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In the present paper, development of the three-dimensional (3D) computational code based

on Galerkin finite element method (GFEM) for solving the multigroup forward/adjoint

diffusion equation in both rectangular and hexagonal geometries is reported. Linear

approximation of shape functions in the GFEM with unstructured tetrahedron elements is

used in the calculation. Both criticality and fixed source calculations may be performed

using the developed GFEM-3D computational code. An acceptable level of accuracy at a low

computational cost is the main advantage of applying the unstructured tetrahedron ele-

ments. The unstructured tetrahedron elements generated with Gambit software are used

in the GFEM-3D computational code through a developed interface. The forward/adjoint

multiplication factor, forward/adjoint flux distribution, and power distribution in the

reactor core are calculated using the power iteration method. Criticality calculations are

benchmarked against the valid solution of the neutron diffusion equation for International

Atomic Energy Agency (IAEA)-3D and Water-Water Energetic Reactor (VVER)-1000 reactor

cores. In addition, validation of the calculations against the P1 approximation of the

transport theory is investigated in relation to the liquid metal fast breeder reactor

benchmark problem. The neutron fixed source calculations are benchmarked through a

comparison with the results obtained from similar computational codes. Finally, an

analysis of the sensitivity of calculations to the number of elements is performed.
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1. Introduction

Numerical methods have played a vital role in science and

engineering in terms of solving and analyzing problems. So-

lutions to engineering problems can more easily be achieved

with the help of computers. The importance of numerical

methods in an analysis is due to several factors. First, most

natural phenomena can best be described by differential

equations with varying boundary conditions the solutions of

which cannot be obtained by analytical means, except in very

simple cases. Significant improvements have been made in

various numerical techniques such that problems can be

solved at a low cost and within a short span of time. Due to the

absence of automatic computation, progress in the develop-

ment of numerical methods was quite slow before the 1940s.

With the arrival of high-speed computers, engineers and sci-

entists succeeded in exploiting numerical methods. During the

mid-1950s, the finite element method grew out of a number of

intuitive procedures and associated mathematical techniques.

Prior to its conception, the finite difference method held a

dominant position in the numerical solution of continuum

problems [1,2]. Today, both of these methods are equally

important and have their own advantages and disadvantages.

However, certain problems are more amenable to the finite

element method than to the finite difference method. Other

numericalmethods, such as nodal [3e5] and finite volume [6,7],

may also be used to solve neutron diffusion equations.

The finite element method is a computational technique for

obtaining approximate solutions to the partial differential

equations that arise in scientific and engineering applications. It

is a general technique for constructing approximate solutions to

theboundary valueproblems.Themethods involve dividing the

domains of a solution into a finite number of elements. Varia-

tional schemes employing a weighted residual approach or an

extremum principle-based approach are used to construct an

approximate solution over the collection of finite elements.

Owing to the generality and richness of the ideas underlying the

method, it has been used with remarkable success in solving a

wide range of problems in virtually all areas of engineering and

sciences. In contrast to the older finite difference methods that

are usually based on differential formulations, the finite

element method is based on integral formulations. In the finite

element method, the solution is approximated by local piece-

wise polynomial trial functions within an element. Expansion

coefficients are then determined by applying either weighted

residual or variational approaches. Finite elements have been

utilized in different ways to solve neutron diffusion equations.

In some formulations a weighted residual approach is adopted,

while in others variational approaches are considered, with a

combination of the applications of the finite elements to one or

more of the independent variables. In the weighted residual

approach, the integral form of the original integrodifferential

equation is considered and expanded in a set of finite element

basis functions. The integral form isobtainedbymultiplying the

original equation by an arbitrary weighting function. If the

arbitrary weighting functions are the finite element basis func-

tions, then the approach is called the Galerkin technique [8].

The neutron diffusion theory is the most widely used

method in the analysis of criticality of nuclear reactors.
Consideration of criticality is generally referred to as an

eigenvalue problem for the multigroup neutron diffusion

equation for which the solution provides the eigenvalue effec-

tive multiplication factor, neutron flux distribution, and power

profiles in reactor cores. An adequate calculation may be ob-

tained from the solution of a three-dimensional (3D) neutron

diffusion equation using the aforementioned numerical

methods. The finite element method has always been a

fundamental numerical technique in reactor core calculations.

It has continuously been improved over decades, starting from

primal implementation in neutron diffusion equations up to

modern implementations with RaviarteThomas, hybrid, h-

adaptivity, and response matrix bases [9e11].

In general, inmost applications, thefinite elementmethod is

preferred to its principal alternative, the finite difference

method, due to its flexibility in the treatment of curved or

irregular geometries and the high rates of convergence attain-

ableby theuseofhigh-orderelements. Several researchershave

tried to develop convenient methods for solving 3Dmultigroup

neutrondiffusion equations using finite elementmethods in 3D

geometries. For example,Wangand collogues [11] presented 3D

h-adaptivity for multigroup neutron diffusion equations. The

solution of partial differential equations obtained using adap-

tive mesh refinement gives significantly higher accuracy at a

reduced numerical cost. In another paper, H�ebert [9] presented

how the RaviarteThomaseSchneider finite element method

was implemented for solving the diffusion equation in hexag-

onal 3D geometry. The RaviarteThomaseSchneider method

was based on a dual variational formulation defined over loz-

enges with a Piola transformation of the polynomial basis. An

efficient Alternating Direction Implicit (ADI) numerical tech-

nique was set up to solve the resultingmatrix system.

In the present study, the Galerkin finite element method

(GFEM) [12], a weighted residual method, is used to solve the

multigroup neutron diffusion equation in any arbitrary 3D

geometries such as rectangular and hexagonal reactor cores.

The unstructured tetrahedron elements generated by Gambit

are used to discretize the equations. Indeed, a key advantage

of the unstructured tetrahedron elements is their superiority

inmapping the curved boundaries or material interfaces in 3D

geometries. In addition, the running time of computation code

and the accuracy of the calculation may be optimized using

proper unstructured tetrahedron elements. For several rea-

sons, such as precision and simplicity, the Galerkin method

has been used widely in the development of computer codes

for solving diffusion or transport equations in different ge-

ometries [12,13]. The main advantage of the GFEM is that the

definition of boundary conditions in thismethod is easier than

that in the other methods [14]. The mentioned reasons

convinced us to use the GFEM for solving the multigroup for-

ward/adjoint neutron diffusion equation in 3D geometries.

An outline of the remainder of this contribution is as fol-

lows: In Section 2, we briefly introduce the numerical solution

of the multigroup neutron diffusion equation in 3D geome-

tries used to solve the forward/adjoint neutron diffusion

equation. Section 3 presents the main specification of the

IAEA-3D [15], VVER-1000 [16], and liquid metal fast breeder

reactor (LMFBR) [17] benchmark problems. Numerical results

and an analysis of the sensitivity of calculations to the

http://dx.doi.org/10.1016/j.net.2015.10.009
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number of elements are presented in Section 4. In this section,

we also discuss the results and advantages of applying the

unstructured tetrahedron elements. Section 5 gives a sum-

mary and concludes the paper.
2. Numerical solution of the multigroup
neutron diffusion equation in 3D geometries

2.1. Forward neutron diffusion equation

The multigroup neutron diffusion differential equation for

steady state may be written as Eq. (1) [18,19]:

�DgV
2fgðrÞ þ Sr;gfgðrÞ ¼

cg

keff

XG
g'¼1

nSf ;g'fg' ðrÞ þ
X
g'sg

Ss;g'/gfg' ðrÞ

g ¼ 1; 2; :::;G

(1)

where all quantities were defined in the Nomenclature section

of the present paper. The removal cross section (Sr,g) is the

summation of the absorption and out-scattering cross sec-

tions. The removal cross section in the energy group g is

expressed asSr;g ¼ Sa;g þ
P
g'sg

Ss; g/g' .

Linear partial differential equations such as Eq. (1) may be

solved using different numerical methods such as finite

element, finite difference, and nodal. Here, the GFEM is used to

discretize the neutron diffusion equation. To start the dis-

cretization, the whole solution volume is divided into the un-

structured tetrahedron elements, as shown in Fig. 1. The

advantage of the unstructured tetrahedron elements is their

superiority in mapping any 3D geometry. The elements are

generated using a Gambit mesh generator in FDNEUT format.

After generating the desired geometry, the material type and

boundary conditions are specified using the “Specify Contin-

uumTypes”and “SpecifyBoundaryTypes”, respectively. Then,

the geometry is divided into tetrahedron meshes using the

“Meshvolume” section.Toapplya size functionwhilemeshing

a model, GAMBIT first divides the bounding box into a set of

tetrahedron subsections and computes the size-function

values at the corners of each subsection. To determine the

size of anymeshelement that existswithin a given subsection,

GAMBIT interpolates between the values assigned to the
Fig. 1 e Unstructured tetrahedron elements.
subsection corners. The total number of background-grid

subsections affects the speed and accuracy of any size-

function application. If the background grid contains only a

few subsections, computational time is minimized, however,

the computed mesh-element sizes might only crudely

approximate the intended effects of the size function.

Conversely, if the number of subsections is very large, the

interpolated mesh-element sizes might accurately reflect the

intended effects of the size function, but computational time

might be prohibitive. The level to which GAMBIT divides

the background grid by means of the TOOLS.SFUNCTION.B-

GRID_NONLINEAR_ERR_PERCENT default variable may be

controlled. This default variable specifies the maximum

allowable percentage difference between the exact and inter-

polated size-function values computed at the center of any

subsection. If thedifferenceexceeds the specifiedvalue for any

subsection, GAMBIT further divides the subsection into a set of

smaller subsections.Applying thismethod iteratively, GAMBIT

subdivides the background griduntil the percentagedifference

for all subsections is less than the specifiedmaximum value.

In the linear approximation of shape function, the neutron

flux in each element may be considered as Eq. (2) [14]:

fðeÞðx; y; zÞ ¼ L1ðx; y; zÞf1 þ L2ðx; y; zÞf2 þ L3ðx; y; zÞf3

þ L4ðx; y; zÞf4 (2)

where Li ,i ¼ 1, 2, 3, 4 are the components of the shape function

in Eq. (3):

N
�

ðeÞðx; y; zÞ ¼ ½ L1ðx; y; zÞ L2ðx; y; zÞ L3ðx; y; zÞ L4ðx; y; zÞ � (3)

The shape function components are defined as Eq. (4):

Liðx; y; zÞ ¼ ai þ bixþ ciyþ diz
6V

; i ¼ 1; 2; 3;4 (4)

with

6V ¼ det

2
664
1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

3
775 (5)

in which, incidentally, the value V represents the volume of

the tetrahedron. Expanding the other relevant determinants

into their cofactors, we have

a1 ¼ det

2
4 x2 y2 z2
x3 y3 z3
x4 y4 z4

3
5 b1 ¼ �det

2
4 1 y2 z2
1 y3 z3
1 y4 z4

3
5

c1 ¼ �det

2
4 x2 1 z2
x3 1 z3
x4 1 z4

3
5 d1 ¼ �det

2
4 x1 y2 1
x2 y3 1
x3 y4 1

3
5

(6)

with the other constants being defined by cyclic interchange

of the subscripts in the order 1, 2, 3, 4.

The components of the shape function satisfy the criterion

given in Eq. (7) at all points of the domain:

L1ðx; y; zÞ þ L2ðx; y; zÞ þ L3ðx; y; zÞ þ L4ðx; y; zÞ ¼ 1 (7)

The GFEM is a weighted residual method in which the

purpose is to minimize the residual integral. In the weighted

residual methods, the weighting function is considered

asWðrÞ ¼ WTNðrÞ. There are (at least) four submethods (collo-

cation, subdomain, least squares, and Galerkin) for different

http://dx.doi.org/10.1016/j.net.2015.10.009
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functions ofWT. Since WT is a unit in the Galerkin method, the

global shape function ½NðrÞ� is considered a weighting function.

Multiplying Eq. (1) by the weighting function and inte-

grating the results over the solution space, Eq. (8) is obtained:

Z
V

dvWðrÞ
0
@� DgV

2fgðrÞ þ Sr;gfgðrÞ �
cg

keff

XG
g'¼1

nSf ;g'fg' ðrÞ

�
X
g'sg

Ss;g'/gfg' ðrÞ
1
A ¼ 0

(8)
Z
V

dvVN
�

ðeÞðrÞVN
�

TðeÞ ¼ 1
36VðeÞ

2
6664
bðeÞ
1 bðeÞ

1 þ cðeÞ1 cðeÞ1 þ dðeÞ
1 dðeÞ

1 bðeÞ
1 bðeÞ

2 þ cðeÞ1 cðeÞ2 þ dðeÞ
1 dðeÞ

2 bðeÞ
1 bðeÞ

3 þ cðeÞ1 cðeÞ3 þ dðeÞ
1 dðeÞ

3 bðeÞ
1 bðeÞ

4 þ cðeÞ1 cðeÞ4 þ dðeÞ
1 dðeÞ

4

bðeÞ
2 bðeÞ

1 þ cðeÞ2 cðeÞ1 þ dðeÞ
2 dðeÞ

1 bðeÞ
2 bðeÞ

2 þ cðeÞ2 cðeÞ2 þ dðeÞ
2 dðeÞ

2 bðeÞ
2 bðeÞ

3 þ cðeÞ2 cðeÞ3 þ dðeÞ
2 dðeÞ

3 bðeÞ
2 bðeÞ

4 þ cðeÞ2 cðeÞ4 þ dðeÞ
2 dðeÞ

4

bðeÞ
3 bðeÞ

1 þ cðeÞ3 cðeÞ1 þ dðeÞ
3 dðeÞ

1 bðeÞ
3 bðeÞ

2 þ cðeÞ3 cðeÞ2 þ dðeÞ
3 dðeÞ

2 bðeÞ
3 bðeÞ

3 þ cðeÞ3 cðeÞ3 þ dðeÞ
3 dðeÞ

3 bðeÞ
3 bðeÞ

4 þ cðeÞ3 cðeÞ4 þ dðeÞ
3 dðeÞ

4

bðeÞ
4 bðeÞ

1 þ cðeÞ4 cðeÞ1 þ dðeÞ
4 dðeÞ

1 bðeÞ
4 bðeÞ

2 þ cðeÞ4 cðeÞ2 þ dðeÞ
4 dðeÞ

2 bðeÞ
4 bðeÞ

3 þ cðeÞ4 cðeÞ3 þ dðeÞ
4 dðeÞ

3 bðeÞ
4 bðeÞ

4 þ cðeÞ4 cðeÞ4 þ dðeÞ
4 dðeÞ

4

3
7775

(14)
In the above equation, the differential part may be trans-

formed, applying the divergence theorem, to Eq. (9):

Z
V

dvWðrÞ
�
�DgV

2fgðrÞ
�
¼
Z
V

dvVWðrÞ:VfgðrÞ�
Z
V

dvV:
�
WðrÞVfgðrÞ

¼
Z
V

dvVWðrÞ:VfgðrÞ�
Z
A

dsWðrÞVfgðrÞ:n

(9)

where n is the normal unit vector on surface A. Two types of

boundary conditions are considered in the calculation. The

first boundary condition is no incoming neutrons at vacuum

boundaries, which is expressed as Eq. (10):

VfgðrÞ$n ¼ vfgðrÞ
vn

¼ �fgðrÞ
2Dg

(10)

The second boundary condition is zero net current or

perfectly reflective boundary condition, which is described by

Eq. (11):

vfgðrÞ
vn

¼ 0 (11)

Substituting the weighting function, Eqs. (9e11), and con-

verting the integration on the reactor domain to the sum of

the integrations on finite elements, the final form of Eq. (8) is

obtained as Eq. (12):

XE
e¼1

2
4Z

V

dvDgVN�
ðeÞðrÞVN

�
TðeÞðrÞfðeÞ

g þ SðeÞ
r;g

Z
V

dvN
�

ðeÞðrÞN
�

TðeÞðrÞfðeÞ
g

þ
Z
A

dsN
�

ðeÞðrÞN
�

TðeÞðrÞf
ðeÞ
g

2

3
5

¼
XE

e¼1

2
4 cg

keff

XG
g'¼1'

nSf ;g'

Z
V

dvN
�

ðeÞðrÞN
�

TðeÞðrÞfðeÞ
g'

þ
Xg�1

g'¼1

Sg'/g

Z
V

dvN
�

ðeÞðrÞN
�

TðeÞðrÞfðeÞ
g' (12)

When element matrices have to be evaluated, it will follow

that we are faced with the integration of quantities defined in
terms of volume coordinates over the tetrahedron region. In

this context, it is useful to note the following exact integration

expression:

Z
V

La1L
b
2L

c
3L

d
4dx dy dz ¼ a!b!c!d!

ðaþ bþ cþ dþ 3Þ! 6V (13)

We have encountered three types of integrals in solving Eq.

(12). The first integral has appeared, as a result of applying the

divergence theorem, as Eq. (14) [the first integral in the left-

hand side of Eq. (12)]:
where parameters ai, bi, ci, and di have been defined in Eq. (6)

The solution of the second integral on the left-hand side of

Eq. (12) and all integrals on the right-hand side of Eq. (12) are

given in Eq. (15):

Z
V

dvN
�

ðeÞðrÞN
�

TðeÞ ¼ 6VðeÞ

2
666666666664

1
60

1
120

1
120

1
120

1
120

1
60

1
120

1
120

1
120

1
120

1
60

1
120

1
120

1
120

1
120

1
60

3
777777777775

(15)

The solution of the last form of integrals appeared in Eq.

(12) [the third integral in the left-hand side of Eq. (12)] is given

as Eq. (16):

Z
A

dsN
�

ðeÞðrÞN
�

TðeÞ ¼ 2DðeÞ

2
6666666664

1
12

1
24

1
24

0

1
24

1
12

1
24

0

1
24

1
24

1
12

0

0 0 0 0

3
7777777775

(16)

Eq. (16) is the local boundary condition matrix for each

element in the situation when there is no incoming current.

Eq. (16) is a zero matrix for net current boundary conditions.

Assembling the local matrices, Eqs. (14e16), into the global

matrix, the system of equations, which is an eigenvalue

problem, is obtained. Here, the eigenvalue problem is solved

using the power iteration method. In the first step, a guess is

considered for neutronmultiplication factor (kð0Þeff ) and neutron

flux distributions (fð0Þ
g ) in each energy group. The unit vector

and the value of kð0Þeff ¼ 1 are considered as an initial guess. The

initial fission source is calculated as

Sð0Þf ðrÞ ¼ PG
g¼1nSf ;gðrÞ fð0Þ

g ðrÞ. In the second step, the neutron

diffusion equation is solved using the GFEM by considering

http://dx.doi.org/10.1016/j.net.2015.10.009
http://dx.doi.org/10.1016/j.net.2015.10.009
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the flat approximation for neutron flux distribution. The

calculated neutron flux vector and neutron multiplication

factor are used in the next iteration of the calculation: update

the fission integral as SðnÞf ðrÞ ¼ PG
g¼1nSf ;gðrÞ fðnÞ

g ðrÞ. The eigen-

value of the problem is defined as

kðnÞeff ¼ kðn�1Þ
eff

R
U

dU SðnÞf ðrÞ=R
U

dU Sðn�1Þ
f ðrÞ, where n denotes the iter-

ation number. In the next step, the values of kðnÞeff and f
ðnÞ
g were

compared with those of kðn�1Þ
eff and f

ðn�1Þ
g for all energy groups.

If the changes are greater than a prescribed tolerance, then

calculations are performed in the next iteration; otherwise,

the iteration is completed.

The output of the present section is the calculation of the

neutron multiplication factor and neutron flux distribution in

each energy group. Power distribution in the reactor core

may be calculated if the neutron flux distribution is

determined.
2.2. Adjoint diffusion equation

To solve the adjoint diffusion equation, it is noted that the

adjoint operator is the transpose of the direct operator [18,20].

To this end, Eq. (1) is formed in a matrix notation as Eq. (17):

Lf ¼ 1
keff

Ff (17)

where L is a loss operator and F a fission operator.

Therefore, the matrix form of the adjoint diffusion equa-

tion is written as Eq. (18):

Lyfy ¼ 1

ky
eff

Fyfy (18)

Here, Ly and Fy are the transpose of the L and F, respec-

tively [19]. In addition, fy and ky
eff refer to adjoint flux and

adjoint multiplication factor, respectively. To solve the

adjoint diffusion equation, the same method that was

applied to the forward diffusion equation is used. The algo-

rithm presented in the previous subsection for solving the

system of equations is also applied. The adjoint multiplica-

tion factor and adjoint flux in each energy group are obtained

from the calculation.
2.3. Neutron fixed source equation

The forward/adjoint neutron diffusion equations investigated

in the previous two subsections are the criticality problems. In

the present section, the solution to the neutron fixed source

problem is obtained. The general matrix form of the neutron

fixed source equation is given as Eq. (19):

Lf ¼ S (19)

where L and S are loss operator and external neutron source,

respectively.

In addition to the integrals mentioned in Eqs. (16)e(18), we

encounter a new form of integral in the discretization of Eq.

(19) using the GFEM. The solution to local integrals that

appeared due to the presence of a volumetric external source

is given as Eq. (20):
Z
V

dvN
�

ðeÞðrÞ ¼ 6VðeÞ

2
666666666664

1
24

1
24

1
24

1
24

3
777777777775

(20)

The system of equationsmay be obtained from assembling

the calculated local matrices for each element. The solution of

the system of equations gives the neutron flux distribution for

each energy group in the different regions.
3. Main specification of the benchmark
problems

3.1. Criticality benchmark problems

3.1.1. IAEA-3D PWR
The IAEA-3D PWR problem has been a very important

standard benchmark problem to measure the performance

of calculation methods for neutronics [15]. A total of 177

fuel assemblies, including nine fully rodded fuel assemblies

and four rodded fuel assemblies, compose the core; 64

reflector assemblies surround the core. The fuel assembly

pitch is 20 cm and the active height of a fuel assembly is

340 cm. The thickness of the axial reflector is 20 cm. Fig. 2

displays one-eighth of the IAEA-3DPWR. The boundary

conditions of the reactor core are no incoming current for

the external boundaries and perfectly reflective boundary

condition for the symmetry lines. Table 1 represents the

material cross section of each assembly for the IAEA-3D

reactor core.

3.1.2. VVER-1000
VVER-1000 is the second benchmark problem in this study

[16]. The radial fuel assembly lattice pitch is 24.1 cm. This

corresponds to the prototype VVER-1000 and is slightly

different from the actual Fuel Assembly (FA) pitch of 23.6 cm

in VVER-1000/V320; however, it is acceptable for a mathe-

matical benchmark. The core height is 355 cm, covered with

axial and radial reflectors. The total height is 426 cm,

including 35.5 cm thick axial reflectors. Fig. 3 shows 1/12 of the

benchmark core configuration. The boundary conditions of

the reactor core include no incoming current for the external

boundaries and perfectly reflective boundary condition for the

symmetry lines. The material cross section of each assembly

for VVER-1000 is given in Table 2.

3.1.3. LMFBR configuration in ReZ geometry
To validate the results obtained from the solution of the

neutron diffusion equation against the P1 approximation of

the neutron transport theory, we consider the multigroup

LMFBR benchmark problem in ReZ geometry [17]. The mate-

rial cross section for this problem is given in Table 3. The

neutron diffusion coefficient may be obtained from the total

cross section as D ¼ 1
3
P

t

. The reactor is a right circular cylin-

der. This is obtained by rotating the system shown in Fig. 4
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Table 1 e Material cross section of each assembly for the
IAEA-3D reactor core.

(5) (4) (3) (2) (1) Cross section

2.000 2.000 1.500 1.500 1.500 Ss;1/2

0.300 0.300 0.400 0.400 0.400 D1(cm)

0.000 0.000 0.000 0.000 0.000 nSf ;1ð=cmÞ
0.000 0.000 0.135 0.135 0.135 nSf ;2ð=cmÞ
0.000 0.000 0.010 0.010 0.010 Sa;1ð=cmÞ
0.055 0.010 0.130 0.085 0.080 Sa;2ð=cmÞ
0.040 0.040 0.020 0.020 0.020 Ss;1/2ð=cmÞ
3D, three dimensional.

Fig. 2 e One-eighth of the IAEA-3D Pressurized Water Reactor (PWR) core [15]. CL, Central Line.

Fig. 3 e One-twelfth of the VVER-1000
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about the Y-axis. Thus, we obtain a cylindrical reactor of

height 338.4 cm and radius 123.45 cm.
3.2. Neutron fixed source benchmark problems

The neutron fixed source equation may be solved in any 3D

and hexagonal geometries. Since the author could not find any

validated neutron fixed source benchmark problems, a simple

problem was considered to validate the calculation. Here, we

have presented a problem to validate the neutron fixed source

problem. Fig. 5 shows the multiregion cube with the known

material and unit volumetric neutron sources located in Re-

gions 1 and 9. The dimension of the considered cube is

30 cm � 30 cm � 10 cm. The material cross section of each

assembly for the considered cube is given in Table 4. The
reactor core [16]. CL, Central Line.
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Table 2 e Material cross section of each assembly for the VVER-1000 reactor core.

(7) (6) (5) (4) (3) (2) (1) Cross section

1.369 1.000 1.369 1.394 1.371 1.409 1.375 Ss;1/2

0.379 0.333 0.379 0.385 0.380 0.388 0.383 D1(cm)

0.006 0.000 0.006 0.006 0.006 0.005 0.005 nSf ;1ð=cmÞ
0.126 0.000 0.130 0.126 0.115 0.084 0.084 nSf ;2ð=cmÞ
0.009 0.016 0.009 0.010 0.009 0.010 0.008 Sa;1ð=cmÞ
0.086 0.053 0.088 0.095 0.080 0.075 0.066 Sa;2ð=cmÞ
0.015 0.025 0.015 0.014 0.015 0.014 0.016 Ss;1/2ð=cmÞ

Table 3 e Material cross section of each assembly in the LMFBR.

Ss;1/2ð=cmÞ Sa;2ð=cmÞ Sa;1ð=cmÞ D2(cm) D1(cm) Regions

0.400 0.131 0.026 0.483 1.365 1e9

LMFBR, liquid metal fast breeder reactor.
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boundary condition for the entire surface is no incoming

neutron current.
4. Numerical results and discussion

First, we present the results for the IAEA-3D reactor. Fig. 6

shows the IAEA-3D with unstructured tetrahedron elements.

Table 5 shows the calculated forward and adjoint multiplica-

tion factors versus the number of the unstructured tetrahe-

dron elements. In Fig. 7, power distribution in the reactor core

has been comparedwith the reference data [15]. The reference

values was calculated using the finite difference method with

the VENTURE computational code [21]. The data used as

reference in the present study were obtained by extrapolation

of results of the VENTURE computational code. Extrapolation

of results is done on the basis of error dependence on the

square of the mesh spacing [15].
Fig. 4 e View of 1/8 of the LMFBR [17]. BC, boundary

condition; LMFBR, liquid metal fast breeder reactor.
The same results for the VVER-1000 reactor have been

repeated in Table 6 and Fig. 8. In Fig. 8, the calculated power

distribution in the reactor core has been compared with the

reference data [16]. The reference values for the Schulz

benchmarkwere calculated using the CRONOS computational

code [22] and with the extrapolated finite element solution of

second order with Lagrange polynomials on triangular-z

meshes. CRONOS is a reactor code of Commissariat �a l'Ener-
gieAtomique (CEA), which uses finite elements and nodal

methods for homogenized diffusion and transport calcula-

tions; the code also has 3D kinetics and pin-by-pin diffusion

modules. The approximation in the hexagonal plane uses the

GausseLegendre numerical quadrature corresponding to

superconvergent finite elements. The discretization was per-

formed by considering 54 triangles per hexagon and Nz ¼ 24

meshes in the axial direction [16].

As shown in Tables 5 and 6, the calculations have been

performed for different numbers of elements in order to

analyze the sensitivity of the calculations to number the ele-

ments. As expected, the difference between the calculated

forward/adjoint multiplication factor and the reference value

decreases as the number of elements is increased. The mini-

mum RPE [defined as Eq. (21)] is 0.0136 for 540,130 elements in
Fig. 5 e The cube considered for validation of neutron fixed

source problem.
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Table 4 e Material cross section of each assembly for the considered cube.

Region Cross section (/cm) Energy group

1 2 3 4

Core 1
P

t 0.116757 0.221928 0.348579 0.350966

n
P

f 0.017811 0.004777 0.00632 0.024478P
s;g/g'

g 0.07235 0.03767 0.00019 0

0 0.21435 0.00416 3Ee07

0 0 0.33785 0.001801

0 0 0 0.32258

Core 2
P

t 0.116695 0.221781 0.348871 0.35633

n
P

f 0.019505 0.006108 0.008089 0.031306P
s;g/g'

g 0.07238 0.03709 0.00018 1.36Ee08

0 0.21375 0.00415 3.08Ee08

0 0 0.33741 0.001803

0 0 0 0.324236

Blanket 1
P

t 0.12268 0.234088 0.363161 0.345218

n
P

f 0.014126 0.000838 0.001073 0.004205P
s;g/g'

g 0.07493 0.04196 0.00022 0

0 0.22763 0.00431 1.76Ee07

0 0 0.35443 0.001793

0 0 0 0.329045

Blanket 2
P

t 0.132588 0.256029 0.38695 0.369594

n
P

f 0.017301 0.001358 0.001767 0.00692P
s;g/g'

g 0.07909 0.04652 0.00025 0

0 0.24868 0.00469 6.09Ee07

0 0 0.37668 0.001905

0 0 0 0.34972

Outer reflector
P

t 0.11317 0.177615 0.36705 0.411535P
s;g/g'

g 0.08232 0.03028 0.00007 0

0 0.17456 0.00282 0

0 0 0.36419 0.00163

0 0 0 0.407033

Fission spectrum 0.588153 0.40819 0.003638 1.95Ee05

Fig. 6 e View of IAEA-3D with unstructured tetrahedron elements.
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Table 5e Calculated forward/adjointmultiplication factor
for IAEA-3D reactor core.

Number of
elements

Unknowns keff kyeff RPE(%)

36,629 6,597 1.03093 1.03093 0.1846

41,691 8,690 1.03061 1.03061 0.1535

43,262 9,008 1.03047 1.03047 0.1399

51,017 10,471 1.02998 1.02998 0.0923

67,204 13,581 1.02965 1.02965 0.0603

81,826 16,430 1.02963 1.02963 0.0583

154,407 29,541 1.02936 1.02936 0.0321

276,650 47,932 1.02926 1.02926 0.0224

341,457 59,092 1.02922 1.02922 0.0185

540,130 92,821 1.02917 1.02917 0.0136

The reference effective multiplication factor is keff ¼ 1.02903 [15].

3D, three dimensional; RPE, Relative Percent Error.

Table 6e Calculated forward/adjointmultiplication factor
for VVER-1000.

Number of elements Unknowns keff kyeff RPE(%)

30,148 4,932 1.05156 1.05156 0.1934

35,412 6,345 1.05101 1.05101 0.1410

47,612 7,805 1.05078 1.05078 0.1191

51,467 9,165 1.05034 1.05034 0.0772

58,120 11,910 1.05003 1.05003 0.0476

66,796 13,256 1.04994 1.04994 0.0391

76,096 16,256 1.04982 1.04982 0.0276

101,245 20,789 1.04976 1.04976 0.0219

163,216 31,248 1.04970 1.04970 0.0162

297,643 45,789 1.04961 1.04961 0.0076

The reference effective multiplication factor is keff ¼ 1.04953 [16].

RPE, Relative Percent Error.
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IAEA-3D. The same parameter is 0.0076 for 297,643 elements

in VVER-1000. The calculated RPEs for the forward multipli-

cation factor and power distribution in the present study are

in the range of other same reported results [15,23].

RPEð%Þ ¼ calculated value� reference value
reference value

� 100 (21)

As expected, the calculated forward and adjoint multipli-

cation factors are the same when the considered accuracy is

five decimal digits.

To compare the results obtained from the solution of the

neutron diffusion equation with the neutron transport
Fig. 7 e Power distribution in the IAEA-3D reactor core. GFEM, G

Number; RPE, Relative Percent Error; Ref., Reference.
equation, the LMFBR is considered. The neutron multiplica-

tion factor obtained from the solution of the neutron diffusion

equation using GFEM-3D is compared with the reference data,

in which the neutron transport equation was solved using

quadratic finite element P1 approximation [17]. Fig. 9 shows

the LMFBR with unstructured tetrahedron elements. Table 7

shows the comparison between the calculated neutron

multiplication factors for different numbers of elements and

the reference values. As expected, the difference between the

calculated neutron multiplication factor and the reference

value decreases as the number of elements is increased. In

addition, Table 8 displays the comparison between the
alerkin finite element method.; FA Num., Fuel Assembly
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Fig. 8 e Power distribution in the VVER-1000 reactor core.
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averaged neutron flux in each region and the reference value.

The reference data are obtained through the solution of the

multigroup neutron transport equation with quadratic ele-

ments and P1 approximation. Since the solution of P1
approximation of the neutron transport equation using high-

order finite elements is compared with the results of linear

approximation of the GFEM for solution of the neutron diffu-

sion equation, the obtained errors are within acceptable

ranges.

In the aforementioned calculation, the unstructured tet-

rahedron elements generated by Gambit software have been

used. The advantage of these elements is their superiority in
Fig. 9 e View of the LMFBR with unstructured tetrahedron

elements. LMFBR, liquid metal fast breeder reactor.
mapping any 3D geometry. In addition, as discussed by the

author in a previously published work [12], an acceptable level

of accuracy with a low computational cost may be achieved

using the unstructured elements.

To validate the performed calculation for the neutron fixed

source problem, the results of GFEM-3D and CITATION [24]

computational codes have been compared. Since the calcu-

lation has been performed using small meshes in the CITA-

TION computational code, the obtained neutron flux

distribution from CITATION may be considered as reference

data. The calculated neutron flux distributions in a layer with

z ¼ 5 cm are compared in Table 9. As shown, the neutron flux

calculated using GFEM-3D has a good agreement with the re-

sults of the CITATION computation code.
5. Conclusion

In the present study, the GFEM-3D computational code was

developed to solve the multigroup neutron diffusion equation

based on the GFEM. Both the criticality and neutron fixed

source calculations may be performed using the computa-

tional code developed. The calculations were performed using

the unstructured tetrahedron elements for hexagonal, rect-

angular, and cylindrical 3D geometries. The forward/adjoint

multiplication factor, and forward/adjoint flux and power
Table 7 e Calculated neutron multiplication factor for the
LMFBR.

Number of elements Unknowns keff Absolute error

68,109 11,993 0.93860 �0.00172

95,669 16,767 0.93890 �0.00142

204,763 35,450 0.93919 �0.00113

394,076 67,869 0.93930 �0.00102

1,594,051 270,628 0.93954 �0.00078

The reference effective multiplication factor is keff ¼ 0.94032 [17].

LMFBR, liquid metal fast breeder reactor.
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Table 8 e Calculated group-average neutron fluxes for the LMFBR.

Region f1 f2 f2 f3

P1
a GFEM-3D P1 GFEM-3D P1 GFEM-3D P1 GFEM-3D

Core 1 1.176 � 10�5 1.181 � 10�5 9.227 � 10�5 9.243 � 10�5 3.400 � 10�5 3.429 � 10�5 2.165 � 10�6 2.319 � 10�6

Core 2 9.624 � 10�6 9.702 � 10�6 6.851 � 10�5 6.864 � 10�5 2.382 � 10�5 2.394 � 10�5 1.414 � 10�6 1.497 � 10�6

Blanket 1 1.129 � 10�6 1.089 � 10�6 1.767 � 10�5 1.776 � 10�5 9.355 � 10�6 9.495 � 10�6 1.021 � 10�6 1.118 � 10�6

Blanket 2 7.178 � 10�7 6.916 � 10�7 1.037 � 10�5 1.058 � 10�5 5.195 � 10�6 5.268 � 10�6 5.240 � 10�7 6.843 � 10�7

Reflector 3.426 � 10�8 2.532 � 10�8 1.595 � 10�6 1.761 � 10�6 1.353 � 10�6 1.501 � 10�6 3.044 � 10�7 4.126 � 10�7

GFEM, Galerkin finite element method; LMFBR, liquid metal fast breeder reactor; 3D, three dimensional.
a The results obtained from the solution of the P1 approximation using quadratic finite elements [17].

Table 9 e Comparison between the calculated neutron
flux distribution using the CITATION and GFEM-3D
computational codes.

Neutron flux in Energy
Group 2

Neutron flux in Energy
Group 1

Region

CITATION GFEM-3D CITATION GFEM-3D

0.3239 0.3199 4.2156 4.1831 1

0.0866 0.0866 0.8319 0.8357 2

0.0040 0.0040 0.0330 0.0327 3

0.0866 0.0866 0.8319 0.8359 4

0.0326 0.0326 0.2672 0.2676 5

0.0026 0.0026 0.0205 0.0203 6

0.0040 0.0040 0.0329 0.0327 7

0.0026 0.0026 0.0205 0.0203 8

0.0004 0.0004 0.0035 0.0035 9

GFEM, Galerkin finite element method; 3D, three dimensional.
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distributions are the outputs of the calculation performed by

the GFEM-3D computation code.

To validate the calculations, an analysis of 3D benchmark

reactor cores was carried out and the obtained results were

comparedwith the reference data. In both IAEA-3D and VVER-

1000 reactors, acceptable results for the neutron multiplica-

tion factor and power distribution were obtained. To validate

the present calculation against the multigroup neutron

transport theory, the obtained results for the LMFBR were

compared with the results of P1 approximation [17]. The

neutron fixed source problem was also validated through a

comparison of the neutron flux distributions calculated by the

GFEM-3D and CITATION computational codes.

A reader can conclude that the developed computer code is a

reliable tool for deterministic static calculations of both thermal

and fast 3D reactor cores. It is applicable to full-core fuel man-

agementanddesignapplicationstudiesofnuclear reactorcores.
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Nomenclature

fg(r) Forward flux in energy group g

f
y
gðrÞ Adjoint flux in energy group g

keff Forward neutron multiplication factor

kyeff Adjoint multiplication factor

cg Neutron spectrum in energy group g

Dg Diffusion constant in energy group g

Sr,g Macroscopic removal cross section in energy group g

Sf,g Macroscopic fission cross section in energy group g

Ss;g'/g Macroscopic scattering cross section from energy

group g' to g

n Fission neutron yield

V Nabla operator
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