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In 1970s, Gutman introduced the concept of the energy E(G) for a
simple graph G, which is defined as the sum of the absolute values

of the eigenvalues of G. This graph invariant has attracted much

attention, andmany lower andupper bounds have been established

for some classes of graphs among which bipartite graphs are of

particular interest. But there are only a few graphs attaining the

equalities of those bounds.We however obtain an exact estimate of

the energy for almost all graphs byWigner’s semi-circle law, which

generalizes a result of Nikiforov. We further investigate the energy

of random multipartite graphs by considering a generalization of

Wignermatrix, andobtain someestimates of the energy for random

multipartite graphs.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, G denotes a simple graph of order n. The eigenvalues λ1, . . . , λn of the

adjacency matrix A(G) = (aij)n×n of G are said to be the eigenvalues of the graph G. In chemistry,

the eigenvalues of a molecular graph has a closed relation to the molecular orbital energy levels of

�
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�-electrons in conjugated hydrocarbons. For the Hüchkel molecular orbital approximation, the total

�-electron energy in conjugatedhydrocarbons is given by the sumof absolute values of the eigenvalues

of the corresponding molecular graph in which the maximum degree is not more than 4 in general. In

1970s, Gutman [11] extended the concept of energy E(G) to all simple graphs G, and defined that

E(G) =
n∑

i=1

|λi|,

where λ1, . . . , λn are the eigenvalues of G. Evidently, one can immediately get the energy of a graph by

computing the eigenvalues of the graph. It is rather hard, however, to compute the eigenvalues for a

largematrix, even for a large symmetric (0,1)-matrix likeA(G). Somany researchers established a lot of

lower andupper bounds to estimate the invariant for some classes of graphs amongwhich the bipartite

graphs are of particular interest. For further details, we refer the readers to the comprehensive survey

[12]. But there is a common flaw for those inequalities that only a few graphs attain the equalities of

those bounds. Thus we can hardly see the major behavior of the invariant E(G) for most graphs with

respect to other graph parameters (|V(G)|, for instance). In this paper, however, we shall present an

exact estimate of the energy for almost all graphsbyWigner’s semi-circle law.Moreover,we investigate

the energy of randommultipartite graphs by employing the results on the spectral distribution of band

matrix which is a generalization of Wigner matrix.

Similar results were obtained in [6] for Laplacian energy LE(G) and in [7] for various other kinds

of egergies, such as signless Laplacian energy LE+(G), incidence energy IE(G), distance energy DE(G)
and Lapacian-energy like invariant LEL(G). Actually, the idea of this paper came out earlier.

The structure of our article is as follows. In the next section, we shall consider the random graphs

constructed from the classical Erdös–Rényi model. The second model is concerned with random

multipartite graphs which will be defined and explored in the last section.

2. The energy of Gn(p)

In this section, we shall formulate an exact estimate of the energy for almost all graphs byWigner’s

semi-circle law.

We start by recalling the Erdös–Rényi model Gn(p) (see [4]), which consists of all graphs with

vertex set [n] = {1, 2, . . . , n} in which the edges are chosen independently with probability p = p(n).
Apparently, the adjacency matrix A(Gn(p)) of the random graph Gn(p) ∈ Gn(p) is a random matrix,

and thus one can readily evaluate the energy of Gn(p) once the spectral distribution of the random

matrix A(Gn(p)) is known.

In fact, the study on the spectral distributions of random matrices is rather abundant and active,

which can be traced back to [17]. We refer the readers to [2,5,9] for an overview and some spectacular

progress in this field. One important achievement in that field is Wigner’s semi-circle law which

characterizes the limiting spectral distribution of the empirical spectral distribution of eigenvalues for

a sort of randommatrix.

In order to characterize the statistical properties of the wave functions of quantum mechanical

systems, Wigner in 1950s investigated the spectral distribution for a sort of randommatrix, so-called

Wigner matrix,

Xn :=(xij), 1� i, j � n,

which satisfies the following properties:

• xij ’s are independent random variables with xij = xji;• the xii’s have the same distribution F1, while the xij ’s (i /= j) have the same distribution F2;

• Var(xij) = σ 2
2 < ∞ for all 1� i < j � n.

We denote the eigenvalues of Xn by λ1,n, λ2,n, . . . , λn,n, and their empirical spectral distribution (ESD)

by
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ΦXn
(x) = 1

n
· #{λi,n|λi,n � x, i = 1, 2, . . . , n}.

Wigner [15,16] considered the limiting spectral distribution (LSD) of Xn, and obtained his semi-circle

law.

Theorem 2.1. Let Xn be a Wigner matrix. Then

lim
n→∞Φn−1/2Xn

(x) = Φ(x) a.s.

i.e., with probability 1, the ESDΦn−1/2Xn
(x) converges weakly to a distributionΦ(x) as n tends to infinity,

whereΦ(x) has the density

φ(x) = 1

2πσ 2
2

√
4σ 2

2 − x21|x| � 2σ2 .

Remark 2.1. One of classicalmethods to prove the theoremabove is themoment approach. Employing

the method, we can get more information about the LSD of Wigner matrix. Set μi = ∫
xdFi (i = 1, 2)

andXn = Xn − μ1In − μ2(Jn − In), where In is the unit matrix of order n and Jn is thematrix of order

n in which all entries equal 1. It is easily seen that the random matrix Xn is a Wigner matrix as well.

By means of Theorem 2.1, we have

lim
n→∞Φn−1/2Xn

(x) = Φ(x) a.s. (1)

Evidently, each entry of Xn has mean 0. Furthermore, one can show, using moment approach, that for

each positive integer k,

lim
n→∞

∫
xkdΦn−1/2Xn

(x) =
∫

xkdΦ(x) a.s. (2)

It is interesting that the existence of the second moment of the off-diagonal entries is the necessary

and sufficient condition for the semi-circle law, but there is no moment requirement on the diagonal

elements. For further comments on the moment approach and Wigner’s semi-circle law, we refer the

readers to the extraordinary survey by Bai [2].

Weshall say thatalmost every (a.e.) graph inGn(p)has a certainpropertyQ (see [4]) if theprobability

that a randomgraphGn(p)has thepropertyQ converges to1asn tends to infinity.Occasionally,weshall

write almost all instead of almost every. It is easy to see that if F1 is a pointmass at 0, i.e., F1(x) = 1 for

x � 0and F1(x) = 0 for x < 0, and F2 is theBernoulli distributionwithmeanp, then theWignermatrixXn

coincideswith the adjacencymatrixA(Gn(p)) of the randomgraphGn(p). Obviously,σ2 = √
p(1 − p)

in this case.

To establish the exact estimate of the energy E(Gn(p)) for a.e. graph Gn(p), we first present some

notions. In what follows, we shall use A to denote the adjacency matrix A(Gn(p)) for convenience. Set

A = A − p(Jn − In).

It is easy to check that each entry of A hasmean 0.We define the energy E(M) of a matrixM as the sum

of absolute values of the eigenvalues ofM. By virtue of the following two lemmas, we shall formulate

an estimate of the energy E(A), and then establish the exact estimate of E(A) = E(Gn(p)) by using

Lemma 2.4.

Let I be the interval [−1, 1].
Lemma 2.2. Let Ic be the set R \ I. Then

lim
n→∞

∫
Ic
x2dΦn−1/2A(x) =

∫
Ic
x2dΦ(x) a.s.

Proof. Suppose φn−1/2A(x) is the density of Φn−1/2A(x). According to Eq. (1), with probability 1,

φn−1/2A(x) converges to φ(x) almost everywhere as n tends to infinity. Since φ(x) is bounded on I,
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it follows that with probability 1, x2φn−1/2A(x) is bounded almost everywhere on I. Invoking bounded

convergence theorem yields

lim
n→∞

∫
I
x2dΦn−1/2A(x) =

∫
I
x2dΦ(x) a.s.

Combining the above fact with Eq. (2), we have

lim
n→∞

∫
Ic
x2dΦn−1/2A(x)= lim

n→∞
(∫

x2dΦn−1/2A(x)−
∫
I
x2dΦn−1/2A(x)

)

= lim
n→∞

∫
x2dΦn−1/2A(x)− lim

n→∞
∫
I
x2dΦn−1/2A(x)

=
∫
x2dΦ(x)−

∫
I
x2dΦ(x) a.s.

=
∫

Ic
x2dΦ(x) a.s.

Lemma 2.3 (Billingsley [3, p. 219]). Letμ be ameasure. Suppose that functions an, bn, fn converges almost

everywhere to functions a, b, f , respectively, and that an � fn � bn almost everywhere. If
∫
an dμ → ∫

a dμ
and

∫
bn dμ → ∫

b dμ, then
∫
fn dμ → ∫

f dμ.

We now turn to the estimate of the energy E(A). To this end, we first investigate the convergence

of
∫ |x|dΦn−1/2A(x). According to Eq. (1) and the bounded convergence theorem, we can deduce, by an

argument similar to the first part of the proof of Lemma 2.2, that

lim
n→∞

∫
I
|x|dΦn−1/2A(x) =

∫
I
|x|dΦ(x) a.s.

Obviously, |x| � x2 if x ∈ Ic :=R \ I. Set an(x) = 0, bn(x) = x2φn−1/2A(x), and fn(x) = |x|φn−1/2A(x).
Employing Lemmas 2.2 and 2.3, we have

lim
n→∞

∫
Ic

|x|dΦn−1/2A(x) =
∫
Ic

|x|dΦ(x) a.s.
Consequently,

lim
n→∞

∫
|x|dΦn−1/2A(x) =

∫
|x|dΦ(x) a.s. (3)

Suppose λ1, . . . , λn and λ
′
1, . . . , λ

′
n are the eigenvalues of A and n−1/2A, respectively. Clearly,

∑n
i=1|λi|

= n1/2
∑n

i=1|λ′
i|. By Eq. (3), we can deduce that

E
(
A
)
/n3/2 = 1

n3/2

n∑
i=1

|λi|

= 1

n

n∑
i=1

|λ′
i|

=
∫

|x|dΦn−1/2A(x)

→
∫

|x|dΦ(x) a.s. (n → ∞)

= 1

2πσ 2
2

∫ 2σ2

−2σ2
|x|
√
4σ 2

2 − x2dx

= 8

3π
σ2 = 8

3π

√
p(1 − p).

Therefore, the energy E(A) enjoys a.s. the equation as follows:
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E
(
A
)

= n3/2
(

8

3π

√
p(1 − p)+ o(1)

)
.

We proceed to investigating E(A) = E(Gn(p)) and present the following result due to Fan.

Lemma 2.4 (Fan [8]). Let X, Y, Z be real symmetric matrices of order n such that X + Y = Z. Then

n∑
i=1

|λi(X)| +
n∑

i=1

|λi(Y)| �
n∑

i=1

|λi(Z)|,

where λi(M) (i = 1, . . . , n) are the eigenvalues of the matrixM.

It is not difficult to verify that the eigenvalues of thematrix Jn − In are n − 1 and−1 of n − 1 times.

Consequently E(Jn − In) = 2(n − 1). One can readily see that E (p(Jn − In)) = pE(Jn − In). Thus,

E (p(Jn − In)) = 2p(n − 1).

Since A = A + p(Jn − In), it follows from Lemma 2.4 that with probability 1,

E(A)� E
(
A
)

+ E(p(Jn − In))

[3pt]=n3/2
(

8

3π

√
p(1 − p)+ o(1)

)
+ 2p(n − 1).

Consequently,

lim
n→∞ E(A)/n3/2 �

8

3π

√
p(1 − p) a.s. (4)

On the other hand, sinceA = A + p (−(Jn − In)), we candeduce by Lemma2.4 thatwith probability 1,

E(A)� E
(
A
)

− E (p (−(Jn − In)))

=E
(
A
)

− E(p(Jn − In))

=n3/2
(

8

3π

√
p(1 − p)+ o(1)

)
− 2p(n − 1).

Consequently,

lim
n→∞ E(A)/n3/2 �

8

3π

√
p(1 − p) a.s. (5)

Combining Eq. (4) with Eq. (5), we have

E(A) = n3/2
(

8

3π

√
p(1 − p)+ o(1)

)
a.s.

Recalling that A is the adjacency matrix of Gn(p), we thus obtain that a.e. random graph Gn(p) enjoys
the equation as follows:

E(Gn(p)) = n3/2
(

8

3π

√
p(1 − p)+ o(1)

)
.

Remark 2.2. Note that for p = 1
2
, Nikiforov [14] got the above equation. Here, our result is for any

probability p, which could be seen as a generalization of his result.
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3. The energy of the randommultipartite graph

We begin with the definition of the random multipartite graph. We use Kn;ν1 ,...,νm to denote the

complete m-partite graph with vertex set [n] whose parts V1, . . . , Vm (m = m(n)� 2) are such that

|Vi| = nνi = nνi(n), i = 1, . . . , m. Let Gn;ν1...νm(p) be the set of random m-partite graphs with vertex

set [n] in which the edges are chosen independently with probability p from the set of edges of

Kn;ν1 ,...,νm .We further introduce twoclassesof randomm-partitegraphs.DenotebyGn,m(p)andG′
n,m(p),

respectively, the sets of random m-partite graphs satisfy, respectively, the following conditions:

lim
n→∞max{ν1(n), . . . , νm(n)} > 0 and lim

n→∞
νi(n)

νj(n)
= 1 (6)

and

lim
n→∞max{ν1(n), . . . , νm(n)} = 0. (7)

One can easily see that to obtain the estimate of the energy for the random multipartite graph

Gn;ν1...νm(p) ∈ Gn;ν1...νm(p), we need to investigate the spectral distribution of the random

matrix A(Gn;ν1...νm(p)). It is not difficult to verify that A(Gn;ν1...νm(p)) would be a special case of a

random matrix Xn(ν1, . . . , νm) (or Xn,m for short) called a random multipartite matrix which satisfies

the following properties:

• xij ’s are independent random variables with xij = xji;• the xij ’s have the same distribution F1 if i and j ∈ Vk , while the xij ’s have the same distribution

F2 if i ∈ Vk and j ∈ [n] \ Vk , where V1, . . . , Vm are the parts of Kn;ν1 ,...,νm and k is an integer with

1� k �m;

• |xij| � K for some constant K .

Apparently, if F1 is a pointmass at 0 and F2 is a Bernoulli distribution with mean p, then the ran-

dom matrix Xn,m coincides with the adjacency matrix A(Gn;ν1...νm(p)). Thus, we can readily evaluate

the energy E(Gn;ν1...νm(p)) once we obtain the spectral distribution of Xn,m. In fact, the random

matrix Xn,m is a special case of the random matrix considered by Anderson and Zeitouni [1] in a

rather general setting called the band matrix model which can be regarded as one of generalization

of the Wigner matrix, and we shall employ their results to deal with the spectral distribution of

Xn,m.

The rest of this section will be divided into two parts. In the first part, we shall present, respec-

tively, exact estimates of the energies for random graphs Gn,m(p) ∈ Gn,m(p) and G′
n,m(p) ∈ G′

n,m(p) by
exploring the spectral distribution of the band matrix. We establish lower and upper bounds of the

energy for the random multipartite graph Gn;ν1...νm(p), and moreover we obtain an exact estimate of

the energy for the random bipartite graph Gn;ν1 ,ν2(p) in the second part.

3.1. The energy of Gn,m(p) and G′
n,m(p)

In this part, we shall formulate exact estimates of the energies for random graphs Gn,m(p) and
G′
n,m(p), respectively. For this purpose, we shall establish the following theorem. To state our result,

we first present some notations. Let In,m = (ip,q)n×n be a quasi-unit matrix such that

ip,q =
{
1 if p, q ∈ Vk,

0 if p ∈ Vk and q ∈ [n] \ Vk,

whereV1, . . . , Vm are thepartsofKn;ν1 ,...,νm andk is an integerwith1� k �m. Setμi = ∫
x dFi (i = 1, 2)

and

Xn,m = Xn,m − μ1In,m − μ2(Jn − In,m).

Evidently, Xn,m is a random multipartite matrix as well in which each entry has mean 0. To make our

statement concise, we defineΔ2 = (σ 2
1 + (m − 1)σ 2

2 )/m.
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Theorem 3.1

(i) If condition (6) holds, then

Φn−1/2Xn,m
(x) →P Ψ (x) as n → ∞

i.e., the ESDΦn−1/2Xn,m
(x) convergesweakly to a distributionΨ (x) in probability as n tends to infinity

where Ψ (x) has the density

ψ(x) = 1

2πΔ2

√
4Δ2 − x21|x| � 2Δ.

(ii) If condition (7) holds, then

Φn−1/2Xn,m
(x) →P Φ(x) as n → ∞.

Our theorem can be proved by a result established by Anderson and Zeitouni [1]. We begin with

a succinct introduction of the band matrix model defined by Anderson and Zeitouni [1], from which

one can readily see that a random multipartite matrix is a band matrix.

We fix a non-empty set C = {c1, c2, . . . , cm} which is finite or countably infinite. The elements of

C are called colors. Let κ be a surjection from [n] to the color set C, and we say that κ(i) is the color

of i. Naturally, we can obtain a partition V1, . . . , Vm of [n] according to the colors of its elements, i.e.,

two elements i and i′ in [n] belong to the same part Vj if and only if their colors are identical. We next

define the probability measure θm on the color set as follows:

θm(C) = θm(n)(C) = |κ−1(C)|/n, 1� i �m = m(n),

where C ⊆ C and κ−1(C) = {x ∈ [n] : κ(x) ∈ C}. Evidently, the probability space (C, 2C , θm) is a

discrete probability space. Set

θ = lim
n→∞ θm.

For each positive integer kwefix a bounded nonnegative function d(k) on color set and a symmetric

boundednonnegative function s(k) on the product of two copies of the color set.Wemake the following

assumptions:

• d(k) is constant for k /= 2;

• s(k) is constant for k /∈ {2, 4}.
Let {ξij}ni,j=1 be a family of independent real-valued mean zero random variables. We suppose that for

all 1� i, j � n and positive integers k,

E(|ξij|k)�
{
s(k)(κ(i), κ(j)) if i /= j,

d(k)(κ(i)) if i = j,

and moreover we assume that equality holds above whenever one of the following conditions holds:

• k = 2,

• i /= j and k = 4.

Inotherwords, the rule is to enforceequalitywhenever thenot-necessarily-constant functionsd(2), s(2)

or s(4) are involved, but otherwise merely to impose a bound.

We are now ready to present the random symmetric matrix Yn called band matrix in which the

entries are the r.v. ξij . Evidently, Yn is the same as Xn,m providing

s(2)(κ(i), κ(j)) =
{
σ 2
1 if κ(i) = κ(j),

σ 2
2 if κ(i) /= κ(j),

and d(2)(κ(i)) = σ 2
1 , 1� i, j � n. (8)

So the randommultipartite matrix Xn,m is a special case of the band matrix Yn.
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Define the standard semi-circle distributionΦ0,1 of zero mean and unit variance to be themeasure

on the real set of compact support with density φ0,1(x) = 1
2π

√
4 − x21|x| � 2. Anderson and Zeitouni

investigated the LSD of Yn and proved the following result (Theorem 3.5 in [1]).

Lemma 3.2 (Anderson and Zeitouni [1]). If
∫
s(2)(c, c′)θ(dc′) ≡ 1, then Φn−1/2Yn

(x) converges weakly

to the standard semi-circle distributionΦ0,1 in probability as n tends to infinity.

Remark 3.1. The main approach employed by Anderson and Zeitouni to prove the assertion is a com-

binatorial enumeration scheme for the different types of terms that contribute to the expectation of

products of traces of powers of thematrices. It is worthwhile to point out that by an analogousmethod

called moment approach one can readily obtain a stronger assertion for Xn,m that the convergence

could be valid with probability 1. Moreover, one can show that for each positive integer k,

lim
n→∞

∫
xkΦn−1/2Xn

(x) =
{∫

xkΨ (x) a.s. if condition (6) holds,∫
xkΦ(x) a.s. if condition (7) holds.

(9)

However, we shall not present the proof of Eq. (9) here since the arguments of the two methods are

similar and the calculation of the moment approach is rather tedious. We refer the readers to Bai’s

survey [2] for details.

Using Lemma 3.2, to prove Theorem 3.1, we just need to verify
∫
s(2)(c, c′)θ(dc′) ≡ 1. For Theorem

3.1(i), we consider the matrix Δ−1Xn,m where Δ2 = (σ 2
1 + (m − 1)σ 2

2 )/m. Note that condition (6)

implies that θm(ci) → 1/m as n → ∞, 1� i �m. By means of condition (8), one can readily see that

for the random matrixΔ−1Xn,m,∫
s(2)(c, c′)θ(dc′) = 1

Δ2

(
σ 2
1

m
+ (m − 1)σ 2

2

m

)
≡ 1.

Consequently, Lemma 3.2 implies that

Φn−1/2Δ−1Xn,m
→P Φ0,1 as n → ∞.

Therefore,

Φn−1/2Xn,m
→P Ψ (x) as n → ∞,

and thus the first part of Theorem 3.1 follows.

For the secondpart of Theorem3.1,we consider thematrixσ−1
2 Xn,m. Note that condition (7) implies

that θ(ci) = limn→∞θm(ci) = limn→∞νi(n) = 0, 1� i �m. By virtue of condition (8), if c /= c′ then
s(2)(c, c′) = 1. Consequently, for the random matrix σ−1

2 Xn,m, we have∫
s(2)(c, c′)θ(dc′)=

∫
s(2)(c, c′)χC\{c}θ(dc

′)

=
∫
χC\{c}θ(dc

′)

= θ(C \ {c}) ≡ 1.

As a result, Lemma 3.2 implies that

Φ
n−1/2σ−1

2 Xn,m
→P Φ0,1 as n → ∞.

Therefore,

Φn−1/2Xn,m
→P Φ(x) as n → ∞,

and thus the second part follows.

We now employ Theorem 3.1 to estimate the energy of Gn;ν1...νm(p) under condition (6) or (7). For

convenience, we shall useAn,m to denote the adjacencymatrixA(Gn,m(p)). One can readily see that if a
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randommultipartite matrix Xn,m satisfies condition (6), and F1 is a pointmass at 0 and F2 is a Bernoulli

distribution with mean p, then Xn,m coincides with the adjacency matrix An,m. Set

An,m = An,m − p(Jn − In,m), (10)

where In,m is the quasi-unit matrix whose parts are the same as An,m. Evidently, each entry of An,m has

mean 0. It follows from the first part of Theorem 3.1 that

Φn−1/2An,m
→P Ψ (x) as n → ∞.

Since the density ofΨ (x) is boundedwith the finite support, we can use a similar method for showing

Eq. (3) to prove that∫
|x|dΦn−1/2An,m

(x) →P

∫
|x|dΨ (x) as n → ∞.

Consequently,

E
(
An,m

)
/n3/2 =

∫
|x|dΦn−1/2An,m

(x)

→P

∫
|x|dΨ (x) as n → ∞

= m

2π(m − 1)σ 2
2

∫ 2
√

m−1
m
σ2

−2
√

m−1
m
σ2

|x|
√
4
(m − 1)σ 2

2

m
− x2dx

= 8

3π

√
m − 1

m
σ2 = 8

3π

√
m − 1

m
p(1 − p).

Therefore, a.e. randommatrix An,m enjoys the equation as follows:

E
(
An,m

)
= n3/2

⎛
⎝ 8

3π

√
m − 1

m
p(1 − p)+ o(1)

⎞
⎠ .

We now turn to the estimate of the energy E(An,m) = E(Gn,m(p)). Evidently,

Jn − In,m = (Jn − In)+ (In − In,m).

By virtue of Lemma 2.4, we have

E(Jn − In,m)� E(Jn − In)+ E(In − In,m).

Recalling the definition of the quasi-unit matrix In,m and the fact that E(Jn − In) = 2(n − 1), we have

E(Jn − In,m)�O(n). According to Eq. (10), we can use a similar argument for the estimate of the energy

E(A) from E(A) to show that a.e. randommatrix An,m enjoys the equation as follows:

E(An,m) = n3/2

⎛
⎝ 8

3π

√
m − 1

m
p(1 − p)+ o(1)

⎞
⎠ .

Since the randommatrix An,m is the adjacencymatrix of Gn,m(p), we thus show that a.e. random graph

Gn,m(p) enjoys the following equation:

E(Gn,m(p)) = n3/2

⎛
⎝ 8

3π

√
m − 1

m
p(1 − p)+ o(1)

⎞
⎠ .

In what follows, we shall use A′
n,m to denote the adjacency matrix A(G′

n,m(p)). It is easily seen that

if a random multipartite matrix Xn,m satisfies condition (7), and F1 is a pointmass at 0 and F2 is a

Bernoulli distribution with mean p, then Xn,m coincides with the adjacency matrix A′
n,m. Set

A′
n,m = A′

n,m − p(Jn − I′n,m),



W. Du et al. / Linear Algebra and its Applications 435 (2011) 2334–2346 2343

where I′n,m is the quasi-unit matrix whose parts are the same as A′
n,m. One can readily check that each

entry in A′
n,m has mean 0. It follows from the second part of Theorem 3.1 that

Φ
n−1/2A′

n,m
(x) →P Φ(x) as n → ∞.

Employing the argument analogous to the estimate of E(p(Jn − In,m)), E(An,m) and E(An,m), one can

evaluate, respectively, E(p(Jn − I′n,m)), E(A′
n,m) and E(A′

n,m), and finally show that a.e. random graph

G′
n,m(p) satisfying condition (7) enjoys the following equation:

E(G′
n,m(p)) = n3/2

(
8

3π

√
p(1 − p)+ o(1)

)
. (11)

3.2. The energy of Gn;ν1...νm(p)

In this part, we shall give an estimate of energy for the random multipartite graph Gn;ν1...νm(p)
satisfying the following condition:

lim
n→∞max{ν1(n), . . . , νm(n)} > 0 and there exist νi and νj , lim

n→∞
νi(n)

νj(n)
< 1. (12)

Moreover, for random bipartite graphs Gn;ν1 ,ν2(p) satisfying limn→∞νi(n) > 0 (i = 1, 2), we shall

formulate an exact estimate of its energy.

Anderson and Zeitouni [1] established the existence of the LSD of Xn,m with partitions satisfy-

ing condition (12). Unfortunately, they failed to get the exact form of the LSD, which appears to be

much hard and complicated. However, we can establish the lower and upper bounds for the energy

E(Gn;ν1...νm(p)) via another way.

Here, we still denote the adjacency matrix of multipartite graph satisfying condition (12) by An,m.

Without loss of generality, we assume, for some r � 1, |V1|, . . . , |Vr | are of orderO(n)while |Vr+1|, . . . ,|Vm| of order o(n). Let A′
n,m be a random symmetric matrix such that

A′
n,m(ij) =

⎧⎨
⎩
An,m(ij) if i or j /∈ Vs, 1� s� r,

tij if i, j ∈ Vs, 1� s� r and i > j,

0 if i, j ∈ Vs(r + 1� s�m) or i = j,

where tij ’s are independent Bernulli r.v. with mean p. Evidently, A′
n,m is a randommultipartite matrix.

By means of Eq. (11), we have E(A′
n,m) =

(
8
3π

√
p(1 − p)+ o(1)

)
n3/2.

Set

Dn = A′
n,m − An,m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K1

K2

. . .

Kr

0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

. (13)

One can readily see that Ki (i = 1, . . . , r) is a Wigner matrix and thus a.e. Ki enjoys the following:

E(Ki) =
(

8

3π

√
p(1 − p)+ o(1)

)
(νin)

3/2.

Consequently, a.e. matrix Dn satisfies the following:

E(Dn) =
(

8

3π

√
p(1 − p)+ o(1)

)(
ν

3
2

1 + · · · + ν
3
2
r

)
n

3
2 .

By Eq. (13), we have An,m + Dn = A′
n,m and A′

n,m + (−Dn) = An,m. Employing Lemma 2.4, we deduce
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E(A′
n,m)− E(Dn)� E(An,m)� E(A′

n,m)+ E(Dn).

Recalling that An,m is the adjacency matrix of Gn;ν1...νm(p), the following result is relevant.

Theorem 3.3. Almost every random graph Gn;ν1...νm(p) satisfies the inequality below⎛
⎝1 −

r∑
i=1

ν
3
2

i

⎞
⎠ n3/2 � E(Gn;ν1...νm(p))

(
8

3π

√
p(1 − p)+ o(1)

)−1

�

⎛
⎝1 +

r∑
i=1

ν
3
2

i

⎞
⎠ n3/2.

Remark 3.2. Since ν1, . . . , νr are positive real numberswith
∑r

i=1νi � 1,wehave
∑r

i=1νi(1 − ν
1/2
i ) >

0. Therefore,
∑r

i=1νi >
∑r

i=1ν
3/2
i , and thus 1 >

∑r
i=1ν

3/2
i . Hence, we can deduce, by the theorem

above, that a.e. random graph Gn;ν1...νm(p) enjoys the following

E(Gn;ν1...νm(p)) = O(n3/2).

In what follows, we investigate the energy of random bipartite graphs Gn;ν1 ,ν2(p) satisfying

limn→∞νi(n) > 0 (i = 1, 2), and present the precise estimate of E(Gn;ν1 ,ν2(p)) via Marčenko–Pastur

Law.

For convenience, set n1 = ν1n and n2 = ν2n. Let In,2 be a quasi-unitmatrixwith the same partition

as An,2. Set

An,2 = An,2 − p(Jn − In,2) =
[
O XT

X O

]
, (14)

where X is a random matrix of order n2 × n1 in which the entries X(ij) are iid. with mean zero and

variance σ 2 = p(1 − p). By the equation(
λIn1 0

−X λIn2

)(
λIn1 −XT

0 λIn2 − λ−1XXT

)
= λ

(
λIn1 −XT

−X λIn2

)
,

we have

λn · λn1 |λIn2 − λ−1XXT | = λn|λIn − An,2|,
and consequently,

λn1 |λ2In2 − XXT | = λn2 |λIn − An,2|.
Thus, the eigenvalues of An,2 are symmetric, and moreover λ is the eigenvalue of 1√

n1
An,2 if and only

if λ
2
is the eigenvalue of 1

n1
XXT . Therefore, we can characterize the spectral of An,2 by the spectral of

XXT . Bai formulated the LSD of 1
n1
XXT (Theorem 2.5 in [2]) by moment approach.

Lemma 3.4 (Marčenko-Pastur Law [2]). Suppose that X(ij)’s are iid. with mean zero and variance σ 2 =
p(1 − p), and ν2/ν1 → y ∈ (0,∞). Then, with probability 1, the ESD Φ 1

n1
XXT converges weakly to the

Marčenko–Pastur Law Fy as n → ∞ where Fy has the density

fy(x) = 1

2πp(1 − p)xy

√
(b − x)(x − a)1a� x � b

and has a point mass 1 − 1/y at the origin if y > 1 where a = p(1 − p)
(
1 − √

y
)2

and b = p(1 −
p)
(
1 + √

y
)2

.

By the symmetry of the eigenvalues of 1√
n1
An,2, to evaluate the energy E( 1√

n1
An,2), we just need to

consider the positive eigenvalues. Define Θn2(x) =
∑

1λ<x

n2
. One can see that the sum of the positive

eigenvalues of 1√
n1
An,2 equals n2

∫∞
0 xdΘn2(x). Suppose 0 < x1 < x2, we have
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Θn2(x2)− Θn2(x1) = Φ 1
n1

XXT (x
2
2)− Φ 1

n1
XXT (x

2
1).

It follows that∫ ∞
0

xdΘn2(x) =
∫ ∞
0

√
xdΦ 1

n1
XXT (x).

Note that all the eigenvalues of 1
n1
XXT are nonnegative. By themoment approach (see [2] for instance),

we have∫
x2dΦ 1

n1
XXT (x) =

∫ ∞
0
x2dΦ 1

n1
XXT (x)

→
∫ ∞

0
x2 dFy(x) a.s.(n → ∞)

=
∫
x2 dFy(x).

Analogous to the proof of Eq. (3), we can deduce that

lim
n→∞

∫ ∞
0

√
xdΦ 1

n1
XXT (x) =

∫ ∞
0

√
x dFy(x) a.s.

Therefore,

lim
n→∞

∫ ∞
0

xdΘn2(x) =
∫ √

b

√
a

1

πp(1 − p)y

√
(b − x2)(x2 − a)dx a.s.

Let

Λ =
∫ √

b

√
a

1

πp(1 − p)y

√
(b − x2)(x2 − a)dx.

We obtain that for a.e. An,2 the sum of the positive eigenvalues is (Λ+ o(1))n2
√

n1. Thus, a.e. E(An,2)
enjoys the equation as follows:

E(An,2) = (2Λ+ o(1))n2
√

n1.

Furthermore, we can get

Λ =
√

b[(a + b)Ep(1 − a/b)− 2aEk(1 − a/b)]
3πp(1 − p)y

,

where Ek is the complete elliptic integral of the first kind and Ep is the complete elliptic integral of the

second kind. Let t ∈ [0, 1], the two kinds of complete elliptic integral are defined as follows

Ek(t) =
∫ π

2

0

dθ√
1 − t sin2 θ

and Ep(t) =
∫ π

2

0

√
1 − t sin2 θdθ.

The value can be got by mathematical software for every parameter t.

Employing Eq. (14) and Lemma 2.4, we have

E(An,2)− E(p(Jn − In,2))� E(An,2)� E(An,2)+ E(p(Jn − In,2)).

Together with the fact that E(p(Jn − In,2)) = 2p
√
ν1ν2n and n2

√
n1 = ν2

√
ν1n

3/2, we get

E(An,2) = (2ν2
√
ν1Λ+ o(1))n3/2.

Therefore, the following theorem is relevant.
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Theorem 3.5. Almost every random bipartite graph Gn;ν1 ,ν2(p) with ν2/ν1 → y enjoys

E(Gn;ν1 ,ν2(p)) = (
2ν2

√
ν1Λ+ o(1)

)
n3/2.

Wenowcompare the above estimate of the energy E(Gn;ν1 ,ν2(p))with bounds obtained in Theorem

3.3 for p = 1/2. In fact, Koolen andMoulton [13] established the following upper bound of the energy

E(G) for simple graphs G:

E(G)�
n

2
(
√

n + 1).

Consequently, for p = 1/2, this upper bound is better than ours. So we turn our attention to compare

the estimate of E(Gn;ν1 ,ν2(1/2)) in Theorem3.5with the lower bound in Theorem3.3. By the numerical

computation (see the table below), the energy E(Gn;ν1 ,ν2(1/2)) of a.e. random bipartite Gn;ν1 ,ν2(1/2)
is close to our lower bound.

y E(Gn;ν1 ,ν2(p)) Lower bound of E(Gn;ν1 ,ν2(p))
1 (0.3001 + o(1))n3/2 (0.1243 + o(1))n3/2

2 (0.2539 + o(1))n3/2 (0.1118 + o(1))n3/2

3 (0.2071 + o(1))n3/2 (0.0957 + o(1))n3/2

4 (0.1731 + o(1))n3/2 (0.0828 + o(1))n3/2

5 (0.1482 + o(1))n3/2 (0.0727 + o(1))n3/2

6 (0.1294 + o(1))n3/2 (0.06470 + o(1))n3/2

7 (0.1148 + o(1))n3/2 (0.05828 + o(1))n3/2

8 (0.1031 + o(1))n3/2 (0.05301 + o(1))n3/2

9 (0.09353 + o(1))n3/2 (0.04862 + o(1))n3/2

10 (0.08558 + o(1))n3/2 (0.04491 + o(1))n3/2
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