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1. Introduction

Throughout this paper, G denotes a simple graph of order n. The eigenvalues A, ..

., Ap of the

adjacency matrix A(G) = (aj)nxn of G are said to be the eigenvalues of the graph G. In chemistry,
the eigenvalues of a molecular graph has a closed relation to the molecular orbital energy levels of
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n-electrons in conjugated hydrocarbons. For the Hiichkel molecular orbital approximation, the total
n-electron energy in conjugated hydrocarbons is given by the sum of absolute values of the eigenvalues
of the corresponding molecular graph in which the maximum degree is not more than 4 in general. In
1970s, Gutman [11] extended the concept of energy £(G) to all simple graphs G, and defined that

n
£(G) =) |l
i=1
where A4, . . ., A, are the eigenvalues of G. Evidently, one can immediately get the energy of a graph by

computing the eigenvalues of the graph. It is rather hard, however, to compute the eigenvalues for a
large matrix, even for a large symmetric (0, 1)-matrix like A(G). So many researchers established a lot of
lower and upper bounds to estimate the invariant for some classes of graphs among which the bipartite
graphs are of particular interest. For further details, we refer the readers to the comprehensive survey
[12]. But there is a common flaw for those inequalities that only a few graphs attain the equalities of
those bounds. Thus we can hardly see the major behavior of the invariant £(G) for most graphs with
respect to other graph parameters (|V(G)|, for instance). In this paper, however, we shall present an
exact estimate of the energy for almost all graphs by Wigner's semi-circle law. Moreover, we investigate
the energy of random multipartite graphs by employing the results on the spectral distribution of band
matrix which is a generalization of Wigner matrix.

Similar results were obtained in [6] for Laplacian energy LE(G) and in [7] for various other kinds
of egergies, such as signless Laplacian energy LE™ (G), incidence energy IE(G), distance energy DE(G)
and Lapacian-energy like invariant LEL(G). Actually, the idea of this paper came out earlier.

The structure of our article is as follows. In the next section, we shall consider the random graphs
constructed from the classical Erdés-Rényi model. The second model is concerned with random
multipartite graphs which will be defined and explored in the last section.

2. The energy of G, (p)

In this section, we shall formulate an exact estimate of the energy for almost all graphs by Wigner’s
semi-circle law.

We start by recalling the Erdés-Rényi model G,(p) (see [4]), which consists of all graphs with
vertex set [n] = {1, 2, ..., n} in which the edges are chosen independently with probability p = p(n).
Apparently, the adjacency matrix A(G,(p)) of the random graph G,(p) € Gn(p) is a random matrix,
and thus one can readily evaluate the energy of G,(p) once the spectral distribution of the random
matrix A(Gp(p)) is known.

In fact, the study on the spectral distributions of random matrices is rather abundant and active,
which can be traced back to [17]. We refer the readers to [2,5,9] for an overview and some spectacular
progress in this field. One important achievement in that field is Wigner’s semi-circle law which
characterizes the limiting spectral distribution of the empirical spectral distribution of eigenvalues for
a sort of random matrix.

In order to characterize the statistical properties of the wave functions of quantum mechanical
systems, Wigner in 1950s investigated the spectral distribution for a sort of random matrix, so-called
Wigner matrix,

Xn:=(;), 1<ij<n
which satisfies the following properties:

e x;j's are independent random variables with x;; = x;;;

e the x;i’s have the same distribution F, while the x;i’s (i # j) have the same distribution F,;

o Var(x;) :022 <ooforall1<i<j<n.

We denote the eigenvalues of X, by A1, A, . . ., Anp, and their empirical spectral distribution (ESD)
by
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1
Dx, (x) = E -#{AiplAin<xi=1,2,...,n}

Wigner [15,16] considered the limiting spectral distribution (LSD) of X,;, and obtained his semi-circle
law.

Theorem 2.1. Let X;, be a Wigner matrix. Then
nl_l)rréo Pp-1y2x, () = @ (x) as.

i.e., with probability 1, the ESD @,-1/2x (x) converges weakly to a distribution @ (x) as n tends to infinity,
where @ (x) has the density

1
P(x) = S 32V 4022 _X21|x|<2¢72-

2103

Remark 2.1. One of classical methods to prove the theorem above is the moment approach. Employing
the method, we can get more information about the LSD of Wigner matrix. Set w; = [ xdF; (i = 1, 2)
and X,, = X;, — w1l — ua(Jn — I,), where I, is the unit matrix of order n and J, is the matrix of order
n in which all entries equal 1. It is easily seen that the random matrix X, is a Wigner matrix as well.
By means of Theorem 2.1, we have

nl_i)rrolo Dp12x, (X) = P(x) ass. (1)

Evidently, each entry of X,, has mean 0. Furthermore, one can show, using moment approach, that for
each positive integer k,

Jim [ %do, g, (0 = [ ¥do (0 as. )

It is interesting that the existence of the second moment of the off-diagonal entries is the necessary
and sufficient condition for the semi-circle law, but there is no moment requirement on the diagonal
elements. For further comments on the moment approach and Wigner’s semi-circle law, we refer the
readers to the extraordinary survey by Bai [2].

We shall say that almost every (a.e.) graph in G, (p) has a certain property Q (see [4]) if the probability
thatarandom graph G, (p) has the property Q converges to 1 as n tends to infinity. Occasionally, we shall
write almost all instead of almost every. It is easy to see that if F; is a pointmass at 0, i.e., F; (x) = 1 for
x>0andF; (x) = Oforx < 0,andF;, is the Bernoulli distribution with mean p, then the Wigner matrix X,
coincides with the adjacency matrix A(Gy (p)) of the random graph G, (p). Obviously, o = +/p(1 — p)
in this case.

To establish the exact estimate of the energy £(G,(p)) for a.e. graph G, (p), we first present some
notions. In what follows, we shall use A to denote the adjacency matrix A(G,(p)) for convenience. Set

A=A—-p(n—In.

It is easy to check that each entry of A has mean 0. We define the energy £(M) of a matrix M as the sum
of absolute values of the eigenvalues of M. By virtue of the following two lemmas, we shall formulate
an estimate of the energy £(A), and then establish the exact estimate of £(A) = £(G,(p)) by using
Lemma 2.4.

Let I be the interval [—1, 1].

Lemma 2.2. Let I be the set R \ I. Then

lim xqu§n71/z§(x) = /16 x2d® (x) a.s.

n—o0 Ji

Proof. Suppose ¢,-125(x) is the density of @,-1,25(x). According to Eq. (1), with probability 1,
@,—125(x) converges to ¢ (x) almost everywhere as n tends to infinity. Since ¢ (x) is bounded on I,
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it follows that with probability 1, x2¢n_1 /25 (x) is bounded almost everywhere on . Invoking bounded
convergence theorem yields

. 2 2
n1_1)rr010 /Ix d®,-1p5(x) = /Ix dod(x) a.s.
Combining the above fact with Eq. (2), we have
. 2 : 2 2
nl_l)[‘lgo ICX d@n—uzx(x):nl_l)ngo </X d@n—l/ZK(X) - /’X d@n—uzi(x))
— lim / XA, 1500 — lim. /1 2D 125(x)
=/x2d<15(x) — /xzdd)(x) a.s.
1

=/Fx2dq)(x) a.s.

Lemma 2.3 (Billingsley [3, p. 219]). Let i« be a measure. Suppose that functions ay, by, f; converges almost
everywhere to functions a, b, f, respectively, and that a, < f, < by, almost everywhere. If [ a, du — [adu
and [ by,du — [bdu, then [ fodu — [ fdu.

We now turn to the estimate of the energy £(A). To this end, we first investigate the convergence
of [ |x|d®,-1/25(x). According to Eq. (1) and the bounded convergence theorem, we can deduce, by an
argument similar to the first part of the proof of Lemma 2.2, that

lim_ /1 IXIdD, 105 (xX) = /1 IX|d (x) a.s.

Obviously, |x| <x? if x € I*:=R \ L. Set a,(x) = 0,b,(x) = x*¢p,-125(x), and f(X) = [x|P,-1/25 ().
Employing Lemmas 2.2 and 2.3, we have

im_ /1 IXIdD, 105 (X) = /I IX|d (x) a.s.

Consequently,
ngngo/ IXIdD, 105 (xX) = / IX|d (x) a.s. (3)
Suppose A1,. .., Agand A}, . . ., A, are the eigenvalues of A and n~'/2A, respectively. Clearly, >, [ ;|

=n'/2y0, |X;|. By Eq. (3), we can deduce that
Y 1 X
S(A)/n ZW;M”
i=

1%
ROMLY
L
f X|dD, 125 ()

—>/|x|d<15(x) a.s. (n— o0)

1 207
/ |x|\/40F — x2dx

- 27T022 —207
8 8
3702 = 3, VP —P)

Therefore, the energy £(A) enjoys a.s. the equation as follows:
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£ (A) =2 (b —p + o).

We proceed to investigating £(A) = £(Gp(p)) and present the following result due to Fan.

Lemma 2.4 (Fan [8]). Let X, Y, Z be real symmetric matrices of order n such that X +Y = Z. Then

oM+ DW= Y 1%@),

i=1 i=1 i=1

where A(M) i=1,..., n) are the eigenvalues of the matrix M.

It is not difficult to verify that the eigenvalues of the matrixJ, — I, aren — 1and —1 of n — 1 times.
Consequently £(J, — I) = 2(n — 1). One can readily see that £ (p(J, — I)) = p£(Jn — I,). Thus,

€U —In)) = 2p(n —1).

Since A = A + p(J, — I,), it follows from Lemma 2.4 that with probability 1,
eB) <& (R) +E@Un — 1))

[3pt] =n®? ( S —p)+ o(l)) +2p(n — 1),

Consequently,
lm (@A) /n*? < 1—p)as. 4
im £(A)/ 3 \/ p(1 —p) (4)
On the other hand, sinceA = A + p (—(J, — I,)), we can deduce by Lemma 2.4 that with probability 1,
£B)>€ (R) = £ (P (=(n — 1))
=¢ (A) = £(Un — 1)

n3/2 <3 \/ﬂ—i_ 0(1)) —2p(n—1).

Consequently,

nango 5(A)/n3/2 > %,/p(l —p)a.s. (5)

Combining Eq. (4) with Eq. (5), we have

£A) = 2 ( o —p) + o(l))

Recalling that A is the adjacency matrix of G,(p), we thus obtain that a.e. random graph G, (p) enjoys
the equation as follows:

£(Ga(p)) = /2 ( Jo—p) + o(l))

Remark 2.2. Note that for p = 1, Nikiforov [14] got the above equation. Here, our result is for any

probability p, which could be seen as a generalization of his result.

[\
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3. The energy of the random multipartite graph

We begin with the definition of the random multipartite graph. We use Ky ,,,...»,, to denote the
complete m-partite graph with vertex set [n] whose parts Vy, ..., V;; (m = m(n) > 2) are such that
|Vil = nv; = nvi(n),i =1,...,m. Let Gy, ...y, (p) be the set of random m-partite graphs with vertex
set [n] in which the edges are chosen independently with probability p from the set of edges of
Kn:v,.... v, We further introduce two classes of random m-partite graphs. Denote by G;, , (p) and g,’l,m (p),
respectively, the sets of random m-partite graphs satisfy, respectively, the following conditions:

lim max{vi(n),...,vp(n)} >0 and lim vim) = (6)
n—oo n—oo vj(n)

and
nl_l)ngo max{vi(n),...,vp(n)} = 0. (7)

One can easily see that to obtain the estimate of the energy for the random multipartite graph
Gn:vy..v;m (P) € Gnzvy..v, (P), We need to investigate the spectral distribution of the random
matrix A(Gy:y,...v,, (p)). It is not difficult to verify that A(Gy.,,...,,,(p)) would be a special case of a
random matrix X, (vy, . . ., Vi) (or X,y for short) called a random multipartite matrix which satisfies
the following properties:

e x;j's are independent random variables with x;; = x;;;

o the x;j's have the same distribution F; if i and j € Vj, while the x;;’s have the same distribution
Fyifi € Vyandj € [n] \ Vi, where V1, .. ., V, are the parts of K., .y, and k is an integer with
1<k<m;

e |xij| <K for some constant K.

Apparently, if F; is a pointmass at 0 and F, is a Bernoulli distribution with mean p, then the ran-
dom matrix Xp,, coincides with the adjacency matrix A(Gp. y,...v,, (P)). Thus, we can readily evaluate
the energy £(Gy;y,...v,(p)) once we obtain the spectral distribution of X, . In fact, the random
matrix X, is a special case of the random matrix considered by Anderson and Zeitouni [1] in a
rather general setting called the band matrix model which can be regarded as one of generalization
of the Wigner matrix, and we shall employ their results to deal with the spectral distribution of
Xnm-

The rest of this section will be divided into two parts. In the first part, we shall present, respec-
tively, exact estimates of the energies for random graphs G, (p) € Gnm(p) and G;,m (p) € gg‘m (p) by
exploring the spectral distribution of the band matrix. We establish lower and upper bounds of the
energy for the random multipartite graph G.,,,...,, (p), and moreover we obtain an exact estimate of
the energy for the random bipartite graph Gy, ,, v, (p) in the second part.

3.1. The energy of G m(p) and G, ,,(p)

In this part, we shall formulate exact estimates of the energies for random graphs G, (p) and
G,/Lm(p), respectively. For this purpose, we shall establish the following theorem. To state our result,
we first present some notations. Let I, = (ip,q)nxn be a quasi-unit matrix such that

; _ |1 ifpqgeV,
P4 10 ifpe Vyandq € [n]\ Vi,

whereVy, .. ., Vjp arethe parts of Ky, .., andkisanintegerwith1 <k <m.Setu; = [xdF; (i =1,2)
and

Xn,m = Xnom — 1lym — pn20n — Inm).
Evidently, X;, , is a random multipartite matrix as well in which each entry has mean 0. To make our
statement concise, we define A2 = (012 + (m— 1)022)/m.
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Theorem 3.1

(i) If condition (6) holds, then
Py-1/2%, x) >p¥(x) asn — oo

i.e, the ESD @, -12x (x) converges weakly to a distribution W (x) in probability as n tends to infinity
where ¥ (x) has the density

V) = 27TA2\/4A2 — X1y <24.

(ii) If condition (7) holds, then
‘Dnﬂ/zin,m (x) =>p @(x) asn — o0.

Our theorem can be proved by a result established by Anderson and Zeitouni [1]. We begin with
a succinct introduction of the band matrix model defined by Anderson and Zeitouni [1], from which
one can readily see that a random multipartite matrix is a band matrix.

We fix a non-empty set C = {c1,Cy, . .., Cpy} Which is finite or countably infinite. The elements of
C are called colors. Let k be a surjection from [n] to the color set C, and we say that « (i) is the color
of i. Naturally, we can obtain a partition Vy, .. ., Vj, of [n] according to the colors of its elements, i.e.,
two elements i and i’ in [n] belong to the same part V; if and only if their colors are identical. We next
define the probability measure 6,, on the color set as follows:

Om(C) = Omny(C) = I~ (O)|/n, 1<i<m=m(n),
where C € ¢ and «~1(C) = {x € [n] : k(x) € C}. Evidently, the probability space (c,2°,6,,) is a
discrete probability space. Set
0= nlllgo Om.
For each positive integer k we fix a bounded nonnegative function d® on color set and a symmetric

bounded nonnegative function s’ on the product of two copies of the color set. We make the following
assumptions:

e d® is constant for k # 2;
e s® is constant for k ¢ {2, 4}.

Let {§;; }3-=1 be a family of independent real-valued mean zero random variables. We suppose that for
all 1 <i,j < n and positive integers k,

s@ @), k() ifi ],
d® (k (i)) if i = j,

and moreover we assume that equality holds above whenever one of the following conditions holds:

E(1&1%) <

o k=2,
e i*jandk =4.

In other words, the rule is to enforce equality whenever the not-necessarily-constant functions d @ @
or s* are involved, but otherwise merely to impose a bound.

We are now ready to present the random symmetric matrix Y, called band matrix in which the
entries are the r.v. §;. Evidently, Y, is the same as X, , providing
o if k(i) = k()

@ (e (), 1 (7)) =
s (ke (i), k() = o2 if k(i) # k()

So the random multipartite matrix X, n, is a special case of the band matrix Yj.

and d@ (k(i)) = o2, 1<ij<n. (8)
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Define the standard semi-circle distribution @¢; of zero mean and unit variance to be the measure

on the real set of compact support with density ¢g 1(x) = ﬁs/4 — x?1}y| <2. Anderson and Zeitouni
investigated the LSD of Y,, and proved the following result (Theorem 3.5 in [1]).

Lemma 3.2 (Anderson and Zeitouni [1]). If s@(c, Y@ (dc) = 1, then D172y, () converges weakly
to the standard semi-circle distribution @ in probability as n tends to infinity.

Remark 3.1. The main approach employed by Anderson and Zeitouni to prove the assertion is a com-
binatorial enumeration scheme for the different types of terms that contribute to the expectation of
products of traces of powers of the matrices. It is worthwhile to point out that by an analogous method
called moment approach one can readily obtain a stronger assertion for X;, ,, that the convergence
could be valid with probability 1. Moreover, one can show that for each positive integer k,

[x*w(x)a.s.  if condition (6) holds,

. k - _
ML / X Pyorg, () = ( Jx*®(x) a.s.  if condition (7) holds. ®)

However, we shall not present the proof of Eq. (9) here since the arguments of the two methods are
similar and the calculation of the moment approach is rather tedious. We refer the readers to Bai's
survey [2] for details.

Using Lemma 3.2, to prove Theorem 3.1, we just need to verify [ s@(c, )@ (dc’) = 1.For Theorem
3.1(i), we consider the matrix A‘lin'm where A% = (012 + (m— 1)0’22)/111. Note that condition (6)
implies that 6;,,(c;) — 1/masn — 00,1 <i<m. By means of condition (8), one can readily see that
for the random matrix A™'Xp, m,

/s<2>(c, o) = - (Glz n (m_])azz) =1,
A2 \'m m
Consequently, Lemma 3.2 implies that
Pp-1/2p-1%,,, —P Po1 asn — 00.
Therefore,
@nq/zxnym —p ¥(x) asn — 00,

and thus the first part of Theorem 3.1 follows.

For the second part of Theorem 3.1, we consider the matrix o, 1in,m. Note that condition (7) implies
that 8(c;) = limy_ 00Om(ci;) = lim,_, sovi(n) = 0,1 <i < m. By virtue of condition (8), if ¢ # ¢’ then
s@(c, ¢’) = 1. Consequently, for the random matrix O’{lin’m, we have

[s@crowcr= [P .o 00)

= [ xe 0y
=60\ {ch=1
As a result, Lemma 3.2 implies that
an‘ma{lfn,m —p P91 asn — o0.
Therefore,
¢n71/2in’m —p @(x) asn — 0o,

and thus the second part follows.
We now employ Theorem 3.1 to estimate the energy of Gy.,,, ..., (p) under condition (6) or (7). For
convenience, we shall use A, ;,; to denote the adjacency matrix A(Gp,m (p)). One can readily see thatifa
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random multipartite matrix X, ; satisfies condition (6), and F; is a pointmass at 0 and F, is a Bernoulli
distribution with mean p, then X, ; coincides with the adjacency matrix A, p,. Set

Kn,m = Apm — pUn — Inm), (10)

where I, ; is the quasi-unit matrix whose parts are the same as A, ;. Evidently, each entry of A, m has
mean 0. It follows from the first part of Theorem 3.1 that

dﬁnq/zgnm —p W(x) asn — oQ.

Since the density of ¥ (x) is bounded with the finite support, we can use a similar method for showing
Eq. (3) to prove that

/|x|d¢n_1/zgnm(x) op / X|d¥ (x) asn — oo.

Consequently,
¢ (Aum) /2 = [1¥1d®, 128, ()

—>p/|x|dl1/(x) asn — oo

m PN = m— 1)
- / Y A
2n(m — Doy J—2/"q,
8 'm—1
= — oy = 71)(1 —D)-
3 m

Therefore, a.e. random matrix Ay, ,, enjoys the equation as follows:

¢ (Rum) = n*/? (;,/m;]p(l “p+ 0(1)) .

We now turn to the estimate of the energy £(Aym) = £(Gym(p)). Evidently,
Jn=Thym = Un —In) + (Ih — Inm).
By virtue of Lemma 2.4, we have
EQn —Iom) <E€Qn —In) + £ — Iym).

Recalling the definition of the quasi-unit matrix I, and the fact that £(J, — I) = 2(n — 1), we have
E(Jn — Inm) <O(n). According to Eq. (10), we can use a similar argument for the estimate of the energy
£(A) from £(A) to show that a.e. random matrix A;,;; enjoys the equation as follows:

E(Anm) = n*/? (;,/ mT_]p(l —p)+ 0(1)) :

Since the random matrix Ay, is the adjacency matrix of G, m (p), we thus show that a.e. random graph
Gn,m(p) enjoys the following equation:

8 —1
£Crm(p)) = 12 (371,/'"mp(1 —p)+ 0(1)) .

In what follows, we shall use A,’Lm to denote the adjacency matrix A(G{?‘m (p)). It is easily seen that
if a random multipartite matrix Xy, satisfies condition (7), and F; is a pointmass at 0 and F, is a
Bernoulli distribution with mean p, then X, ;; coincides with the adjacency matrix A,’lm. Set

Wn,m = A1/1,m —p(n — l;’m),
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where I, . is the quasi-unit matrix whose parts are the same as Ay, ;.. One can readily check that each
entry in En,m has mean 0. It follows from the second part of Theorem 3.1 that

‘an/zpmm (x) =>p @(x) asn — oo.

Employing the argument analogous to the estimate of £(p(Jn — Inm)), £(Anm) and £(Aym), one can
evaluate, respectively, £(p(J, — I;vm)), E(A'ym) and € (A,/m), and finally show that a.e. random graph
G,/Lm(p) satisfying condition (7) enjoys the following equation:

8
£(G, () = 12 (gw/pm o+ o(l)) . (11)

3.2. The energy of Gp; y,...v,, (D)

In this part, we shall give an estimate of energy for the random multipartite graph Gy.y, ..., (P)
satisfying the following condition:

. . i)
nl_l)ngo max{v{(n), ..., vn(n)} > 0and there exist v; and vj, nllm

U 5 < 1. (12)

Moreover, for random bipartite graphs Gp.,,., (p) satisfying lim,_.oovi(n) > 0 (i = 1,2), we shall
formulate an exact estimate of its energy.

Anderson and Zeitouni [1] established the existence of the LSD of X, , with partitions satisfy-
ing condition (12). Unfortunately, they failed to get the exact form of the LSD, which appears to be
much hard and complicated. However, we can establish the lower and upper bounds for the energy
E(Gp;v,...v, (P)) via another way.

Here, we still denote the adjacency matrix of multipartite graph satisfying condition (12) by A, m.
Without loss of generality, we assume, for somer > 1, |V4], . . ., |V;| are of order O(n) while |V;4], . . .,
|Vin| of order o(n). Let A,’,Lm be a random symmetric matrix such that

Apm(j) ifiorjé¢ V,1<s<r,
A L) = 1t ifi,j e Vi, 1<s<randi > j,
0 ifi,je Vs(r+1<s<m)ori=},
where t;;’s are independent Bernulli r.v. with mean p. Evidently, A;,m is a random multipartite matrix.
By means of Eq. (11), we have 8(A{,‘m) = (%«/p(l —-p)+ 0(1)) n3/2,
Set

K;
K>

D,=A —Aym= K, ) (13)

/
,m

0

nxn

One can readily see thatK; (i = 1,...,r) is a Wigner matrix and thus a.e. K; enjoys the following:

£(K) = (%\/p(l —p)+ o) (a2

Consequently, a.e. matrix Dy, satisfies the following:

20 = (oo =Py o)) (vf 44 ) nd.

By Eq. (13), we have Ay n + Dy = Ay, and A + (—Dp) = Ay . Employing Lemma 2.4, we deduce
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E(AL ) — EDp) <EBrm) <EA, ) + EDy).
Recalling that Ap, r is the adjacency matrix of Gp. y, .1, (p), the following result is relevant.

Theorem 3.3. Almost every random graph Gp.,, ., (p) satisfies the inequality below
ro s o3
(1 -2 Vf) 32 <E(Grivy.nn () ( VP —p) + 0(1)) (1 +3 uf) n’/?
i=1 i=1

Remark 3.2. Since vy, . . ., v, are positive real numbers with }j_; v; <1,wehave >, v;(1 — vl/z

0. Therefore, Y i_;v; > Zr -3/ 2 and thus 1 > i V32 . Hence, we can deduce, by the theorem
above, that a.e. random graph G,w] ..vm (D) enjoys the followmg

EGnvy..vp (P)) = O(*/?).

) >

In what follows, we investigate the energy of random bipartite graphs Gy, y, v, (p) satisfying
limp— o vi(n) > 0 (i = 1, 2), and present the precise estimate of £(Gy;,,1, (p)) via Marenko-Pastur
Law.

For convenience, setn; = vynandny = vyn. Letl,; be a quasi-unit matrix with the same partition
as App. Set

0] XT} (1)

K11,2 =Ap2 —p(n —In2) = |:X 0

where X is a random matrix of order n, x n; in which the entries X(ij) are iid. with mean zero and
variance o2 = p(1 — p). By the equation

(Mn] 0 > (Alnl —x' ) _ (Mn] —xT>
=X M)\ 0 AL, —ATIXXT e U
we have
A AM AL, — ATIXXT| = A" AL, — Az,
and consequently,
AN, — XXT| = A™2 (AL, — Apal.
Thus, the eigenvalues of A, are symmetric, and moreover X is the eigenvalue of fAnZ if and only
if 1% is the eigenvalue of ;—IXXT. Therefore, we can characterize the spectral of A, by the spectral of
XXT. Bai formulated the LSD of n]—]XXT (Theorem 2.5 in [2]) by moment approach.

Lemma 3.4 (Marcenko-Pastur Law [2]). Suppose that X(ij)’s are iid. with mean zero and variance 6% =
p(1 — p), and v /vy — y € (0, 00). Then, with probability 1, the ESD &1 yyr converges weakly to the
n

Marcenko-Pastur Law F, as n — oo where F, has the density
) = v (b—x)(x—ad)lg<x<p

2
and has a point mass 1 — 1/y at the origin if y > 1 where a = p(1 — p) (1 — ﬁ) and b =p(1 —

D) (1 + ﬁ)z

2rp(1 — p)xy

By the symmetry of the eigenvalues of fA” 2, to evaluate the energy £( fA” 2), we just need to

consider the positive eigenvalues. Define &, (x) = % . One can see that the sum of the positive
eigenvalues of fﬂnz equals ny fo xdOp, (x). Suppose 0 < X1 < X, we have
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an (x2) — @nz (x1) = d)LXXT (X%) - (DLXXT (X%)
nq nq
It follows that

fo * xdOn, (0) = /0 * VD 1 ().

Note that all the eigenvalues of n]—lXXT are nonnegative. By the moment approach (see [2] for instance),
we have

o0
#4010 = [ %40 1000
ny 0 ny
® 5
—>/ x“ dF,(x) a.s.(n — 00)
0

= / X dFy (x).
Analogous to the proof of Eq. (3), we can deduce that

o0 o0
nl_l)ngofo \/}d(p%xxf(x) :/0 \/)_<dFy(x) a.s.

Therefore,

li * d v ! V(b — x2)(x2 d
n_l)rgofo X @)nz(x)_f\/a m (b —x?)(x* — a)dx a.s.

Let

7
A= / ’ ;,/(b —x2)(x2 — a)dx.
Va mp(1 —p)y

We obtain that for a.e. A, > the sum of the positive eigenvalues is (A + 0(1))ny./n1. Thus, a.e. £(An2)
enjoys the equation as follows:

E(An2) = (24 + o(1)n2/n1.

Furthermore, we can get

L Vb[(a + b)Ep(1 — a/b) — 2aEk(1 — a/b)]
- 37p(1 — p)y

where Ek is the complete elliptic integral of the first kind and Ep is the complete elliptic integral of the
second kind. Let t € [0, 1], the two kinds of complete elliptic integral are defined as follows

s dg i
EK() =/2 T and Ep@) =/2 J1 = tsin? 6do.
0 /1 —tsin?0 0

The value can be got by mathematical software for every parameter t.
Employing Eq. (14) and Lemma 2.4, we have
E(An2) — E(PUn — In2)) <E(Ar2) <EAR2) + E(Un — In2)).-
Together with the fact that £(p(Jn — In2)) = 2p/vivanand ny /iy = vzﬁn3/2, we get
£(An2) = ua/v14 + o(1)n*/.

Therefore, the following theorem is relevant.
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Theorem 3.5. Almost every random bipartite graph Gp. ., ., (p) with v, /v1 — y enjoys
E(Gruny (1)) = (2v23/V1 A + 0(1)) n*/2.

We now compare the above estimate of the energy £(Gy.,,,, (p)) with bounds obtained in Theorem
3.3 for p = 1/2.In fact, Koolen and Moulton [13] established the following upper bound of the energy
£(G) for simple graphs G:

£(G) < g(ﬁ+1).

Consequently, for p = 1/2, this upper bound is better than ours. So we turn our attention to compare
the estimate of £(Gy; , 1, (1/2)) in Theorem 3.5 with the lower bound in Theorem 3.3. By the numerical
computation (see the table below), the energy £(Gy;y,,v, (1/2)) of a.e. random bipartite Gy, 1, (1/2)
is close to our lower bound.

y E(Gnyvy 1, (D)) Lower bound of £(Gp. ,,v, (D))
1 (0.3001 + o(1))n/? (0.1243 + o(1))n>/?
2 (0.2539 + o(1))n3/? (0.1118 + 0(1))n>/?
3 (0.2071 4 0(1))n>/? (0.0957 + o(1))n>/?
4 (0.1731 + o(1))n>/? (0.0828 + o(1))n3/?
5 (0.1482 + o(1))n>/? (0.0727 + o(1))n>/?
6 (0.1294 + 0(1))n3/? (0.06470 + o(1))n3/?
7 (0.1148 + 0(1))n3/2 (0.05828 + 0(1))n>/?
8 (0.1031 4 o(1))n?/? (0.05301 + o(1))n3/?
9 (0.09353 + o(1))n>/? (0.04862 + o(1))n>/?
10 (0.08558 + 0(1))n>/? (0.04491 + o(1))n3/2
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