^{2} a_{i_{1}}^{2 n_{1}^{\prime}} w^{\prime} a_{i_{2}}^{m_{0}} a_{i_{2}+1}^{m_{1}} a_{i_{2}+2}^{m_{2}} \cdots a_{n}^{m_{n-i_{2}}}
$$

for some $w^{\prime} \in\left\{a_{j_{1}}, a_{i_{1}} a_{j_{1}}, a_{j_{1}} a_{i_{1}}, a_{i_{1}} a_{j_{1}} a_{i_{1}}\right\}$ and some nonnegative integers n_{1}^{\prime} and m_{0}, and therefore $z^{2} s$ is of the form (4) (if $i_{1}<j_{1}<i_{2}$ then we take the pair (i_{1}, j_{1}) in place of the pair (i_{1}, i_{2}) in formula (4), and if $j_{1}<i_{1}<i_{2}$, then the degree of s with respect to $a_{j_{1}}$ is equal to 1 , so by taking the pair (j_{1}, i_{1}) in place of the pair (i_{1}, i_{2}) in formula (4) we also get that $z^{2} s$ is of the form (4) because we can then write $\left.z^{2} s=z^{2} a_{j_{1}}^{2 \cdot 0} a_{i_{1}}^{2 n_{1}^{\prime}} w^{\prime} a_{i_{1}+1}^{0} \cdots a_{i_{2}-1}^{0} a_{i_{2}}^{m_{0}} a_{i_{2}+1}^{m_{1}} a_{i_{2}+2}^{m_{2}} \cdots a_{n}^{m_{n-i_{2}}}\right)$.

Suppose that $j_{1}>i_{2}$. By Lemma 3.4(ii), $z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w \in\left(z^{2} F_{i_{1} i_{2}} a_{i_{1}} a_{i_{2}}\right) \cup\left(z^{2} F_{i_{1} i_{2}} a_{i_{2}} a_{i_{1}}\right)$. Note that if $i_{2}<l<j_{1}$, then, by Lemmas 3.1 and 3.2,

$$
z^{2} a_{i_{1}} a_{i_{2}} a_{j_{1}} a_{l}=z^{2} a_{i_{1}} a_{l} a_{i_{2}} a_{j_{1}}=z^{2} a_{l} a_{i_{2}} a_{i_{1}} a_{j_{1}}=a_{l} z^{2} a_{i_{2}} a_{i_{1}} a_{j_{1}}
$$

and

$$
z^{2} a_{i_{2}} a_{i_{1}} a_{j_{1}} a_{l}=z^{2} a_{i_{2}} a_{l} a_{i_{1}} a_{j_{1}}=z^{2} a_{l} a_{i_{1}} a_{i_{2}} a_{j_{1}}=a_{l} z^{2} a_{i_{1}} a_{i_{2}} a_{j_{1}} .
$$

Therefore, by using (5) and Lemmas 3.4(ii), 3.2 and 3.1, we can move the $a_{j_{1}}$ of

$$
z^{2} s=z^{2} a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w a_{j_{1}} a_{i_{2}+1}^{m_{1}} a_{i_{2}+2}^{m_{2}} \cdots a_{n}^{m_{n-i_{2}}}
$$

to the right. Hence, if $j_{1}=i_{2}+p$, then

$$
z^{2} s=z^{2} a_{i_{1}}^{2 n_{1}^{\prime}} a_{i_{2}}^{2 n_{2}^{\prime}} w^{\prime} a_{i_{2}+1}^{m_{1}} \cdots a_{i_{2}+p}^{m_{p}+1} \cdots a_{n}^{m_{n-i_{2}}},
$$

where $a_{i_{1}}^{2 n_{1}^{\prime}} a_{i_{2}}^{2 n_{2}^{\prime}} w^{\prime} \in F_{i_{1} i_{2}} \backslash\left(\left\langle a_{i_{1}}\right\rangle \cup\left\langle a_{i_{2}}\right\rangle\right)$, $w^{\prime} \in\left\{1, a_{i_{1}}, a_{i_{2}}, a_{i_{1}} a_{i_{2}}, a_{i_{2}} a_{i_{1}}, a_{i_{1}} a_{i_{2}} a_{i_{1}}, a_{i_{2}} a_{i_{1}} a_{i_{2}}, a_{i_{1}} a_{i_{2}} a_{i_{1}} a_{i_{2}}\right\}$ and $n_{1}^{\prime}, n_{2}^{\prime}$ are nonnegative integers. Thus (ii) follows by induction.

Let

$$
w_{1}=a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w a_{i_{2}+1}^{m_{1}} a_{i_{2}+2}^{m_{2}} \cdots a_{n}^{m_{n-i_{2}}}
$$

and

$$
w_{2}=a_{i_{1}^{\prime}}^{2 n_{1}^{\prime}} a_{i_{2}^{\prime}}^{2 n_{2}^{\prime}} w^{\prime} a_{i_{2}^{\prime}+1}^{m_{1}^{\prime}} a_{i_{2}^{\prime}+2}^{m_{2}^{\prime}} \cdots a_{n}^{m_{n-i_{2}^{\prime}}^{\prime}}
$$

be two words in FM_{n} such that $i_{1}<i_{2} \leqslant n, i_{1}^{\prime}<i_{2}^{\prime} \leqslant n$,

$$
w \in\left\{1, a_{i_{1}}, a_{i_{2}}, a_{i_{1}} a_{i_{2}}, a_{i_{2}} a_{i_{1}}, a_{i_{1}} a_{i_{2}} a_{i_{1}}, a_{i_{2}} a_{i_{1}} a_{i_{2}}, a_{i_{1}} a_{i_{2}} a_{i_{1}} a_{i_{2}}\right\}
$$

and

$$
w^{\prime} \in\left\{1, a_{i_{1}^{\prime}}, a_{i_{2}^{\prime}}, a_{i_{1}^{\prime}} a_{i_{2}^{\prime}}, a_{i_{2}^{\prime}} a_{i_{1}^{\prime}}, a_{i_{1}^{\prime}} a_{i_{2}^{\prime}} a_{i_{1}^{\prime}}^{\prime}, a_{i_{2}^{\prime}} a_{i_{1}^{\prime}} a_{i_{2}^{\prime}}, a_{i_{1}^{\prime}} a_{i_{2}^{\prime}} a_{i_{1}^{\prime}} a_{i_{2}^{\prime}}\right\} .
$$

Suppose that if $\sum_{j=1}^{n-i_{2}} m_{j}>0$, then $a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w \in\left\langle a_{i_{1}}, a_{i_{2}}\right\rangle \backslash\left(\left\langle a_{i_{1}}\right\rangle \cup\left\langle a_{i_{2}}\right\rangle\right)$, and if $\sum_{j=1}^{n-i_{2}^{\prime}} m_{j}^{\prime}>0$, then $a_{i_{1}^{\prime}}^{2 n_{1}^{\prime \prime}} a_{i_{2}^{\prime}}^{2 n_{2}^{\prime}} w^{\prime} \in\left\langle a_{i_{1}^{\prime}}, a_{i_{2}^{\prime}}\right\rangle \backslash\left(\left\langle a_{i_{1}^{\prime}}\right\rangle \cup\left\langle a_{i_{2}^{\prime}}\right\rangle\right\rangle$. Suppose that $\left(a_{1} a_{2} \cdots a_{n}\right)^{2 t} w_{1}$ and $\left(a_{1} a_{2} \cdots a_{n}\right)^{2 t} w_{2}$ represent the same element in M.

In order to prove the last part of the lemma it is sufficient to prove that $w_{1}=w_{2}$. Note that the degree of w_{1} in a_{i} is equal to the degree of w_{2} in a_{i}, for all $i=1, \ldots n$. Let f be the map defined by (2). By the definition of f, we have that $f\left(w_{1}\right)=f\left(w_{2}\right)$.

Note that if $\sum_{j=1}^{n-i_{2}} m_{j}>0$, then $\sum_{j=1}^{n-i_{2}^{\prime}} m_{j}^{\prime}>0, i_{1}=i_{1}^{\prime}, i_{2}=i_{2}^{\prime}$ and $m_{j}=m_{j}^{\prime}$, for all $1 \leqslant j \leqslant n-i_{2}$. Furthermore, since $f\left(w_{1}\right)=f\left(w_{2}\right)$, by the definition of f, we have that $f\left(a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w\right)=f\left(a_{i_{1}^{\prime}}^{2 n_{1}^{\prime}} a_{i_{2}^{\prime}}^{2 n^{\prime}} w^{\prime}\right)$ in this case. Thus we may assume that

$$
w_{1}=a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w \quad \text { and } \quad w_{2}=a_{i_{1}^{\prime}}^{2 n_{1}^{\prime}} a_{i_{2}^{\prime}}^{2 n_{2}^{\prime}} w^{\prime}
$$

Then the definition of f implies that $f\left(w_{1}\right)=f(w)$ and $f\left(w_{2}\right)=f\left(w^{\prime}\right)$. Hence $f(w)=f\left(w^{\prime}\right)$.
Suppose that $1=f(w)=f\left(w^{\prime}\right)$. In this case, $w \in\left\{1, a_{i_{1}}, a_{i_{2}}, a_{i_{1}} a_{i_{2}}\right\}$ and $w^{\prime} \in\left\{1, a_{i_{1}^{\prime}}, a_{i_{2}^{\prime}}, a_{i_{1}^{\prime}} a_{i_{2}^{\prime}}\right\}$. If $w=1$, then the degree of w_{1} in each generator is even. Since w_{1}, w_{2} have the same degree in each generator, we have $w^{\prime}=1$ and $w_{1}=w_{2}$ in this case.

If $w=a_{i_{1}} a_{i_{2}}$, then the degree of w_{1} in $a_{i_{1}}$ is odd and the degree of w_{1} in $a_{i_{2}}$ is odd. Since $i_{1}<i_{2}$ and $i_{1}^{\prime}<i_{2}^{\prime}$ and w_{1}, w_{2} have the same degree in each generator, we have that $i_{1}=i_{1}^{\prime}, i_{2}=i_{2}^{\prime}$, $w^{\prime}=a_{i_{1}} a_{i_{2}}$ and $w_{1}=w_{2}$, in this case.

If $w=a_{i_{1}}$ and $n_{i_{2}}=0$, then clearly $w_{1}=w_{2} \in\left\langle a_{i_{1}}\right\rangle$.
If $w=a_{i_{1}}$ and $n_{i_{2}} \neq 0$, then by a degree argument it is easy to see that $i_{1}=i_{1}^{\prime}, i_{2}=i_{2}^{\prime}, w^{\prime}=a_{i_{1}}$ and $w_{1}=w_{2}$, in this case.

Similarly, if $w=a_{i_{2}}$, we can see that $w_{1}=w_{2}$.
Suppose that $-1=f(w)=f\left(w^{\prime}\right)$. In this case,

$$
w \in\left\{a_{i_{2}} a_{i_{1}}, a_{i_{1}} a_{i_{2}} a_{i_{1}}, a_{i_{2}} a_{i_{1}} a_{i_{2}}, a_{i_{1}} a_{i_{2}} a_{i_{1}} a_{i_{2}}\right\}
$$

and

$$
w^{\prime} \in\left\{a_{i_{2}^{\prime}} a_{i_{1}^{\prime}}, a_{i_{1}^{\prime}} a_{i_{2}^{\prime}} a_{i_{1}^{\prime}}^{\prime}, a_{i_{2}^{\prime}} a_{i_{1}^{\prime}} a_{i_{2}^{\prime}}, a_{i_{1}^{\prime}} a_{i_{2}^{\prime}} a_{i_{1}^{\prime}} a_{i_{2}^{\prime}}\right\} .
$$

As above, using f and a degree argument we can also see that $w_{1}=w_{2}$.
Therefore the result follows.
Lemma 3.6. Suppose that $n \geqslant 6$ is even. Let t be a nonnegative integer. Let $z=a_{1} a_{2} \cdots a_{n} \in M$. For $1 \leqslant i<$ $j \leqslant n$, let $F_{i j}=\left\langle a_{i}, a_{j}\right\rangle$. Let k, l, r be three different integers such that $1 \leqslant k, l, r \leqslant n$. Then
(i) $\left(a_{k} a_{l} a_{r} z\right) a_{i}=a_{i}\left(a_{k} a_{l} a_{r} z\right)$, for all $i \in\{1,2, \ldots, n\} \backslash\{k, l, r\}$.
(ii) $\left(a_{k} a_{l} a_{r} z\right) a_{i}=a_{i}\left(a_{l} a_{k} a_{r} z\right)$, for all $i \in\{k, l, r\}$.
(iii) The elements in $z^{2 t} a_{k} a_{l} a_{r} z F_{i j}$ are of the form

$$
\begin{equation*}
z^{2 t} a_{k} a_{l} a_{r} z a_{i}^{2 n_{1}} a_{j}^{2 n_{2}} w \tag{6}
\end{equation*}
$$

where $w \in\left\{1, a_{i}, a_{j}, a_{i} a_{j}, a_{j} a_{i}, a_{i} a_{j} a_{i}, a_{j} a_{i} a_{j}, a_{i} a_{j} a_{i} a_{j}\right\}$ and n_{1}, n_{2} are nonnegative integers.
(iv) The elements in $z^{2 t} a_{k} a_{l} a_{r} z\left(M \backslash \bigcup_{1 \leqslant i<j \leqslant n} F_{i j}\right)$ are of the form

$$
\begin{equation*}
z^{2 t} a_{k} a_{l} a_{r} z a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w a_{i_{2}+1}^{m_{1}} a_{i_{2}+2}^{m_{2}} \cdots a_{n}^{m_{n-i_{2}}} \tag{7}
\end{equation*}
$$

where $i_{1}<i_{2}<n, a_{i_{1}}^{2 n_{1}} a_{i_{2}}^{2 n_{2}} w \in F_{i_{1} i_{2}} \backslash\left(\left\langle a_{i_{1}}\right\rangle \cup\left\langle a_{i_{2}}\right\rangle\right), w \in\left\{1, a_{i_{1}}, a_{i_{2}}, a_{i_{1}} a_{i_{2}}, a_{i_{2}} a_{i_{1}}, a_{i_{1}} a_{i_{2}} a_{i_{1}}, a_{i_{2}} a_{i_{1}} a_{i_{2}}\right.$, $\left.a_{i_{1}} a_{i_{2}} a_{i_{1}} a_{i_{2}}\right\}, n_{1}, n_{2}, m_{1}, m_{2}, \ldots, m_{n-i_{2}}$ are nonnegative integers, and $\sum_{j=1}^{n-i_{2}} m_{j}>0$.

Furthermore every element $s \in z^{2 t} a_{k} a_{l} a_{r} z M$ has a unique representation as a product of the form (6) or (7).
Proof. (i) Let $i \in\{1,2, \ldots, n\} \backslash\{k, l, r\}$. By Lemma 3.1, we have

$$
\begin{aligned}
\left(a_{k} a_{l} a_{r} z\right) a_{i} & =a_{k}\left(z a_{l} a_{r}\right) a_{i}=a_{k} z\left(a_{i} a_{l} a_{r}\right)=a_{k}\left(a_{i} a_{l} z\right) a_{r} \\
& =\left(a_{i} a_{l} a_{k}\right) z a_{r}=a_{i}\left(z a_{l} a_{k}\right) a_{r}=a_{i}\left(a_{k} a_{l} a_{r} z\right)
\end{aligned}
$$

(ii) Let $i \in\{k, l, r\}$. By Lemma 3.1, we may assume that $i=k$, and we have

$$
\left(a_{k} a_{l} a_{r} z\right) a_{k}=a_{k}\left(z a_{l} a_{r}\right) a_{k}=a_{k} z\left(a_{k} a_{l} a_{r}\right)=a_{k}\left(a_{l} a_{k} a_{r} z\right)
$$

To prove (iii) and (iv) we may assume that $t=0$. Then the proof of (iii) and (iv) is similar to the proof of Lemma 3.5. Namely, it is obtained by using (i) and (ii) in place of the fact that z^{2} is central and using Lemma 3.4(i) in place of Lemma 3.4(ii). The proof of the last part of the lemma is similar to the proof of the last part of Lemma 3.5.

Lemma 3.7. Suppose that $n \geqslant 6$ is even. Then

$$
\bigcup_{1 \leqslant r \leqslant n}\left(M z \cap M z a_{r}\right)=\bigcup_{1 \leqslant i<j<k \leqslant n}\left(M a_{i} a_{j} a_{k} z \cup M a_{j} a_{i} a_{k} z\right) .
$$

Proof. By Lemma 3.1, we have that

$$
a_{1} a_{2} a_{3} z=z a_{2} a_{1} a_{3}=a_{2} a_{1} z a_{3} .
$$

Note that if $1 \leqslant i, j, k \leqslant n$ are three different integers then, since $n \geqslant 6$, there exists $\sigma \in \operatorname{Alt}_{n}$ such that $\sigma(1)=i, \sigma(2)=j$ and $\sigma(3)=k$. Therefore

$$
\begin{equation*}
a_{i} a_{j} a_{k} z \in \bigcup_{1 \leqslant r \leqslant n}\left(M z \cap M z a_{r}\right) \tag{8}
\end{equation*}
$$

for all different $1 \leqslant i, j, k \leqslant n$.
Suppose that $\bigcup_{1 \leqslant r \leqslant n}\left(M z \cap M z a_{r}\right) \nsubseteq \bigcup_{1 \leqslant i<j<k \leqslant n}\left(M a_{i} a_{j} a_{k} z \cup M a_{j} a_{i} a_{k} z\right)$. Let $s \in \bigcup_{1 \leqslant r \leqslant n}(M z \cap$ $\left.M z a_{r}\right) \backslash \bigcup_{1 \leqslant i<j<k \leqslant n}\left(M a_{i} a_{j} a_{k} z \cup M a_{j} a_{i} a_{k} z\right)$ be an element of minimal length. There exist $1 \leqslant$ $r \leqslant n, s^{\prime}=a_{j_{1}} \cdots a_{j_{k-1}} \in M$ and $s^{\prime \prime}=a_{i_{1}} a_{i_{2}} \cdots a_{i_{k}}$ such that $s=s^{\prime} z a_{r}=s^{\prime \prime} z$. Thus there exist $w_{1}, w_{2}, \ldots, w_{m}$ in the free monoid FM_{n} on $\left\{a_{1}, \ldots, a_{n}\right\}$, such that $w_{1}=a_{j_{1}} \cdots a_{j_{k-1}} a_{1} a_{2} \cdots a_{n} a_{r}$, $w_{m}=a_{i_{1}} \cdots a_{i_{k}} a_{1} a_{2} \cdots a_{n}$ and $w_{i}=w_{1, i} w_{2, i} w_{3, i}=w_{1, i}^{\prime} w_{2, i}^{\prime} w_{3, i}^{\prime}$, where $w_{2, i}$ and $w_{2, i}^{\prime}$ represent the element z in M for all $i=1, \ldots, m$, and $w_{1, j}=w_{1, j+1}^{\prime}$ and $w_{3, j}=w_{3, j+1}^{\prime}$, for all $j=1, \ldots, m-1$.

Let $g:\{1,2, \ldots, m\} \times\{1,2, \ldots, n+k\} \rightarrow\{1,2, \ldots, n\}$ be such that $w_{i}=a_{g(i, 1)} a_{g(i, 2)} \cdots a_{g(i, n+k)}$ for all $i=1, \ldots, m$. Let t be the least positive integer such that $a_{g(t, k+1)} a_{g(t, k+2)} \cdots a_{g(t, n+k)}$ represents z in M. Since n is even, by Proposition 2.3, $t>1$ and $g(i, n+k)=r$, for all $i=1, \ldots, t$. Hence

$$
a_{g(1,1)} a_{g(1,2)} \cdots a_{g(1, n+k-1)}, \ldots, a_{g(t-1,1)} a_{g(t-1,2)} \cdots a_{g(t-1, n+k-1)}
$$

represent the same element in M. Furthermore, the length of $w_{3, t-1}$ is less than n and greater than 0.

Suppose that $w_{3, t-1}=a_{r}$. In this case, $w_{2, t}^{\prime} a_{r}=a_{g(t, k)} \cdots a_{g(t, n+k)}$ and $w_{2, t-1} a_{r}$ represent the same element in M, but, by Proposition 2.3, in M we have that $z a_{r} \neq a_{g(t, k)} z$, a contradiction. Therefore the length of $w_{3, t-1}$ is greater than 1.

Suppose that $w_{3, t-1}=a_{g(t-1, n+k-1)} a_{r}$. In this case, $w_{2, t-1} a_{g(t-1, n+k-1)} a_{r}$ and $w_{2, t}^{\prime} a_{g(t-1, n+k-1)} a_{r}=$ $a_{g(t, k-1)} a_{g(t, k)} \cdots a_{g(t, n+k)}$ represent the same element in M. Since

$$
a_{g(1,1)} a_{g(1,2)} \cdots a_{g(1, n+k-1)}, \ldots, a_{g(t-1,1)} a_{g(t-1,2)} \cdots a_{g(t-1, n+k-1)}
$$

represent the same element in M, we have in M that

$$
\begin{aligned}
a_{g(1,1)} \cdots a_{g(1, k-1)} z & =a_{g(1,1)} a_{g(1,2)} \cdots a_{g(1, n+k-1)} \\
& =a_{g(t-1,1)} a_{g(t-1,2)} \cdots a_{g(t-1, n+k-1)} \\
& =a_{g(t-1,1)} a_{g(t-1,2)} \cdots a_{g(t-1, k-2)} z a_{g(t-1, n+k-1)}
\end{aligned}
$$

Thus $a_{g(1,1)} \cdots a_{g(1, k-1)} z \in M z \cap M z a_{g(t-1, n+k-1)}$. By the choice of s, we have that

$$
a_{g(1,1)} \cdots a_{g(1, k-1)} z \in \bigcup_{1 \leqslant i<j<k \leqslant n}\left(M a_{i} a_{j} a_{k} z \cup M a_{j} a_{i} a_{k} z\right)
$$

Since $s=a_{g(1,1)} \cdots a_{g(1, k-1)} z a_{r}$, by Lemma 3.6(i) and (ii),

$$
s \in \bigcup_{1 \leqslant i<j<k \leqslant n}\left(M a_{i} a_{j} a_{k} z \cup M a_{j} a_{i} a_{k} z\right),
$$

a contradiction. Therefore the length of $w_{3, t-1}$ is greater than 2 .
Thus $w_{3, t-1}=a_{g(t-1, n+k-l)} \cdots a_{g(t-1, n+k-1)} a_{r}$ for some $1<l<n$. In this case,

$$
w_{2, t}^{\prime} a_{g(t-1, n+k-l)} \cdots a_{g(t-1, n+k-1)} a_{r}=a_{g(t, k-l)} \cdots a_{g(t, k-1)} a_{g(t, k)} \cdots a_{g(t, n+k)}
$$

Hence $s \in M z a_{g(t-1, n+k-l)} \cdots a_{g(t-1, n+k-1)} a_{r}$. Since $a_{g(t, k+1)} \cdots a_{g(t, n+k)}$ represents z in M and $l<n$, we have that $g(t-1, n+k-l), \ldots, g(t-1, n+k-1), r$ are $l+1$ different integers. By Lemma 3.1,

$$
s \in \bigcup_{1 \leqslant i<j<k \leqslant n}\left(M a_{i} a_{j} a_{k} z \cup M a_{j} a_{i} a_{k} z\right),
$$

a contradiction. Therefore

$$
\bigcup_{1 \leqslant r \leqslant n}\left(M z \cap M z a_{r}\right) \subseteq \bigcup_{1 \leqslant i<j<k \leqslant n}\left(M a_{i} a_{j} a_{k} z \cup M a_{j} a_{i} a_{k} z\right)
$$

By (8), the result follows.
Lemma 3.8. Suppose that $n \geqslant 6$ is even. Let $s=a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}} \in M \backslash M z M$ be such that

$$
s z \notin \bigcup_{1 \leqslant i<j<k \leqslant n}\left(M a_{i} a_{j} a_{k} z \cup M a_{j} a_{i} a_{k} z\right) .
$$

Then, for $s_{1}, s_{2} \in M, s z=s_{1} z s_{2}$ implies that $s_{1} s_{2}=s$.
Proof. Let $s_{1}, s_{2} \in M$ be such that $s z=s_{1} z s_{2}$. Then, by an easy degree argument, $s_{1}=a_{i_{1}} \cdots a_{i_{k}}$ and $s_{2}=a_{i_{k+1}} \cdots a_{i_{m}}$ for some k and some $a_{i_{1}}, \ldots, a_{i_{m}}$. Thus there exist $w_{1}, w_{2}, \ldots, w_{t}$ in the free monoid FM_{n} on $\left\{a_{1}, \ldots, a_{n}\right\}$, such that $w_{i}=w_{1, i} w_{2, i} w_{3, i}=w_{1, i}^{\prime} w_{2, i}^{\prime} w_{3, i}^{\prime}$, where $w_{2, i}$ and $w_{2, i}^{\prime}$ represent the element z in M for all $i=1, \ldots, t, w_{1, j}=w_{1, j+1}^{\prime}$ and $w_{3, j}=w_{3, j+1}^{\prime}$, for all $j=1, \ldots, t-1$, and $w_{1,1}^{\prime}=a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}}, w_{3,1}^{\prime}=1, w_{1, t}=a_{i_{1}} \cdots a_{i_{k}}$ and $w_{3, t}=a_{i_{k+1}} \cdots a_{i_{m}}$. Thus, $w_{1}=a_{j_{1}} \cdots a_{j_{m}} w_{2,1}^{\prime}$ and $w_{t}=a_{i_{1}} \cdots a_{i_{k}} w_{2, t} a_{i_{k+1}} \cdots a_{i_{m}}$. It is enough to prove that $w_{1, i} w_{3, i}=a_{j_{1}} \cdots a_{j_{m}}$, for all $i=1, \ldots, t$, by induction on i.

If the two subwords $w_{2,1}$ and $w_{2,1}^{\prime}$ of the word $w_{1}=a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}} w_{2,1}^{\prime}=w_{1,1} w_{2,1} w_{3,1}$ do not overlap, then $w_{2,1}$ is a subword of $a_{j_{1}} \cdots a_{j_{m}}$, which is not possible because the latter represents s in M and $s \notin M z M$. Therefore they overlap and hence the degree of $w_{3,1}$ is less than n and $w_{3,1}$ is a product of distinct letters. Since w_{1} represents $s z$ in M and $s z \notin \bigcup_{1 \leqslant i<j<k \leqslant n}\left(M a_{i} a_{j} a_{k} z \cup M a_{j} a_{i} a_{k} z\right)$, it follows that $w_{3,1}$ cannot have degree 1 by Lemma 3.7 and it cannot have degree greater than 2 by Lemma 3.1. Hence, the degree of $w_{3,1}$ is 0 or 2 . In the former case, clearly $w_{1,1} w_{3,1}=w_{1,1}=$ $w_{1,1}^{\prime}=a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}}$. Suppose that $w_{3,1}$ has degree 2 . From the equality of words $a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}} w_{2,1}^{\prime}=$ $w_{1,1} w_{2,1} w_{3,1}$ it follows that $a_{j_{m-1}} a_{j_{m}} w_{2,1}^{\prime}=w_{2,1} w_{3,1}$. Let $w_{2,1}^{\prime}=a_{j_{m+1}} \cdots a_{j_{m+n}}$. Then there exist $\sigma, \tau \in \mathrm{Alt}_{n}$ such that

$$
\sigma(1)=j_{m-1}, \sigma(2)=j_{m}, \ldots, \sigma(n)=j_{m+n-2}
$$

and

$$
\tau(1)=j_{m+1}, \tau(2)=j_{m+2}, \ldots, \tau(n)=j_{m+n} .
$$

Hence

$$
(1, \ldots, n)^{-2} \sigma^{-1} \tau(1)=1, \ldots,(1, \ldots, n)^{-2} \sigma^{-1} \tau(n-2)=n-2 .
$$

Since n is even and $(1, \ldots, n)^{-2} \sigma^{-1} \tau \in \operatorname{Alt}_{n}$, we have that $(1, \ldots, n)^{-2} \sigma^{-1} \tau=\mathrm{id}$. Therefore $\tau=\sigma$ 。 $(1, \ldots, n)^{2}$ and then

$$
j_{m+n-1}=\tau(n-1)=\sigma(1)=j_{m-1} \quad \text { and } \quad j_{m+n}=\tau(n)=\sigma(2)=j_{m} .
$$

Thus $w_{3,1}=a_{j_{m+n-1}} a_{j_{m+n}}=a_{j_{m-1}} a_{j_{m}}$ and clearly $w_{1,1}=a_{j_{1}} a_{j_{2}} \cdots a_{j_{m-2}}$. Hence, also in this case, $w_{1,1} w_{3,1}=a_{j_{1}} \cdots a_{j_{m}}$.

Suppose that $t \geqslant i>1$ and $w_{1, j} w_{3, j}=a_{j_{1}} \cdots a_{j_{m}}$, for all $j=1, \ldots, i-1$. We have that $w_{1, i}^{\prime}=w_{1, i-1}=a_{j_{1}} \cdots a_{j_{q}}$ and $w_{3, i}^{\prime}=w_{3, i-1}=a_{j_{q+1}} \cdots a_{j_{m}}$, for some $0 \leqslant q \leqslant m$. Hence $w_{i}=$ $a_{j_{1}} \cdots a_{j_{q}} w_{2, i}^{\prime} a_{j_{q+1}} \cdots a_{j_{m}}=w_{1, i} w_{2, i} w_{3, i}$. Since $a_{j_{1}} \cdots a_{j_{m}} \notin M z M$ by the hypothesis, as above we get that the subwords $w_{2, i}$ and $w_{2, i}^{\prime}$ of the word w_{i} have to overlap.

Let r be the absolute value of the difference of the lengths of the words $w_{1, i}$ and $w_{1, i}^{\prime}$. Then $r<n$. The equality of words $w_{1, i}^{\prime} w_{2, i}^{\prime} w_{3, i}^{\prime}=w_{1, i} w_{2, i} w_{3, i}$ implies that either $w_{2, i}^{\prime} u^{\prime}=u w_{2, i}$ or $u^{\prime} w_{2, i}^{\prime}=$ $w_{2, i} u$ for some words u, u^{\prime} of length r. Then all the generators involved in u (and also in u^{\prime}) are different. Since w_{i} represents $s z$ in M and $s z \notin \bigcup_{1 \leqslant i<j<k \leqslant n}\left(M a_{i} a_{j} a_{k} z \cup M a_{j} a_{i} a_{k} z\right)$, by Lemma 3.1 we get that $r \leqslant 2$. If $r=1$ then we get $z a_{p}=a_{p} z$ in M for some p, which is impossible since n is even. Hence, $r=0$ or $r=2$. As above we can see in the both cases that $w_{1, t} w_{3, t}=a_{j_{1}} \cdots a_{j_{m}}$. The result follows.

Let $I=\{s \in M \mid s M \subseteq M z\}$ and $I^{\prime}=\{s \in M \mid M s \subseteq z M\}$. Clearly, I and I^{\prime} are ideals of M. Let $I_{1}=$ $\left\{s \in M z \mid s a_{i} \in M z\right.$, for all $\left.i=1,2, \ldots, n\right\}, I_{1}^{\prime}=\left\{s \in z M \mid a_{i} s \in z M\right.$, for all $\left.i=1,2, \ldots, n\right\}$ and

$$
T=\bigcup_{1 \leqslant i<j<k \leqslant n}\left(M a_{i} a_{j} a_{k} z \cup M a_{j} a_{i} a_{k} z\right)
$$

Lemma 3.9. Suppose that $n \geqslant 6$ is even. Then $I=I^{\prime}=I_{1}=I_{1}^{\prime}=T$.
Proof. From Lemma 3.6(i) and (ii), it follows that T is an ideal of M. Hence $T \subseteq I$. Suppose that these two ideals are different. Let $s \in I \backslash T$. Since $s \in I$, there exists $s^{\prime} \in M$ such that $s=s^{\prime} z$. We consider two cases.

Case 1. $s^{\prime} \in M z M$.
Then let $s^{\prime \prime} \in M$ be an element of minimal degree such that $s^{\prime} \in M z s^{\prime \prime}$. Thus there exists $t \in M$ such that $s^{\prime}=t z s^{\prime \prime}$. Since $s=t z s^{\prime \prime} z \notin T$, we have that $s^{\prime \prime}$ has degree greater than or equal to 2 . Let $s^{\prime \prime}=a_{j_{1}} \cdots a_{j_{m}}$. By the choice of $s^{\prime \prime}$, we know that $s^{\prime \prime} \notin M z M$. Since $s=s^{\prime} z=t z s^{\prime \prime} z \notin T$, clearly $s^{\prime \prime} z \notin T$. Hence, by Lemma 3.8, the words in the free monoid FM_{n} on $\left\{a_{1}, \ldots, a_{n}\right\}$ that represent $s^{\prime \prime} z$ in M are of the form

$$
\begin{equation*}
a_{j_{1}} \cdots a_{j_{q}} w a_{j_{q+1}} \cdots a_{j_{m}} \tag{9}
\end{equation*}
$$

where w represents z in M. Note that $z^{2}, z a_{j_{1}} z \in T$. Therefore, since $s=t z s^{\prime \prime} z \notin T$ and T is an ideal of M, we have that $q \geqslant 2$ in (9). By Lemma 3.1 and the choice of $s^{\prime \prime}, j_{1}=j_{2}$. Note also that by the choice of $s^{\prime \prime}$, the words in FM_{n} that represent $s^{\prime}=t z s^{\prime \prime}$ in M are of the form

$$
\begin{equation*}
w^{\prime} a_{j_{1}} \cdots a_{j_{m}} \tag{10}
\end{equation*}
$$

where w^{\prime} represents $t z$ in M. It follows from the form of the words (9) and (10) that the words in FM_{n} that represent $s=t z s^{\prime \prime} z$ in M are of the form

$$
\begin{equation*}
w^{\prime} a_{j_{1}} \cdots a_{j_{q}} w a_{j_{q+1}} \cdots a_{j_{m}} \tag{11}
\end{equation*}
$$

where w^{\prime} represents $t z$ in M, w represents z in M and $q \geqslant 2$. Since n is even, we know by Proposition 2.3, that $z a_{j_{m}} \notin M z$. Therefore, by the form of the words (11) that represent s in M, the words that represent $s a_{j_{m}}$ in M are of the form

$$
w^{\prime} a_{j_{1}} \cdots a_{j_{q}} w a_{j_{q+1}} \cdots a_{j_{m}} a_{j_{m}}
$$

where w^{\prime} represents $t z$ in M, w represents z in M and $q \geqslant 2$. In particular, it follows that $s a_{j_{m}} \notin M z$, a contradiction since $s \in I$.

Case 2. $s^{\prime} \notin M z M$.

Let $s^{\prime}=a_{j_{1}} \cdots a_{j_{m}}$ for some $m \geqslant 0$. Since $s=s^{\prime} z \notin T$, by Lemma 3.8 we get that the words in FM_{n} that represent s in M are of the form

$$
a_{j_{1}} \cdots a_{j_{q}} w a_{j_{q+1}} \cdots a_{j_{m}},
$$

where w represents z in M. If $m=0$ then $s=z$ and $s a_{1}=z a_{1} \notin M z$, a contradiction, because $s \in I$. Hence $m>0$. Since $z a_{j_{m}} \notin M z$, by the form of the words that represent s, it is easy to see that the words that represent $s a_{j_{m}}$ are of the form

$$
a_{j_{1}} \cdots a_{j_{q}} w a_{j_{q+1}} \cdots a_{j_{m}} a_{j_{m}},
$$

where w represents z in M. Therefore $s a_{j_{m}} \notin M z$, a contradiction since $s \in I$. Therefore $I=T$.
Clearly, we have $I \subseteq I_{1}$. Let $s \in I_{1}$ and let $t \in M \backslash\{1\}$. Then $t=a_{r} t^{\prime}$ for some $1 \leqslant r \leqslant n$ and $t^{\prime} \in M$. Since $s a_{r} \in M z \cap M z a_{r}$, by Lemma 3.7 it follows that $s t=s a_{r} t^{\prime} \in T t^{\prime} \subseteq T \subseteq M z$. Therefore $s \in I$ and so $I=I_{1}$.

By Lemma 3.1 and Lemma 3.6(i) and (ii),

$$
\bigcup_{1 \leqslant i<j<k \leqslant n}\left(z a_{i} a_{j} a_{k} M \cup z a_{j} a_{i} a_{k} M\right)=\bigcup_{1 \leqslant i<j<k \leqslant n}\left(M a_{i} a_{j} a_{k} z \cup M a_{j} a_{i} a_{k} z\right)=T .
$$

Thus, by symmetry,

$$
I=I^{\prime}=I_{1}=I_{1}^{\prime}=T
$$

4. Proof of Theorem 1.1

In this section we prove our main result, Theorem 1.1. So again, $n \geqslant 4, M=S_{n}\left(\mathrm{Alt}_{n}\right)$ and $G=$ $G_{n}\left(\mathrm{Alt}_{n}\right)$.

Recall that ρ^{\prime} is the binary relation on M, defined by $s \rho^{\prime} t$ if and only if there exists a nonnegative integer i such that $s z^{i}=t z^{i}$. By Lemma 3.2, z^{2} is central in M. By Lemma 2.4, $\rho^{\prime}=\rho$ is the least cancellative congruence on M.

Proof of (i). Let $\{i, j, k\}$ be a subset of $\{1,2, \ldots, n\}$ of cardinality three. By Lemma 3.1, in G, we have

$$
\begin{equation*}
a_{i} a_{j} a_{k}=a_{j} a_{k} a_{i}=a_{k} a_{i} a_{j} \tag{12}
\end{equation*}
$$

By Lemma 3.4, in G, we also have $a_{i} a_{j} a_{i} a_{j}=a_{j} a_{i} a_{j} a_{i}$ and $a_{i}^{2} a_{j}=a_{j} a_{i}^{2}$, for all $1 \leqslant i, j \leqslant n$. Therefore $\left(a_{i} a_{j} a_{i}^{-1} a_{j}^{-1}\right)^{2}=1$.

Let $\tau \in \operatorname{Sym}_{n} \backslash \operatorname{Alt}_{n}$. Suppose that $n=\tau(j)$. If $j=n-1$ then, by (12),

$$
a_{\tau(1)} a_{\tau(2)} \cdots a_{\tau(n)}=a_{\tau(1)} a_{\tau(2)} \cdots a_{\tau(n-3)} a_{\tau(n)} a_{\tau(n-2)} a_{n}
$$

If $n-j$ is even and greater than 1 then, by (12),

$$
a_{\tau(1)} a_{\tau(2)} \cdots a_{\tau(n)}=a_{\tau(1)} \cdots a_{\tau(j-1)} a_{\tau(j+1)} \cdots a_{\tau(n)} a_{n}
$$

If $n-j$ is odd and greater than 1 then, by (12),

$$
a_{\tau(1)} a_{\tau(2)} \cdots a_{\tau(n)}=a_{\tau(1)} \cdots a_{\tau(j-1)} a_{\tau(j+1)} \cdots a_{\tau(n-2)} a_{\tau(n)} a_{\tau(n-1)} a_{n}
$$

So, we have shown that $a_{\tau(1)} a_{\tau(2)} \cdots a_{\tau(n)}=a_{\sigma(1)} \cdots a_{\sigma(n-1)} a_{n}$ for some $\sigma \in \operatorname{Sym}_{n-1}$. Repeating the above argument at most $n-3$ times, we get that $a_{\tau(1)} a_{\tau(2)} \cdots a_{\tau(n)}=a_{\sigma(1)} a_{\sigma(2)} a_{\sigma(3)} a_{4} a_{5} \cdots a_{n}$ for some $\sigma \in \mathrm{Sym}_{3}$. Because τ is odd, it follows from (2), that also σ is odd. Hence, σ is a transposition, and thus, again using (12), $a_{\tau(1)} a_{\tau(2)} \cdots a_{\tau(n)}=a_{1} a_{3} a_{2} a_{4} a_{5} \cdots a_{n}$.

Hence we have shown that, in G,

$$
a_{\tau(1)} a_{\tau(2)} \cdots a_{\tau(n)}=a_{1} a_{3} a_{2} a_{4} a_{5} \cdots a_{n}
$$

for all $\tau \in \operatorname{Sym}_{n} \backslash$ Alt $_{n}$.
Hence we have the following presentations of the group G.

$$
\begin{aligned}
G= & \operatorname{gr}\left(a_{1}, \ldots, a_{n} \mid a_{1} a_{2} \cdots a_{n}=a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)}, \sigma \in \mathrm{Alt}_{n}\right) \\
= & \operatorname{gr}\left(a_{1}, \ldots, a_{n} \mid a_{1} a_{2} \cdots a_{n}=a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)}, a_{1} a_{3} a_{2} a_{4} \cdots a_{n}=a_{\tau(1)} a_{\tau(2)} \cdots a_{\tau(n)},\right. \\
& \left.\sigma \in \operatorname{Alt}_{n}, \tau \in \operatorname{Sym}_{n} \backslash \operatorname{Alt}_{n}\right) .
\end{aligned}
$$

Note that, by (12), $a_{i}\left(a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}\right) a_{i}^{-1}=a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}$, for all $2<i \leqslant n$. Furthermore

$$
\begin{aligned}
a_{1}\left(a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}\right) a_{1}^{-1} & =a_{1}\left(a_{1} a_{2} a_{3}\right)\left(a_{3}^{-1} a_{1}^{-1} a_{2}^{-1}\right) a_{1}^{-1} \\
& =a_{1}\left(a_{2} a_{3} a_{1}\right)\left(a_{1}^{-1} a_{2}^{-1} a_{3}^{-1}\right) a_{1}^{-1} \quad \text { by }(12) \\
& =a_{1} a_{2} a_{3} a_{2}^{-1} a_{3}^{-1} a_{1}^{-1} \\
& =a_{1} a_{2} a_{3}\left(a_{3}^{-1} a_{1}^{-1} a_{2}^{-1}\right) \quad \text { by }(12) \\
& =a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
a_{2}\left(a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}\right) a_{2}^{-1} & =a_{2}\left(a_{1} a_{2} a_{3}\right)\left(a_{3}^{-1} a_{1}^{-1} a_{2}^{-1}\right) a_{2}^{-1} \\
& =a_{2}\left(a_{3} a_{1} a_{2}\right)\left(a_{2}^{-1} a_{3}^{-1} a_{1}^{-1}\right) a_{2}^{-1} \quad \text { by }(12) \\
& =a_{2} a_{3} a_{1} a_{3}^{-1} a_{1}^{-1} a_{2}^{-1} \\
& =\left(a_{1} a_{2} a_{3}\right) a_{3}^{-1} a_{1}^{-1} a_{2}^{-1} \quad \text { by }(12) \\
& =a_{1} a_{2} a_{1}^{-1} a_{2}^{-1} .
\end{aligned}
$$

Therefore $a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}$ is a central element of order at most 2 in G. Let C be the central subgroup $C=\left\{1, a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}\right\}$. Then G / C has the following presentations.

$$
\begin{aligned}
G / C= & \operatorname{gr}\left(b_{1}, \ldots, b_{n} \mid b_{1} b_{2}=b_{2} b_{1}, b_{1} b_{2} \cdots b_{n}=b_{\sigma(1)} b_{\sigma(2)} \cdots b_{\sigma(n)}\right. \\
& \left.b_{1} b_{3} b_{2} b_{4} \cdots b_{n}=b_{\tau(1)} b_{\tau(2)} \cdots b_{\tau(n)}, \sigma \in \operatorname{Alt}_{n}, \tau \in \operatorname{Sym}_{n} \backslash \operatorname{Alt}_{n}\right) \\
= & \operatorname{gr}\left(b_{1}, \ldots, b_{n} \mid b_{1} b_{2} \cdots b_{n}=b_{\sigma(1)} b_{\sigma(2)} \cdots b_{\sigma(n)}, \sigma \in \operatorname{Sym}_{n}\right)
\end{aligned}
$$

Hence G / C is a free abelian group of rank n and, since $C=G^{\prime}$, in G we have

$$
a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}=a_{i} a_{j} a_{i}^{-1} a_{j}^{-1}
$$

for all $i \neq j$, because there exists $\sigma \in$ Alt $_{n}$ such that $\sigma(1)=i$ and $\sigma(2)=j$.
We now show that $a_{1} a_{2} a_{1}^{-1} a_{2}^{-1} \neq 1$. Let f be the map defined by (2). Note that if two words $w, w^{\prime} \in \mathrm{FM}_{n}$ represent the same element in M, then $f(w)=f\left(w^{\prime}\right)$. In particular,

$$
a_{1} a_{2} z^{m} \neq a_{2} a_{1} z^{m}
$$

in M, for all m. Now, by Lemmas 3.2 and 2.4 , we have that $a_{1} a_{2} \neq a_{2} a_{1}$ in G, as desired.
By Lemma 3.4, every a_{i}^{2} is a central element in G. Let D be the central subgroup of G generated by $a_{1}^{2}, \ldots, a_{n}^{2}$. Now $G /(C D) \cong(\mathbb{Z} / 2 \mathbb{Z})^{n}$. Hence (i) follows.

Proof of (ii). By (i) and [16, Lemma 5.1.11, Corollary 10.2.8], $K[G]$ is a noetherian PI-algebra for any field K. Furthermore, by [16, Theorem 7.3.1] $\mathcal{J}(K[G]) \subseteq \mathcal{J}(K[C]) K[G]$. Thus, if K is a field of characteristic $\neq 2$, then $\mathcal{J}(K[G])=0$. If K is a field of characteristic 2 , then $\mathcal{J}(K[G])=$ $\left(1-a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}\right) K[G]$, and $\mathcal{J}(K[G])^{2}=0$.

Proof of (iii). By Lemma 3.2, z^{2} is central in M. Thus, it follows from Lemma 2.4 that every nonempty right ideal of M contains $z^{2 k}$ for some positive integer k. Therefore, if $s x=t x$ for some $s, t \in z^{2} M$ and $x \in M$, then $s z^{2 k}=t z^{2 k}$, for some k. Since z^{2} is central and $s, t \in z^{2} M$, by Lemma 3.5, we get $s=t$. This and a symmetric argument show that $z^{2} M$ is cancellative and also that the ideal $z^{2} M$ embeds into M / ρ. Hence, again by Lemma 2.4, $G=\left(z^{2} M\right)\left\langle z^{2}\right\rangle^{-1}$.

Since $K[G]$ is a PI-algebra and G is the group of fractions of M / ρ by Lemma $2.4, K[M / \rho]$ is a finitely generated PI-algebra. Let $\bar{M}=M / \rho$. It follows from part (i) that G is a nilpotent group and it is abelian-by-finite, thus from [13, Theorem 4.3.3, and the comment following it] we know that $K[\bar{M}]$ is noetherian. By [15, Theorem 18.1], $\mathcal{J}(K[\bar{M}])$ is nilpotent. Therefore, there exists a positive integer m such that $\mathcal{J}(K[M])^{m} \subseteq I(\rho)$. By Proposition 2.6, $\mathcal{J}(K[M])^{3} \subseteq K\left[z^{2} M\right]$. Since $z^{2} M$ is cancellative, $I(\rho) \cap K\left[z^{2} M\right]=0$. Hence $\mathcal{J}(K[M])$ is nilpotent.

Proof of (iv). Suppose that $n \geqslant 4$ is odd. We shall see that $a_{1} a_{1} a_{2} z \neq a_{2} a_{1} a_{1} z$ in M.
Let $w_{0}=a_{1} a_{1} a_{2} a_{1} \cdots a_{n} \in \mathrm{FM}_{n}$ and let $w \in \mathrm{FM}_{n}$ be a word representing the element $a_{1} a_{1} a_{2} z \in M$. Then there exist $w_{1}, \ldots, w_{r} \in \mathrm{FM}_{n}$ with $w_{r}=w$ and $w_{i}=w_{1, i} w_{2, i} w_{3, i}=w_{1, i}^{\prime} w_{2, i}^{\prime} w_{3, i}^{\prime}$ such that $w_{2, i}$ and $w_{2, i}^{\prime}$ represent the element z in M, for all $i=0,1, \ldots, r$, and $w_{1, j}=w_{1, j+1}^{\prime}$ and $w_{3, i}=w_{3, i+1}^{\prime}$, for all $j=0, \ldots, r-1$. We shall prove, by induction on r, that $w_{1, i} w_{3, i}=a_{1} a_{1} a_{2}$ for all $i=0,1, \ldots, r$. It is clear that $w_{1,0}=a_{1} a_{1} a_{2}$ and $w_{3,0}=1$, thus $w_{1,0} w_{3,0}=a_{1} a_{1} a_{2}$. Suppose that $i \geqslant 0$ and $w_{1, i} w_{3, i}=$ $a_{1} a_{1} a_{2}$. Then $w_{1, i} \in\left\{1, a_{1}, a_{1} a_{1}, a_{1} a_{1} a_{2}\right\}$. We shall deal with four cases separately.

Case 1. $w_{1, i}=1$. In this case, $w_{3, i}=w_{3, i+1}^{\prime}=a_{1} a_{1} a_{2}$. Since $w_{i+1}=w_{1, i+1} w_{2, i+1} w_{3, i+1}=w_{2, i+1}^{\prime} a_{1} a_{1} a_{2}$ and $w_{2, i+1}$ and $w_{2, i+1}^{\prime}$ represent $z \in M$, we have that $w_{3, i+1} \in\left\{a_{1} a_{1} a_{2}, a_{1} a_{2}\right\}$. If $w_{3, i+1}=a_{1} a_{1} a_{2}$, then clearly $w_{1, i+1}=1$ and $w_{1, i+1} w_{3, i+1}=a_{1} a_{1} a_{2}$. Suppose that $w_{3, i+1}=a_{1} a_{2}$. Since the degree in a_{1} of w_{i+1} is 3 and the degree in a_{1} of $w_{2, i+1}$ is 1 , we have that $w_{1, i+1}=a_{1}$. Hence $w_{1, i+1} w_{3, i+1}=a_{1} a_{1} a_{2}$ in this case.

Case 2. $w_{1, i}=a_{1}$. In this case, $w_{3, i}=w_{3, i+1}^{\prime}=a_{1} a_{2}$. Since $w_{i+1}=w_{1, i+1} w_{2, i+1} w_{3, i+1}=a_{1} w_{2, i+1}^{\prime} a_{1} a_{2}$, we have that either $w_{1, i+1}=1$ or $w_{1, i+1}$ begins with a_{1}. If $w_{1, i+1}=1$ then, using the degree in a_{1} and that $w_{3, i+1}$ finishes with $a_{1} a_{2}$, we see that $w_{3, i+1}=a_{1} a_{1} a_{2}$ and $w_{1, i+1} w_{3, i+1}=a_{1} a_{1} a_{2}$. Suppose that $w_{1, i+1}$ begins with a_{1}. Then $w_{1, i+1}=a_{1} u$ for some $u \in \mathrm{FM}_{n}$. Thus $u w_{2, i+1} w_{3, i+1}=w_{2, i+1}^{\prime} a_{1} a_{2}$. Now $w_{3, i+1} \in\left\{1, a_{2}, a_{1} a_{2}\right\}$. If $w_{3, i+1} \in\left\{a_{2}, a_{1} a_{2}\right\}$, then using the degree in a_{1}, we have that $u w_{3, i+1}=$ $a_{1} a_{2}$. Suppose that $w_{3, i+1}=1$. Then $u w_{2, i+1}=w_{2, i+1}^{\prime} a_{1} a_{2}$ and, using the degree in a_{1} and in a_{2},
we have that $u \in\left\{a_{1} a_{2}, a_{2} a_{1}\right\}$. Since $w_{2, i+1}$ and $w_{2, i+1}^{\prime}$ represent $z \in M, f\left(a_{2} a_{1} w_{2, i+1}\right)=1$ and $f\left(w_{2, i+1}^{\prime} a_{1} a_{2}\right)=-1$, where f is the map defined by (2), thus $u=a_{1} a_{2}$. Hence $w_{1, i+1} w_{3, i+1}=a_{1} a_{1} a_{2}$ in this case.

Case 3. $w_{1, i}=a_{1} a_{1}$. In this case, $w_{3, i}=w_{3, i+1}^{\prime}=a_{2}$. Since $w_{i+1}=w_{1, i+1} w_{2, i+1} w_{3, i+1}=a_{1} a_{1} w_{2, i+1}^{\prime} a_{2}$ and $w_{2, i+1}$ represents $z \in M$, we have that $w_{1, i+1}$ begins with a_{1}. Then $w_{1, i+1}=a_{1} u$ for some $u \in \mathrm{FM}_{n}$, and $u w_{2, i+1} w_{3, i+1}=a_{1} w_{2, i+1}^{\prime} a_{2}$. Thus, using the degree in a_{1} and in a_{2}, we have $u w_{3, i+1}=$ $a_{1} a_{2}$. Hence $w_{1, i+1} w_{3, i+1}=a_{1} a_{1} a_{2}$ in this case.

Case 4. $w_{1, i}=a_{1} a_{1} a_{2}$. In this case, $w_{3, i}=w_{3, i+1}^{\prime}=1$. Since $w_{i+1}=w_{1, i+1} w_{2, i+1} w_{3, i+1}=a_{1} a_{1} a_{2} w_{2, i+1}^{\prime}$ and $w_{2, i+1}$ represents $z \in M$, we have that $w_{1, i+1}$ begins with a_{1}. Then, as in Case $2, w_{1, i+1}=a_{1} u$ for some $u \in \mathrm{FM}_{n}$, and $u w_{3, i+1}=a_{1} a_{2}$. Hence $w_{1, i+1} w_{3, i+1}=a_{1} a_{1} a_{2}$ in this case.

Therefore, we indeed have shown in each of the four cases that $w_{1, i} w_{3, i}=a_{1} a_{1} a_{2}$, for all $i=$ $0,1, \ldots, r$. In particular, $a_{1} a_{1} a_{2} z \neq a_{2} a_{1} a_{1} z$ in M.

Note that if $1 \leqslant i, j \leqslant n$ are different then there exists $\sigma \in \operatorname{Alt}_{n}$ such that $\sigma(1)=i$ and $\sigma(2)=j$. Therefore

$$
a_{i} a_{i} a_{j} z \neq a_{j} a_{i} a_{i} z
$$

for all $i \neq j$, in M.
Since n is odd, z is central in M and, by Lemma 3.4, $\left(a_{i} a_{i} a_{j}-a_{j} a_{i} a_{i}\right) z^{2}=0$. Therefore $\left(a_{i} a_{i} a_{j}-a_{j} a_{i} a_{i}\right) z \in \mathcal{B}(K[M]) \backslash\{0\}$, for all $i \neq j$ and for any field K.

Let $\bar{\rho}=\rho \cap(z M \times z M)$. So $I(\bar{\rho})=\operatorname{lin}_{K}\left\{s-t \mid s, t \in z M\right.$ and $\left.\exists i \geqslant 0, s z^{i}=t z^{i}\right\}$. Since $z^{2} M$ is cancellative, it follows that $I(\bar{\rho})^{2}=0$.

Suppose that K has characteristic different from 2 . We have that $\mathcal{J}(K[G])=0$. Since $\mathcal{J}(K[\bar{M}])$ is nilpotent and G is a central localization of \bar{M}, we get $\mathcal{J}(K[\bar{M}])=\mathcal{B}(K[\bar{M}]) \subseteq \mathcal{J}(K[G])$. Hence $\mathcal{J}(K[\bar{M}])=0$. Then $\mathcal{J}(K[M]) \subseteq I(\rho)$, and by Corollary 2.7

$$
\mathcal{J}(K[M])=\mathcal{B}(K[M])=I(\bar{\rho}) .
$$

Thus $\mathcal{J}(K[M])^{2}=0$.
Assume that $s, t \in M$ are such that $(s, t) \in \rho$. Because $z^{2} M$ is cancellative, we know that $z^{2} s=z^{2} t$. Note that in the proof of Lemma 3.5, in order to obtain the form (3) or (4) of $z^{2} s$, we only use the centrality of z^{2} and the relations $z^{2} a_{i} a_{j} a_{k}=z^{2} a_{j} a_{k} a_{i}, z^{2} a_{i} a_{j}^{2}=z^{2} a_{j}^{2} a_{i}$ and $z^{2} a_{i} a_{j} a_{i} a_{j}=z^{2} a_{j} a_{i} a_{j} a_{i}$, for $1 \leqslant i, j, k \leqslant n$, three distinct elements. Since $z^{2} s=z^{2} t$, it follows that $s-t \in K[M] Y K[M]$, where

$$
Y=\bigcup_{\substack{1 \leq i, j, k \leqslant n \\|\{i, j, k\}|=3}}\left\{a_{i} a_{j} a_{k}-a_{j} a_{k} a_{i}, a_{i}^{2} a_{j}-a_{j} a_{i}^{2},\left(a_{i} a_{j}\right)^{2}-\left(a_{j} a_{i}\right)^{2}\right\} .
$$

This implies that Y generates $I(\rho)$ as a two-sided ideal. Now, if $s^{\prime} z, t^{\prime} z \in z M$ are ρ-related, then also $\left(s^{\prime}, t^{\prime}\right) \in \rho$, so by the previous $s^{\prime} z-t^{\prime} z \in K[M] Y z K[M]$ because z is central. In particular, $I(\bar{\rho})=$ $\mathcal{J}(K[M])$ is a finitely generated ideal.

Suppose that K has characteristic 2. By Proposition 2.6, $\mathcal{J}(K[M]) \subseteq K[z M]$. Thus $\mathcal{J}(K[M])=$ $\mathcal{J}(K[z M])$. Note that $z M / \bar{\rho}$ is a cancellative semigroup and G is its group of fractions. Furthermore, $K[z M / \bar{\rho}]=K[z M] / I(\bar{\rho})$. By (iii), we have that $\mathcal{J}(K[M])$ is nilpotent. Hence

$$
\mathcal{J}(K[M]) / I(\bar{\rho})=\mathcal{B}(K[z M]) / I(\bar{\rho})=\mathcal{B}(K[z M / \bar{\rho}])=\mathcal{B}(K[G]) \cap K[z M / \bar{\rho}],
$$

see [15, Corollary 11.5]. Let $\pi: z M \rightarrow G / C$ be the composition of the natural maps

$$
z M \hookrightarrow M \rightarrow G \rightarrow G / C
$$

Let η be the congruence defined on M by $s \eta t$ if and only if either $s=t$ or $s, t \in z M$ and $\pi(s)=\pi(t)$. Since $\mathcal{B}(K[G])=\omega(K[C]) K[G]$, it follows that $\mathcal{J}(K[M])=I(\eta)$. In particular, $z\left(a_{i} a_{j}-a_{j} a_{i}\right) \in \mathcal{J}(K[M])$ for all i, j. Let Q be the ideal of $K[M]$ generated by all such elements. Then the set of all elements of the form $z a_{1}^{i_{1}} \cdots a_{n}^{i_{n}}$, for nonnegative integers i_{1}, \ldots, i_{n}, forms a basis of the algebra $K[z M] / Q$. Therefore this algebra embeds into the algebra $K[G / C]$, which is a commutative domain. It follows that $\mathcal{J}(K[M])=Q$ and hence it is finitely generated.

Proof of (v). Suppose that $n \geqslant 6$ is and n is even. We shall prove that $\mathcal{J}(K[M]) \subseteq K[T]$ (where T is as in Lemma 3.9). Suppose that $\mathcal{J}(K[M]) \nsubseteq K[T]$. Let $\alpha \in \mathcal{J}(K[M]) \backslash K[T]$ with $|\operatorname{supp}(\alpha)|=m$. Let $\operatorname{supp}(\alpha)=\left\{s_{1}, \ldots, s_{m}\right\}$. By Proposition 2.6, $s_{i} \in z M \cup M z$. In particular, the degree of s_{i} is greater than or equal to n. We may assume that $s_{1} \notin T$. Then, by Lemma 3.9, there exist i, j such that $s_{1} a_{j} \notin M z$ and $a_{i} s_{1} \notin z M$. Hence, since the degree of s_{1} is greater than or equal to n, we have that $a_{i} s_{1} a_{j} \notin z M \cup M z$ and $a_{i} s_{1} a_{j} \in \operatorname{supp}\left(a_{i} \alpha a_{j}\right)$. But this is in contradiction with Proposition 2.6. Hence $\mathcal{J}(K[M]) \subseteq K[T]$.

Now we shall prove that $K[T] \cap I(\rho)=0$, i.e., T is cancellative. Let $s, t \in T$ be such that $s \rho t$. It is sufficient to see that $s=t$. In order to prove this, we first shall verify that there exist three different integers $1 \leqslant i, j, k \leqslant n$ such that $s, t \in M a_{i} a_{j} a_{k} z$.

Since $s, t \in T$, there exist integers i, j, k, l, p, q and $s^{\prime}, t^{\prime} \in M$ such that $s=s^{\prime} a_{i} a_{j} a_{k} z, t=t^{\prime} a_{l} a_{p} a_{q} z$, $|\{i, j, k\}|=3$ and $|\{l, p, q\}|=3$. We claim that $t \in M a_{i} a_{j} a_{k} z$. First we deal with the case that $l \notin$ $\{i, j, k\}$ and $i \notin\{l, p, q\}$. Since $s \rho t$, we have that s and t have the same degrees with respect to every generator. Therefore $t^{\prime} \in M a_{i} M$. Let $t_{1}, t_{2} \in M$ be elements such that $t^{\prime}=t_{1} a_{i} t_{2}$. Thus $t=t_{1} a_{i} t_{2} a_{l} a_{p} a_{q} z$. By Lemma 3.6(i) and (ii) and Lemma 3.1,

$$
\begin{aligned}
t & =t_{1} a_{i} t_{2} a_{l} a_{p} a_{q} z=t_{1} a_{i} a_{l} a_{p^{\prime}} a_{q^{\prime}} z t_{2}=t_{1} z a_{i} a_{l} a_{p^{\prime}} a_{q^{\prime}} t_{2} \\
& =t_{1} z a_{l} a_{p^{\prime}} a_{i} a_{q^{\prime}} t_{2}=t_{1} a_{l} a_{p^{\prime}} a_{i} a_{q^{\prime}} z t_{2}=t_{1} a_{l} t_{2} a_{i} a_{p^{\prime \prime}} a_{q^{\prime \prime}} z
\end{aligned}
$$

where $\{p, q\}=\left\{p^{\prime}, q^{\prime}\right\}=\left\{p^{\prime \prime}, q^{\prime \prime}\right\}$. Therefore $t \in M a_{i} a_{p^{\prime \prime}} a_{q^{\prime \prime}} z$. Now, if $p^{\prime \prime} \notin\{j, k\}$ and $j \notin\left\{p^{\prime \prime}, q^{\prime \prime}\right\}$, then, since $i, p^{\prime \prime}, q^{\prime \prime}$ are three different integers, we can apply the same argument to get that $t \in M a_{j} a_{u^{\prime}} a_{v^{\prime}} z$, with $\left\{u^{\prime}, v^{\prime}\right\}=\left\{i, q^{\prime \prime}\right\}$. Thus, applying this argument at most one more time, we get that $t \in M a_{i^{\prime}} a_{j^{\prime}} a_{k^{\prime}} z$, with $\{i, j, k\}=\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}$. By Lemma 3.1 , we may assume that $i^{\prime}=i$. If $\left(j^{\prime}, k^{\prime}\right)=(j, k)$ then we have proved the claim. So we may also assume that $\left(j^{\prime}, k^{\prime}\right)=(k, j)$. Thus there exists $t^{\prime \prime} \in M$ such that $t=t^{\prime \prime} a_{i} a_{k} a_{j} z$.

If $t^{\prime \prime} \in \bigcup_{1 \leqslant r \leqslant n}\left\langle a_{r}\right\rangle$ then, since s and t have the same degrees with respect to every generator, there exists $1 \leqslant r \leqslant n$, and a nonnegative integer v such that $s^{\prime}=t^{\prime \prime}=a_{r}^{v}$. Hence, since $s \rho t$, we have that $s=t$ in G. Therefore $a_{j} a_{k}=a_{k} a_{j}$ in G, a contradiction. So, $t^{\prime \prime} \notin \bigcup_{1 \leqslant r \leqslant n}\left\langle a_{r}\right\rangle$. Hence there exist different $1 \leqslant r, p \leqslant n$ and $t_{1}^{\prime}, t_{2}^{\prime} \in M$ such that $t^{\prime \prime}=t_{1}^{\prime} a_{r} a_{p} t_{2}^{\prime}$. We denote by $\operatorname{deg}_{r}(x)$ the degree in a_{r} of $x \in M$. Let $u=\operatorname{deg}_{i}\left(t_{2}^{\prime}\right)+\operatorname{deg}_{j}\left(t_{2}^{\prime}\right)+\operatorname{deg}_{k}\left(t_{2}^{\prime}\right)$. If u is odd and $i \notin\{r, p\}$ then, by Lemma 3.6(i) and (ii) and Lemma 3.1,

$$
\begin{aligned}
t & =t_{1}^{\prime} a_{r} a_{p} t_{2}^{\prime} a_{i} a_{k} a_{j} z=t_{1}^{\prime} a_{r} a_{p} a_{i} a_{j} a_{k} z t_{2}^{\prime}=t_{1}^{\prime} a_{r} a_{p} a_{i} z a_{j} a_{k} t_{2}^{\prime} \\
& =t_{1}^{\prime} z a_{p} a_{r} a_{i} a_{j} a_{k} t_{2}^{\prime}=t_{1}^{\prime} a_{p} a_{r} z a_{i} a_{j} a_{k} t_{2}^{\prime}=t_{1}^{\prime} a_{p} a_{r} a_{i} a_{k} a_{j} z t_{2}^{\prime} \\
& =t_{1}^{\prime} a_{p} a_{r} t_{2}^{\prime} a_{i} a_{j} a_{k} z \in M a_{i} a_{j} a_{k} z
\end{aligned}
$$

If u is odd and $j \notin\{r, p\}$ then, by Lemma 3.6(i) and (ii) and Lemma 3.1,

$$
\begin{aligned}
t & =t_{1}^{\prime} a_{r} a_{p} t_{2}^{\prime} a_{i} a_{k} a_{j} z=t_{1}^{\prime} a_{r} a_{p} a_{j} a_{k} a_{i} z t_{2}^{\prime}=t_{1}^{\prime} a_{r} a_{p} a_{j} z a_{k} a_{i} t_{2}^{\prime} \\
& =t_{1}^{\prime} z a_{p} a_{r} a_{j} a_{k} a_{i} t_{2}^{\prime}=t_{1}^{\prime} a_{p} a_{r} z a_{j} a_{k} a_{i} t_{2}^{\prime}=t_{1}^{\prime} a_{p} a_{r} a_{i} a_{k} a_{j} z t_{2}^{\prime} \\
& =t_{1}^{\prime} a_{p} a_{r} t_{2}^{\prime} a_{i} a_{j} a_{k} z \in M a_{i} a_{j} a_{k} z
\end{aligned}
$$

If u is odd and $k \notin\{r, p\}$ then, similarly, we get that $t \in M a_{i} a_{j} a_{k} z$. If u is even then, by Lemma 3.6(i) and (ii) and Lemma 3.1, we also get that $t \in M a_{i} a_{j} a_{k} z$.

Therefore $s, t \in M a_{i} a_{k} a_{j} z$, as claimed.
Hence, we have that $s=s^{\prime} a_{i} a_{j} a_{k} z$ and $t=\tilde{t} a_{i} a_{j} a_{k} z$, for some $s^{\prime}, \tilde{t} \in M$. Since $s \rho t$, there exists a nonnegative integer l such that $z^{2 l} s=z^{2 l} t$. Let $v=\operatorname{deg}_{i}\left(s^{\prime}\right)+\operatorname{deg}_{j}\left(s^{\prime}\right)+\operatorname{deg}_{k}\left(s^{\prime}\right)$. Since s and t have the same degrees with respect to every generator, it follows that $v=\operatorname{deg}_{i}(\widetilde{t})+\operatorname{deg}_{j}(\widetilde{t})+\operatorname{deg}_{k}(\widetilde{t})$. If v is odd then, by Lemma 3.6(i) and (ii),

$$
\begin{aligned}
& s=s^{\prime} a_{i} a_{j} a_{k} z=a_{i} a_{k} a_{j} z s^{\prime} \\
& t=\tilde{t} a_{i} a_{j} a_{k} z=a_{i} a_{k} a_{j} \tilde{z t}
\end{aligned}
$$

and if v is even then, by Lemma 3.6(i) and (ii),

$$
\begin{aligned}
& s=s^{\prime} a_{i} a_{j} a_{k} z=a_{i} a_{j} a_{k} z s^{\prime} \\
& t=\widetilde{t} a_{i} a_{j} a_{k} z=a_{i} a_{j} a_{k} z \widetilde{t}
\end{aligned}
$$

Therefore, if v is odd, since $z^{2 l} a_{i} a_{k} a_{j} z s^{\prime}=z^{2 l} a_{i} a_{k} a_{j} z \tilde{z t}$, from Lemma 3.6 it follows that $a_{i} a_{k} a_{j} z s^{\prime}=$ $a_{i} a_{k} a_{j} z \tilde{t}$, i.e. $s=t$. Similarly, if v is even we also get $s=t$. Hence $K[T] \cap I(\rho)=0$.

Note that, since T is a cancellative ideal in M, we have that $G=T\left\langle z^{2}\right\rangle^{-1}$. Furthermore, $\mathcal{J}(K[M]) \subseteq$ $K[T]$ implies that $\mathcal{J}(K[M])=\mathcal{J}(K[T])$. Therefore by [15, Corollary 11.5],

$$
\mathcal{J}(K[M])=\mathcal{B}(K[M])=\mathcal{B}(K[T])=\mathcal{J}(K[G]) \cap K[T]
$$

If K has characteristic $\neq 2$, then we know (from part (ii) of Theorem 1.1) that $\mathcal{J}(K[G])=0$. Thus, in this case, it follows that $\mathcal{J}(K[M])=0$.

Suppose that K has characteristic 2 . Let $\pi: T \rightarrow G / C$ be the composition of the natural maps

$$
T \hookrightarrow G \rightarrow G / C
$$

Let η be the congruence defined on M by $s \eta t$ if and only if either $s=t$ or $s, t \in T$ and $\pi(s)=\pi(t)$. Since $\mathcal{B}(K[G])=\omega(K[C]) K[G]$, it follows that $\mathcal{J}(K[M])=I(\eta)$. Note that $a_{1} a_{2} a_{3} z-a_{2} a_{1} a_{3} z \in K[T] \cap$ $\mathcal{B}(K[G])$ and it is nonzero (because $a_{1} a_{2} \neq a_{2} a_{1}$ in $\left.G\right)$.

Let P be the ideal of $K[M]$ generated by all elements of the form $a_{j} a_{i} a_{k} z-a_{i} a_{j} a_{k} z$, with different i, j, k. Let $s, t \in T$ be such that $s \eta t$. We shall prove that $s-t \in P$, and therefore $\mathcal{J}(K[M])=I(\eta)=P$ is finitely generated.

By the definition of η it is clear that s and t have the same degrees with respect to every a_{l}. Thus, as in the proof of the cancellativity of T, one can see that there exist three different integers i, j, k and $w, w^{\prime} \in M$ such that $s=a_{i} a_{j} a_{k} z w$ and $t=a_{i^{\prime}} a_{j^{\prime}} a_{k^{\prime}} z w^{\prime}$, where $\{i, j, k\}=\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}$. Note that in $K[M]$, it follows by Lemma 3.1 that

$$
\begin{aligned}
a_{i} a_{j} a_{k} z a_{i}-a_{i}^{2} a_{j} a_{k} z & =a_{i} a_{j} a_{k} z a_{i}-a_{i} a_{j} a_{k} a_{i} z \\
& =a_{i} a_{j} a_{k} z a_{i}-z a_{i} a_{j} a_{k} a_{i} \\
& =a_{i} a_{j} a_{k} z a_{i}-a_{j} a_{i} a_{k} z a_{i} \in P
\end{aligned}
$$

Therefore by Lemma 3.1 and Lemma 3.6(i), $a_{i} a_{j} a_{k} z$ is central in $K[M] / P$.

Let $\operatorname{deg}_{r}(w)=m_{r}$. We shall prove that $s-a_{i} a_{j} a_{k} z a_{1}^{m_{1}} \cdots a_{n}^{m_{n}} \in P$. Since $a_{i} a_{j} a_{k} z$ is central in $K[M] / P$, it is sufficient to prove that $a_{i} a_{j} a_{k} z a_{p} a_{q}-a_{i} a_{j} a_{k} z a_{q} a_{p} \in P$, for all p, q. Clearly, we may assume that $p \neq q$. Then by Lemma 3.1, we may assume that $k \notin\{p, q\}$, and again by Lemma 3.1,

$$
a_{i} a_{j} a_{k} z a_{p} a_{q}-a_{i} a_{j} a_{k} z a_{q} a_{p}=a_{i} a_{j}\left(a_{k} a_{p} a_{q} z-a_{k} a_{q} a_{p} z\right) \in P
$$

as desired.
Similarly we obtain that $t-a_{i^{\prime}} a_{j^{\prime}} a_{k^{\prime}} z a_{1}^{m_{1}} \cdots a_{n}^{m_{n}} \in P$, because $\operatorname{deg}_{r}\left(w^{\prime}\right)=m_{r}$. Thus, since $a_{i} a_{j} a_{k} z-$ $a_{i^{\prime}} a_{j^{\prime}} a_{k^{\prime}} z \in P$, it follows that

$$
\begin{aligned}
s-t= & s-a_{i} a_{j} a_{k} z a_{1}^{m_{1}} \cdots a_{n}^{m_{n}}-\left(t-a_{i^{\prime}} a_{j^{\prime}} a_{k^{\prime}} z a_{1}^{m_{1}} \cdots a_{n}^{m_{n}}\right) \\
& +\left(a_{i} a_{j} a_{k} z-a_{i^{\prime}} a_{j^{\prime}} a_{k^{\prime}} z\right) a_{1}^{m_{1}} \cdots a_{n}^{m_{n}} \in P .
\end{aligned}
$$

Therefore assertion (v) follows.
This finishes the proof of Theorem 1.1.

References

[1] J. Cassaigne, M. Espie, D. Krob, J.-C. Novelli, F. Hivert, The Chinese monoid, Internat. J. Algebra Comput. 11 (2001) $301-334$.
[2] A. Cavicchioli, D. Repovs, F. Spaggiari, Topological properties of cyclically presented groups, J. Knot Theory Ramifications 12 (2003) 243-268.
[3] F. Cedó, E. Jespers, J. Okniński, Finitely presented algebras and groups defined by permutation relations, J. Pure Appl. Algebra 214 (2010) 1095-1102.
[4] F. Cedó, E. Jespers, J. Okniński, The radical of the four generated algebra of alternating type, in: A. Giambruno, C. Polcino Milies, S.K. Sehgal (Eds.), Proceedings of Groups, Rings and Group Rings, in: Contemp. Math., vol. 499, Amer. Math. Soc., 2009, pp. 1-26.
[5] F. Cedó, J. Okniński, Plactic algebras, J. Algebra 274 (2004) 97-117.
[6] M. Edjvet, J. Howie, Intersections of Magnus subgroups and embedding theorems for cyclically presented groups, J. Pure Appl. Algebra 212 (2008) 47-52.
[7] P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions of the quantum Yang-Baxter equation, Duke Math. J. 100 (1999) 169-209.
[8] W. Fulton, Young Tableaux, Cambridge University Press, New York, 1997.
[9] T. Gateva-Ivanova, A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation, J. Math. Phys. 45 (2004) 3828-3858.
[10] T. Gateva-Ivanova, M. Van den Bergh, Semigroups of I-type, J. Algebra 206 (1998) 97-112.
[11] J. Jaszuńska, J. Okniński, Chinese algebras of rank 3, Comm. Algebra 34 (2006) 2745-2754.
[12] E. Jespers, J. Okniński, Monoids and groups of I-type, Algebr. Represent. Theory 8 (2005) 709-729.
[13] E. Jespers, J. Okniński, Noetherian Semigroup Algebras, Springer, Dordrecht, 2007.
[14] A. Lascoux, B. Leclerc, J.Y. Thibon, The plactic monoid, in: Algebraic Combinatorics on Words, in: Encyclopedia Math. Appl., vol. 90, Cambridge University Press, 2002 (Chapter 5).
[15] J. Okniński, Semigroup Algebras, Marcel Dekker, New York, 1991.
[16] D.S. Passman, The Algebraic Structure of Group Rings, Wiley, New York, 1977.
[17] D.S. Passman, Infinite Crossed Products, Academic Press, San Diego, 1989.
[18] W. Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math. 193 (2005) 40-55.

[^0]: Research partially supported by grants of MICIN-FEDER (Spain) MTM2008-06201-C02-01, Generalitat de Catalunya 2005SGR00206, Onderzoeksraad of Vrije Universiteit Brussel, Fonds voor Wetenschappelijk Onderzoek (Belgium), Flemish-Polish bilateral agreement BIL2005/VUB/06 and MNiSW research grant N201 004 32/0088 (Poland).

 * Corresponding author.

 E-mail addresses: cedo@mat.uab.cat (F. Cedó), efjesper@vub.ac.be (E. Jespers), okninski@mimuw.edu.pl (J. Okniński).
 0021-8693/\$ - see front matter © 2010 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2010.07.014

