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SUMMARY

Reactive oxygen species (ROS) can act cell autono-
mously and in a paracrine manner by diffusing into
nearby cells. Here, we reveal a ROS-mediated para-
crine signaling mechanism that does not require en-
try of ROS into target cells. We found that under
physiological conditions, nonmyocytic pericardial
cells (PCs) of the Drosophila heart contain elevated
levels of ROS compared to the neighboring cardio-
myocytes (CMs). We show that ROS in PCs act in a
paracrine manner to regulate normal cardiac func-
tion, not by diffusing into the CMs to exert their func-
tion, but by eliciting a downstream D-MKK3-D-p38
MAPK signaling cascade in PCs that acts on the
CMs to regulate their function. We find that ROS-D-
p38 signaling in PCs during development is also
important for establishing normal adult cardiac func-
tion. Our results provide evidence for a previously
unrecognized role of ROS in mediating PC/CM inter-
actions that significantly modulates heart function.
INTRODUCTION

Reactive oxygen species (ROS), including hydrogen peroxide

(H2O2) and superoxide anions (O2
�), are highly reactive mole-

cules produced by the incomplete reduction of oxygen, and their

production is typically associated with disease pathogenesis.

However, it is now recognized that moderate amounts of ROS

can act as signaling molecules to modulate normal cellular pro-

cesses (Covarrubias et al., 2008; Dröge, 2002). Studies of the

physiological and pathophysiological effects of ROS signaling

have classically focused on cell-autonomous signaling, in which

intracellular production of ROS induces changes in the ROS-

generating cell (Owusu-Ansah and Banerjee, 2009; Thannickal

and Fanburg, 2000). More recently, evidence suggests that

ROS could serve as paracrine signaling mediators upon patho-

logical stimulation (Love et al., 2013; Niethammer et al., 2009;

Wu et al., 2012). For instance, in response to tissue damage,
wound-derived H2O2 diffuses into nearby neutrophils and acts

in these cells to direct their recruitment to the wound (Nietham-

mer et al., 2009; Yoo et al., 2011). A paracrine role of ROS-

mediated signaling in the control of tissue physiology is currently

unclear and is the central theme of investigation in this study.

Paracrine communication between neighboring cells and the

surrounding extracellular matrix (ECM) enables cells within a tis-

sue to position and coordinate their functions, features that are

critical for maintaining tissue homeostasis. In the human heart,

which comprises a broad array of cell types, signaling pathways

within myocytes and crosstalk between myocytes and nonmyo-

cytes play crucial and interdependent roles in ensuring that the

heart responds appropriately to physiological and pathological

stimuli (Tian andMorrisey, 2012; Tirziu et al., 2010). For example,

paracrine signaling from the epicardium and endocardium

through pathways such as fibroblast growth factor- and retinoic

acid-dependent signaling is critical for proper growth and differ-

entiation of the myocardium (Brade et al., 2011; Merki et al.,

2005). Although paracrine interactions between myocytes and

nonmyocytes play important roles in the proper development

and function of the myocardium, the underlying mechanisms

remain poorly understood.

The Drosophila heart is a linear tube made up of two central

rows of cardiomyocytes (CMs) surrounded by nonmyocytic peri-

cardial cells (PCs) (Figure 1A). Drosophila PCs are known to crit-

ically influence myocardial development and postnatal heart

function (Buechling et al., 2009; Fujioka et al., 2005), similar to

the crucial role played by intercellular signaling between myo-

cytes and nonmyocytes in the mammalian heart. Using a combi-

nation of genetic and imaging approaches, we found higher

concentrations of ROS in PCs than in CMs under physiological

conditions. The genetic alteration of ROS levels to sub- or supra-

physiological levels in PCs adversely affects cardiac rhythm and

morphology, suggesting that ROS in PCs act in a paracrine

manner to regulate normal cardiac function. We showed that

genetic down- or upregulation of ROS levels in the PCs does

not alter the levels of ROS in CMs. Moreover, similar manipula-

tions of ROS-metabolizing enzymes in the CMs do not have

any effect on cardiac function. Taken together, these results indi-

cate that ROS do not diffuse from PCs into CMs to exert their

function, but rather, ROS control the production of downstream
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Figure 1. The PCs of the Drosophila Heart Contain Increased Levels of ROS Compared to Adjacent CMs that Affect Heart Structure and

Function

(A) Schematic of an adult Drosophila heart depicting two central rows of CMs (red) surrounded by parallel rows of PCs (green).

(B–E) DHE fluorescence in control third-instar larval hearts (B), control adult hearts (C), and hearts from adult flies with PC-specific (Dot-GAL4 driver) catalase

overexpression (D) or catalase RNAi (catalaseRNAi) (E). Arrows indicate increased and decreased fluorescence in PCs compared with the adjacent CMs.

(F) Whole-heart expression (tubulin-GAL4 driver) of cyto-roGFP2-Orp1 showing ubiquitous expression of the reduced form (left; green) and detectable levels of

the oxidized form only in PCs (right; blue).

(G–J) Representative 5 s M-mode traces showing movement of heart tube walls (y axis) versus time (x axis) for hearts from 1-week-old flies with the indicated

genotypes. w1118, wild-type.

(K–N) Combined histograms showing the distribution of HPs for 1-week-old flies. n, number of flies.

(legend continued on next page)
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signals in PCs that act in a paracrine manner on CMs to regulate

their proper function. Furthermore. we identified that ROS acti-

vate downstream D-MKK3-D-p38 signaling in PCs that in turn

directs normal cardiac function and that ROS-D-p38 signaling

in PCs during development plays an important role in establish-

ing normal adult cardiac function.

RESULTS

Elevated Levels of Physiological ROS in PCs versus
in CMs
To determine whether ROS could participate in the crosstalk be-

tween PCs and CMs that has been recognized to be important

for heart physiology inDrosophila (Buechling et al., 2009; Fujioka

et al., 2005), we first examined the levels of endogenous ROS in

the heart under physiological conditions. We probed live

Drosophila heart tissues with the membrane-permeable dye,

dihydroethidium (DHE), in which oxidation by endogenous

ROS, particularly O2
�, generates stable fluorescent products

(Owusu-Ansah and Banerjee, 2009). We found that DHE fluores-

cence was stronger in PCs than in the adjacent CMs (Figures 1B

and 1C), indicating the presence of higher levels of endogenous

ROS in PCs than in CMs. Furthermore, we used a genetically en-

coded fluorescent redox reporter, cyto-roGFP2-Orp1 (Albrecht

et al., 2011), in conjunction with the bipartite GAL4/UAS system

(Brand and Perrimon, 1993), to assess the endogenous state in

PCs and CMs. Orp1-mediated oxidation, particularly by H2O2,

induces a conformational change in the linked roGFP2 variant

that changes its fluorescence from 488 to 405 nm excitation

(Albrecht et al., 2011). Consistent with the results of the DHE ex-

periments, we found higher levels of oxidized roGFP2-Orp1 in

PCs than in CMs (Figure 1F). In addition to ROS detection, we

also examined cardiac expression of a GFP construct driven

by the promoter of the ROS response gene glutathione S-trans-

ferase D1 (GSTD1) (Sawicki et al., 2003). We found a higher

expression of GSTD1-GFP (Sykiotis and Bohmann, 2008) in

PCs than in CMs (Figures S1A and S1B). Collectively, these ob-

servations demonstrate that under physiological conditions,

ROS levels are higher in PCs than in CMs and, therefore, might

serve as paracrine signals to regulate heart function.

Pericardial ROS Are Essential for Maintaining Normal
Cardiac Function in a Paracrine Manner
To investigate the role of pericardial ROS on cardiac function, we

decreased ROS levels specifically in PCs by using a PC-specific

Dot-GAL4 driver to overexpress the H2O2-degrading enzyme,

catalase (Zámocký et al., 2012). In flies that overexpress catalase

specifically in their PCs (Dot-GAL4>catalase), the levels of phys-

iological ROS were significantly reduced (Figures 1D, S1C, S1E,

and S1F). To assess the functionality of adult hearts with pericar-

dial overexpression of catalase, we used the Semi-automatic

Optical Heartbeat Analysis (SOHA) method to precisely quantify
(O–Q) AI (O) and heart dimensions (P and Q) in 1- and 4-week-old flies. All error ba

two-tailed paired t test and one-way ANOVA. NS, not significant.

(R–W) Representative confocal images of phalloidin staining (filamentous actin; re

of the indicated genotypes. Double-headed arrows indicate similar regions of th

See also Figures S1–S4.
heart contractility parameters in semi-intact adult fly heart prep-

arations (Ocorr et al., 2009). Compared to wild-type (w1118) and

control (Dot-GAL4) hearts, the Dot-GAL4>catalase hearts ex-

hibited a marked deterioration of the regularity of heart rhythm,

as shown by the increased frequency of irregular beats (Figures

1G–1I), broader distribution of heart periods (HPs; heartbeat

length) (Figures 1K–1M), and significantly increased arrhythmia

index (AI; SD of the HP, reflecting beat-to-beat variation; Fink

et al., 2009) (Figure 1O). Further indicating cardiac dysfunction,

flies with PC-expressed catalase exhibited a narrowed heart

tube phenotype at 1 week of age, as manifested by significant

decreases in the diastolic and systolic diameters compared

with control hearts (Figures 1P, 1R, and 1S). Interestingly, by

4 weeks of age, the flies with reduced pericardial ROS levels

had enlarged heart tubes compared with control hearts because

of significantly greater diastolic diameters (Figures 1Q, 1U, and

1V). Thus, lowering ROS levels in PCs induced dynamic remod-

eling of the myocardial tube, consisting of an initial thinning fol-

lowed by progressive dilation. These cardiac deficits were also

observed when catalase was overexpressed with another PC-

specific GAL4 driver, Sns-GCN-GAL4 (Zhuang et al., 2009) (Fig-

ures S2A–S2C, S2F, S2G, S2J, and S2K). In a second approach

to reduce pericardial ROS levels, we overexpressed another

antioxidant enzyme, superoxide dismutase (SOD), which cata-

lyzes O2
� detoxification (Miller, 2012). Similar to the effects of

catalase, PC-specific overexpression of both the cytosolic and

mitochondrial isoforms of SOD (SOD1 and SOD2) increased

the incidence of cardiac arrhythmia and caused constriction of

the heart tube (Figures S3A, S3B, S3D, S3E, and S3G–S3I).

Thus, reducing ROS levels specifically in PCs adversely affects

myocardial function and morphology.

We next asked whether increasing ROS levels in PCs would

also affect cardiac function. First, ROS levels were increased

systemically by feeding flies with the oxidative stress-generating

agents, paraquat and H2O2. Both agents elicited a significant in-

crease in the AI and a tendency toward thinner heart tube dimen-

sions (Figures S4A and S4B). Next, ROS levels were specifically

increased in PCs by RNAi-mediated knockdown (KD) of catalase

(Figures 1E, S1D, S1E, and S1G). Interestingly, PC-specific

elevation of ROS levels also caused an abnormal heart rhythm,

similar to that observed following PC-specific reduction of

ROS levels; namely, increased frequency of irregular beats,

broader distribution of HPs, and significantly increased the AI

(Figures 1J, 1N, 1O, S2D, and S2H) compared with wild-type

and control hearts (Figures 1G, 1H, 1K, 1L, 1O, S2B, and S2F).

Of note, PC-targeted KD of catalase caused cardiac narrowing

with significant reductions in both the diastolic and systolic

diameters of young and old flies compared with control flies

(Figures 1P–1R, 1T, 1U, 1W, and S2K). Moreover, PC-specific

KD of both SOD1 and SOD2 also caused cardiac phenotypes

similar to those of the pericardial catalase KD flies (Figures

S3C and S3F–S3I). Taken together, these data demonstrate
rs indicate SEM. *p < 0.05 and **p < 0.01 compared with Dot-GAL4 controls by

d) of fixed heart preparations from 1-week-old (R–T) and 4-week-old (U–W) flies

e heart. Anterior is to the top.

Cell Reports 7, 35–44, April 10, 2014 ª2014 The Authors 37



Figure 2. Myocardial-Specific Manipulation

of ROS or D-p38 Levels Has No Detectable

Effects on Cardiac Function and Morphology

(A) Confocal microscopic image of a fixed heart

preparation showing myocardial-specific (Hand-

GAL4 driver) GFP expression.

(B–D) DHE fluorescence in 7- to10-day-old adult

control hearts (B), and hearts from adult flies with

Hand-GAL4-induced catalase overexpression (C) or

catalase RNAi (catalaseRNAi) (D). Arrows indicate

increased DHE fluorescence in the myocardium of

the Hand-GAL4 > catalaseRNAi hearts (D). Endoge-

nous ROS levels in PCs, as indicated by DHE

fluorescence, in hearts with myocardial-specific

overexpression of catalase (C) or catalaseRNAi (D)

are similar to that in control PCs (B).

(E–J) AI (E, G, and I) and heart tube dimensions (F, H,

and J) in 1-week-old control flies and flies with

myocardial-specific overexpression of catalase or

SOD1,SOD2 (E and F), catalaseRNAi (G and H), or

D-p38bDN (I and J). All error bars indicate SEM. NS,

not significant compared with controls by two-tailed

paired t test.
that supra- or subphysiological levels of ROS in PCs adversely

affect cardiac rhythm and morphology, suggesting that physio-

logical levels of ROS within PCs are critical for their paracrine

role in maintaining normal heart function.

No Evidence for Diffusion of ROS from PCs into CMs to
Control Cardiac Function
Previous studies have identified a role of H2O2 serving as para-

crine-diffusible mediators under pathological stimulation. For

instance, in response to tissue damage in the zebrafish, H2O2

is produced and secreted from wounded epithelial cells and dif-

fuses into neutrophils to mediate their recruitment to the wound

(Niethammer et al., 2009; Yoo et al., 2011). We therefore exam-

ined the possibility that physiological ROS might diffuse from

PCs into the neighboring CMs and function within the CMs to

regulate normal heart performance in Drosophila. However, we

observed that the myocardium, under normal conditions,

displayed undetectable levels of ROS reporter expression,

including DHE, roGFP2-Orp1, and GSTD1-GFP expression (Fig-
38 Cell Reports 7, 35–44, April 10, 2014 ª2014 The Authors
ures 1B, 1C, 1F, S1A, and S1B). In addi-

tion, using the same ROS reporters, we

found that modulation of pericardial ROS

levels did not induce detectable changes

in ROS levels in the CMs (Figures 1D, 1E,

and S1C–S1G), a condition that is ex-

pected if ROS in the CMs are derived

from pericardial ROS. We further reasoned

that if the cardiac effects of PC-derived

ROS were indeed mediated by ROS

directly diffusing into and acting within

the neighboring CMs, we would expect

that experimental manipulation of ROS

levels directly in the CMs to recapitulate

the effects in cardiac function or mor-

phology caused by perturbations of peri-
cardial ROS concentrations. To test this, we overexpressed

catalase, SOD1, and SOD2, or catalaseRNAi using Hand-GAL4,

which drives expression more strongly in CMs than in PCs (Fig-

ure 2A). We found that reducing (Figure 2C) or increasing (Fig-

ure 2D) ROS concentrations in the myocardium relative to

control (Figure 2B) had no significant effects on any major

aspects of heart function, including heart rhythm or heart tube

dimensions (Figures 2E–2H). These results therefore argue

against the notion that ROS act as diffusible paracrine signaling

molecules fromPCs into the CMs tomodulate normal heart func-

tion. Instead, we postulate that ROS signaling controls the pro-

duction of downstream signals that in turn act on the CMs in a

paracrine fashion to regulate their function.

Perturbation of D-p38 Signaling Phenocopies Hearts
with Pericardial Reduction of ROS Levels
Next, we sought to identify the pericardial ROS effectors that im-

pact the CMs and direct their proper function. Several redox-

sensitive signaling proteins have been identified, including the



mitogen-activated protein kinases (MAPKs) (Griendling et al.,

2000). Although activation of MAPKs by excessive ROS is

most commonly associated with tissue dysfunction and disease

pathogenesis (Giordano, 2005; Griendling et al., 2000), it is

possible that MAPKs are also regulated by physiological ROS

levels. To examine whether physiological ROSmodulate cardiac

function by regulating the Drosophila MAPK family member

D-p38 signaling in PCs, we first examined whether D-p38mutant

flies incur any cardiac dysfunction. We analyzed flies lacking

both the D-p38-encoding genes, D-p38a and D-p38b. At

1 week old, the D-p38a�/�, D-p38b�/� double-mutant flies had

abnormal heart function, as characterized by an increased inci-

dence of irregular beats, broader distribution of HPs, and signif-

icantly elevated the AI compared with wild-type flies (Figures

S5A–S5E). Moreover, the diastolic and systolic diameters were

significantly smaller in D-p38a�/�,D-p38b�/� than in wild-type

hearts, resulting in a narrower heart tube (Figures S5F–S5H).

Single-mutant D-p38a�/� or D-p38b�/� hearts exhibited no

defects under baseline conditions (Na et al., 2013). These heart

abnormalities in the double mutant were reminiscent of the

cardiac effects of flies with reduced pericardial ROS levels,

suggesting that D-p38a/D-p38b might be involved in ROS sig-

naling in PCs.

Next, to determine if the interference of D-p38 function specif-

ically in PCs also compromises normal heart function, we ex-

pressed a dominant-negative form of D-p38b (D-p38bDN) in

PCs, in which the MAPK kinase (MAPKK) activation target

site was mutated (Adachi-Yamada et al., 1999). Like the

p38a�/�p38b�/� double-mutant flies, the pericardial p38bDN-ex-

pressing (Dot-GAL4 > p38bDN) flies exhibited cardiac defects

that mimicked those of the pericardial ROS-reduced hearts.

Specifically, cardiac arrhythmias were elevated in the flies with

pericardial overexpression of D-p38bDN relative to control flies

(Figures 3A–3C, 3F–3H, 3K, S2E, S2I, and S2J). Moreover, the

D-p38bDN genotype was also associated with a constriction of

the cardiac tube in young (1 week) but not old (4 weeks) flies (Fig-

ures 3L, 3M, S2K, and S6A–S6C). Thus, flies with PC-specific re-

ductions in ROS levels and D-p38 MAPK activity exhibited

similar cardiac defects, including elevated arrhythmias and heart

tube remodeling (compare Figures 1 and 3). In contrast, CM-tar-

geted inhibition of D-p38 activity (GMH5 > D-p38bDN) had no

detectable effects on cardiac function and morphology (Figures

2I and 2J), consistent with that observed with the CM-specific al-

terations of ROS levels (Figures 2E–2H). These data show that

D-p38 signaling in PCs, like that of ROS, is essential for normal

cardiac function.

D-p38 Acts as a Downstream Functional Target of ROS
in PCs for Regulating Normal Heart Physiology
Examining whether D-p38 functions as a target of ROS in PCs,

we studied the effects of altering ROS levels on D-p38 phosphor-

ylation, a reflection of its activity. We found that suppressing or

enhancing ROS concentrations in PCs (Dot-GAL4>catalase

and Dot-GAL4 > catalaseRNAi) decreased or increased the phos-

phorylation of D-p38, respectively (Figures S6D–S6F). These re-

sults are consistent with the notion that D-p38 activity is

controlled by ROS in PCs. We further asked whether D-p38

acts downstream of ROS to mediate paracrine control of normal
heart function. If that is the case, we reasoned that the cardiac

defects associated with decreased ROS levels should be

rescued by PC-specific overexpression of D-p38. Indeed, the

cardiac arrhythmia and tube narrowing phenotypes associated

with decreased pericardial ROS levels were significantly rescued

by overexpressing wild-type D-p38b (D-p38b+) in PCs (Figures

3D, 3I, 3K, and 3L). Conversely, decreasing the dosage of

D-p38a and D-p38b in flies harboring Dot-GAL4-mediated KD

of catalase partially restored normal heart rhythmand normalized

the diastolic and systolic diameters (Figures 3E, 3J, 3N, and 3O).

Collectively, these results provide strong evidence that the car-

diac defects associated with altered pericardial ROS levels are

mediated by D-p38 signaling, thus suggesting that D-p38 is a

downstream effector of ROS signaling in PCs.

A D-MKK3-D-p38 Signaling Axis Mediates the Effects of
ROS from PCs to CMs
We next asked whether D-MKK3 might function as the MAPKK

upstream of D-p38 in this ROS signaling pathway. We found

that PC-specific KD of D-MKK3 (Dot-GAL4 > D-MKK3RNAi)

significantly increased the frequency of arrhythmias and caused

age-dependent heart tube remodeling (Figures S7A–S7G). The

similarity between these cardiac defects and those observed

upon PC-specific reduction of ROS and D-p38 levels is thus

consistent with the idea that D-MKK3 mediates the ROS-

induced activation of D-p38. In support, we found that altered

expression of D-MKK3 resulted in correspondingly changed

phosphorylation of nuclear D-p38 (Figures S7H–S7J). These

data place D-MKK3 in the pericardial ROS-D-p38 signaling

cascade that critically modulates cardiac function in a paracrine

fashion.

ROS-D-p38 Signaling in PCs during Development Is
Important in Establishing Adult Normal Heart Function
Physiological ROS were found to be present in PCs during larval

in addition to adult stages (Figures 1B, 1C, S1A, and S1B),

implying that ROS could play a role in establishing and modu-

lating adult heart performance. Because the pericardial Dot-

GAL4 and Sns-GCN-GAL4 drivers are also active during

development (Kimbrell et al., 2002; Zhuang et al., 2009), ROS

and D-p38 manipulation in embryonic and larval PCs may also

influence adult heart function. To distinguish between the devel-

opmental versus adult effects of ROS-D-p38 signaling in PCs on

heart function, we manipulated catalase and D-p38 levels either

during the embryonic and larval stages only, or during the pupal

and adult stages only, using theGal80tssystem. Gal80ts is a tem-

perature-sensitive, reversible inhibitor of GAL4 (Osterwalder

et al., 2001; Roman et al., 2001). At the nonpermissive tempera-

ture (17�C), Gal80ts binds GAL4 to inhibit GAL4-mediated tran-

scriptional activation, whereas at the permissive temperature

(29�C), it dissociates from GAL4 to permit GAL4-mediated

gene expression. To induce a decrease in pericardial ROS or

D-p38 levels during the embryonic and larval stages only, flies

harboring Dot-GAL4 and a Gal80ts construct driven by the

Tubulin promoter (Dot-GAL4;Tub-Gal80ts) were crossed to either

UAS-catalase or UAS-D-p38bDN (Dot-GAL4 > catalase;Tub-

Gal80ts and Dot-GAL4 > D-p38bDN;Tub-Gal80ts, Figure 4). The

progenies were reared at 29�C during embryonic and larval
Cell Reports 7, 35–44, April 10, 2014 ª2014 The Authors 39



Figure 3. Inhibition of D-p38 Signaling in PCs Elicits Cardiac Dysfunction

(A–E) Representative 5 sM-mode traces from hearts of 1-week-old control flies (A), or flies with PC-specific overexpression of catalase (B), D-p38bDN (C), catalase

and wild-type D-p38b (D), or catalaseRNAi and reduced dosage of both D-p38a and D-p38b (E).

(F–J) Combined histograms showing the distribution of the HP for 1-week-old flies. n, number of flies.

(K–M) AI (K) and heart dimensions (L and M) in 1- and 4-week-old flies.

(N and O) AI (N) and heart dimensions (O) in 1-week-old flies.

All error bars indicate SEM. *p < 0.05 and **p < 0.01 compared with Dot-GAL4 controls by two-tailed paired t test and one-way ANOVA. NS, not significant. See

also Figures S5–S7.
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Figure 4. ROS-D-p38 Signaling in PCs during

Development Is Important in Establishing

Adult Normal Heart Function

(A and B) AI (A) and heart tube dimensions (B) in

1-week-old control flies (black bars) and flies with

PC-specific overexpression of catalase (blue bars)

orD-p38bDN (brown bars) only during the embryonic

and larval phases.

(C and D) AI (C) and heart tube dimensions (D) in

1-week-old control flies (black bars) and flies with

PC-specific overexpression of catalase (blue bars)

or D-p38bDN (brown bars) only during the pupal and

adult phases. All error bars indicate SEM. **p < 0.01

and ***p < 0.001 compared with Dot-GAL4 controls

by two-tailed paired t test. NS, not significant.

(E) Model proposing the mechanism by which

nonphysiologically high or low levels of ROS in

PCs could adversely affect cardiac function. The

pericardial-intrinsic ROS-D-MKK3-D-p38 signaling

could modulate the expression of pericardial

adhesion molecules that are in contact with adja-

cent CMs, thereby altering cell-cell adhesion be-

tween PCs and the CMs and, consequently, CM

function.
stages until white pupae formation, which was followed by a

temperature shift to 17�C until 7 days of adulthood, and heart

function was analyzed (Figures 4A and 4B). Reciprocally, to

induce a decrease in pericardial ROS or D-p38 levels during

the pupal and adult stages only, flies were reared at 17�C up to

white pupae formation followed by a temperature shift to 29�C
until 7 days of adulthood, followed by heart function analysis

(Figures 4C and 4D). Interestingly, we found that overexpression

of catalase or D-p38bDN in PCs during the embryonic and larval

stages only resulted in significant cardiac arrhythmias compared

to the controls (Figure 4A). Moreover, the perturbation of pericar-

dial ROS-D-p38 signaling during the embryonic and larval stages

only leads in addition to a significant thinning of the cardiac tube

(Figure 4B). In contrast, interference of D-p38 activity in PCs

during the pupal and adult stages only was associated with a
Cell Reports 7, 3
significant narrowing of the cardiac tube

(Figure 4D) but does not affect the AI (Fig-

ure 4C). Taken together, these data indi-

cate that the level of ROS-D-p38 signaling

in PCs is critical for normal adult heart

function, in particular during development.

DISCUSSION

The consensus view of ROS as signaling

molecules is that ROS act in a cell-

autonomous manner to induce physiolog-

ical or pathophysiological responses in

the ROS-generating cell. Paracrine roles

of ROS signaling have more recently

been reported to occur under pathological

conditions, such as upon tissue wounding

whereby ROS diffuse from their site of

production to act on surrounding cells
(Niethammer et al., 2009; Yoo et al., 2011). Our study demon-

strates that ROS that are naturally present in the nonmyocytic

PCs can mediate paracrine signaling to the adjacent CMs

under physiological conditions that is critical for proper cardiac

function. Furthermore, we showed that this occurred not via

the extracellular distribution of ROS from PCs into the CMs,

but rather via ROS inducing the activation of downstream

D-MKK3-D-p38 signaling in PCs that then causes the CMs to

maintain their normal function.

It is now recognized that the constitutive generation of moder-

ate amounts of ROS is important for normal physiological

processes (Owusu-Ansah and Banerjee, 2009). In the heart,

moderate and controlled levels of ROS could promote myocyte

growth (Sugden and Clerk, 2006), regulate vascular smooth

muscle tone (Suvorava and Kojda, 2009), and act as protective
5–44, April 10, 2014 ª2014 The Authors 41



signaling elements during the preischemic phase (Kevin et al.,

2005). However, the precise mechanisms by which ROS main-

tain cardiac homeostasis have yet to be established, particularly

the ROS-mediated paracrine signaling mechanisms that are

crucial for proper heart function. Cell-to-cell interactions are typi-

cally mediated by soluble factors, cell-cell adhesion complexes,

and, indirectly, by the surrounding ECM. In the vascular cells

such as endothelial cells, expression of several adhesion mole-

cules, including vascular cell adhesion molecule 1 (VCAM-1)

and intracellular adhesion molecule 1 (ICAM-1), is ROS depen-

dent (Taniyama and Griendling, 2003). Furthermore, ROS have

been found to modulate the activity and expression levels of

the matrix metalloproteinases in vascular smooth muscle cells

that contribute to physiological and pathological vascular re-

modeling (Fu et al., 2001; Grote et al., 2003). Thus, it will be inter-

esting to determine the potential roles of various PC adhesion

molecules and the surrounding ECM proteins as downstream

targets of the ROS-D-MKK3-D-p38 signaling axis in PCs that

mediate their paracrine effects on the CMs (Figure 4E). Some

of the potential candidates could include septate junction (SJ)

proteins such as Coracle and Neurexin IV, which localize to the

plasma membranes of PCs and CMs in the Drosophila embryo

and mediate PC-CM adhesion and proper heart function (Yi

et al., 2008), aswell as the cardiac ECMprotein Pericardin, which

is crucial for heart morphogenesis and cardiac cell-to-PC adhe-

sion (Chartier et al., 2002; Yi et al., 2008). The insights derived

from the delineation of this physiological ROS-mediated

signaling mechanism between PCs and CMs could lead to a

more complete understanding of the functional interactions be-

tween cardiac myocytes and nonmyocytes, as well as of cell-

to-cell communications in other tissues.
EXPERIMENTAL PROCEDURES

Fly Stocks

UAS-catalase, UAS-SOD1, UAS-SOD2, UAS-p38b+, UAS-DMKK3+, UAS-

coracle+, Tubulin-GAL4, Armadillo-GAL4 (Arm-GAL4), and Tubulin-Gal80ts

were from the Bloomington Stock Center. UAS-catalaseRNAi, UAS-SOD1RNAi,

UAS-SOD2RNAi, UAS-DMKK3RNAi, and UAS-coracleRNAi were from the Vienna

Drosophila RNAi Center. D-p38a13 and D-p38b156A were as previously

described (Chen et al., 2010).UAS-p38bDN (Adachi-Yamada et al., 1999) was

a kind gift from T. Adachi-Yamada at Kobe University, Japan. Dot-GAL4 (inser-

tion 11C (c2)) (Kimbrell et al., 2002) was previously generated in D.A. Kimbrell’s

laboratory at the University of California, Davis. GMH5 was as previously

described byWessells et al. (2004). Hand-GAL4was a kind gift fromA. Paululat

(University of Osnabruek, Germany).
Temperature Shift Assays

The overexpression of UAS transgene was induced only during the embryonic

and larval phases (from �0 hr after egg laying [AEL] to white pupae formation)

or only during the pupal and adult phases (from white pupae formation to

7-day-old adulthood). To induce transgene overexpression only during the

embryonic and larval phases, fertilized eggs were collected at room tempera-

ture (RT) on standard food vials, after which vials were transferred to 29�C.
Larvae were maintained at 29�C until the onset of puparium formation (white

pupae). Upon white pupae formation, vials were transferred to 17�C for culture

until the eclosion of adult flies. Adult flies were continued to be raised at 17�C
for about 7 days before being analyzed for their cardiac function (at RT). To

induce UAS-transgene overexpression only during the pupal and adult

phases, the same procedures were carried out except that the temperatures

for fly rearing were reversed.
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ROS Detection

ROS detection with DHE dye (Molecular Probes, Invitrogen) was performed

using a published method (Owusu-Ansah and Banerjee, 2009), with minor

modifications. In brief, adult fly hearts were dissected and cleaned in freshly

prepared PBS and removed from the cuticle. Hearts were incubated with

30 mM DHE (freshly reconstituted in anhydrous DMSO and diluted in PBS)

for 7–10 min at RT in the dark, washed three times with PBS for 5 min each

in the dark, and then fixed for 5 min with 7% paraformaldehyde (PFA). Hearts

were mounted in ProLong Gold antifade reagent (Invitrogen) and examined

under a laser confocal microscope (Zeiss). The endogenous redox state in

PCs and CMs was monitored using a genetically encoded fluorescent redox

reporter, cyto-roGFP2-Orp1 (Albrecht et al., 2011).Orp1-mediated oxidation

induces a conformational change in the linked roGFP2 variant that decreases

its fluorescence. Detection of ROS (H2O2) with cyto-roGFP2-Orp1 in the hearts

was performed as previously described (Albrecht et al., 2011). In brief, adult

fly hearts were dissected and incubated for 10 min at RT in freshly prepared

PBS containing 20 mM N-ethylmaleimide. Hearts were rinsed once with

PBS, fixed with 4% PFA for 15 min at RT, and then washed twice with PBS

for 10 min. Hearts were mounted overnight in ProLong Gold antifade reagent

and examined under a laser confocal microscope (Zeiss) with excitation at 488

and 405 nm.

Immunodetection Reagents

The following reagents were used for immunostaining: rabbit monoclonal anti-

phospho-p38 (Thr180/Tyr182, clone 3D7; Cell Signaling Technology) at 1:100;

fluorescein-labeled phalloidin (Invitrogen) at 1:50; andmousemonoclonal anti-

actinin (Developmental Studies Hybridoma Bank) at 1:50.

Immunostaining

Third-instar wandering-stage larvae and adult female flies (7–10 days old)

were collected and dissected in PBS. Hearts were fixed in a solution

comprising picric acid/glacial acetic acid/formaldehyde in a ratio of 15:1:5

for 15 min at RT. After washing in PBS plus 0.1% Triton X-100 (PBT), the

fixed hearts were incubated overnight at 4�C with primary antibodies diluted

in PBT. Hearts were then washed with PBT and incubated for 2 hr at RT

with the appropriate fluorescence-conjugated secondary antibodies (Jack-

son ImmunoResearch) diluted in PBT. Hearts were then washed again with

PBT and mounted in ProLong Gold antifade reagent. Samples were exam-

ined under an epifluorescence-equipped (Olympus) or laser confocal (Zeiss)

microscope.

Fly Heartbeat Analysis

Cardiac contractility measurements on semi-intact preparations of fly hearts

were performed as described previously by Fink et al. (2009). High-

speed 30 s movies were recorded at a rate of >150 frames per second

using a Hamamatsu CCD camera on a Nikon 80i upright microscope with

a 103 dipping immersion lens (see Fink et al. [2009] for further details).

The images were processed using SimplePCI software (Compix). M-modes

and quantitative data were generated using a MATLAB-based image

analysis program (Fink et al., 2009). To generate the M-mode figures, a

single pixel-wide column was selected from the most posterior portion

of the adult heart at the abdominal A3 segment that encompassed both

edges of the heart tube. The corresponding columns were cut from all

movie frames and aligned horizontally according to time. HPs or heartbeat

lengths were defined as the time between the ends of two consecutive

diastolic intervals. The AI was defined as the SD of all recorded HPs

for an individual fly, normalized to the median HP to compensate for

variability between flies (Ocorr et al., 2007). Diastolic and systolic diameters

represent the relaxed and contracted state of the heart tube, respec-

tively. Measurements were made in the exact same location in abdominal

segment A3.
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