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SUMMARY

The primarily neuronal RNA-binding protein HuD is
implicated in learning and memory. Here, we report
the identification of several HuD target transcripts
linked to Alzheimer’s disease (AD) pathogenesis.
HuD interacted with the 30 UTRs of APP mRNA
(encoding amyloid precursor protein) and BACE1
mRNA (encoding b-site APP-cleaving enzyme 1)
and increased the half-lives of these mRNAs. HuD
also associated with and stabilized the long noncod-
ing (lnc)RNA BACE1AS, which partly complements
BACE1 mRNA and enhances BACE1 expression.
Consistent with HuD promoting production of APP
and APP-cleaving enzyme, the levels of APP,
BACE1, BACE1AS, and Ab were higher in the brain
of HuD-overexpressing mice. Importantly, cortex
(superior temporal gyrus) from patients with AD
displayed significantly higher levels of HuD and,
accordingly, elevated APP, BACE1, BACE1AS, and
Ab than did cortical tissue from healthy age-matched
individuals. We propose that HuD jointly promotes
the production of APP and the cleavage of its amyloi-
dogenic fragment, Ab.
INTRODUCTION

The posttranscriptional regulation of gene expression underlies

many aspects of mammalian physiology and pathology. The

two main groups of posttranscriptional regulators, RNA-binding

proteins (RBPs) and noncoding RNAs (Moore, 2005;Morris et al.,

2010), have been implicated in all steps controlling gene expres-

sion after transcription: pre-mRNA splicing and maturation, and

mRNA transport, editing, stability, storage, and translation.
C

Among thenoncodingRNAs that control geneexpressionpost-

transcriptionally, the best-characterized molecules are micro-

RNAs (miRNAs; 22 nt in length), which typically associate with

the 30 UTR of target mRNAs and repress their translation and/or

stability (Fabian et al., 2010). Long noncoding RNAs (lncRNAs)

are also gaining recognition as posttranscriptional regulators of

gene expression. Through complementary basepairing, lncRNAs

can modulate the turnover and translation rate of target mRNAs;

in the absence of complementarity, lncRNAs can suppress pre-

cursormRNAsplicingand translationbyactingasdecoysorcom-

petitors of RBPs and miRNAs (Yoon et al., 2013).

RBPs associate with a wide range of coding and noncoding

RNAs and thus modulate many critical functions of the cell,

including proliferation, survival, differentiation, motility, senes-

cence, and apoptosis (Glisovic et al., 2008). Among them, the

elav (embryonic lethal abnormal vision)/Hu (human antigen)

group of proteins has been implicated primarily in controlling

the stability and translation of target mRNAs. The Hu family

comprises a ubiquitous member (HuR) and three predominantly

neuronal members (HuB, HuC, and HuD). Elav/Hu proteins

generally bind to U- and AU-rich RNA elements in target tran-

scripts with which they associate via three highly conserved

RNA recognitionmotifs (RRMs 1–3) (Hinman and Lou, 2008; Pas-

cale et al., 2008).

Unlike HuR, which is primarily nuclear, HuD is abundantly

present in the cytoplasm. HuD expression is restricted to a few

tissues, mainly neurons, gonads, and pancreatic b cells (Good,

1995, Lee et al., 2012). Several lines of evidence indicate that

in cultured neurons, HuD promotes neurite outgrowth (Kasa-

shima et al., 1999; Abdelmohsen et al., 2010), but the physiolog-

ical role of HuD in animals appears to be complex. Although adult

HuD-knockout (KO) mice do not exhibit morphological defects,

HuD-KO embryos display transient impairment in cranial nerve

development, and neurospheres derived from these mice

generate fewer neurons compared to wild-type (WT) mice (Aka-

matsu et al., 2005). At the same time, expression of HuB, HuC,

and HuD specifically increases in areas of mouse and rat brain
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associated with spatial learning, implicating these Hu proteins in

learning and memory. In these tissues, elevated HuD is associ-

ated with enhanced production of GAP-43 (growth-associated

protein-43), encoded by a HuD target mRNA (Anderson et al.,

2001; Pascale et al., 2004). The roles of HuD in neuronal develop-

ment and memory have been reviewed (Deschênes-Furry et al.,

2006; Pascale et al., 2008; Perrone-Bizzozero et al., 2011).

HuD targets include many mRNAs that encode proteins pref-

erentially expressed in neurons (e.g., GAP-43, acetylcholines-

terase, tau, PSD-95, neuroserpin, musashi-1, and HuD itself),

as well as proteins expressed in other tissues (e.g., c-Myc,

N-myc, RhoA, c-Fos, VEGF, p21, p27, Bcl-2, NCAM1, and

MARCKS) (Deschênes-Furry et al., 2006; Pascale et al., 2008;

Abdelmohsen et al., 2010; Bolognani et al., 2010). With the

exception of p27 and insulin, whose translation is repressed by

HuD (Kullmann et al., 2002; Lee et al., 2010), HuD generally pro-

motes the expression of target mRNAs. A recent survey of HuD

target transcripts in human neuroblastoma cells (Abdelmohsen

et al., 2010) revealed a number of HuD-interacting mRNAs impli-

cated in the synthesis and processing of amyloid precursor pro-

tein (APP) into its amyloidogenic fragment, Ab. HuD binds APP

mRNA and b-site APP-cleaving enzyme 1 (BACE1) mRNA, the

latter encoding the b-secretase that cleaves APP in the critical

first proteolytic-processing step that leads to the generation

of Ab. HuD also bound to and increased the abundance of

BACE1AS, a lncRNA that stabilizesBACE1mRNA and promotes

BACE1 expression (Faghihi et al., 2008). Our findings indicate

that HuD may coordinate the production and cleavage of APP

and further suggest that this regulatory paradigm contributes

to Alzheimer’s disease (AD) pathogenesis, characterized by the

accumulation of toxic aggregates of Ab peptide.

RESULTS

HuDAssociates withmRNAs Involved in APPProcessing
RNAs associated with HuD were identified by immunoprecipita-

tion (IP) of ribonucleoprotein (RNP) complexes (RIP analysis) with
Figure 1. HuD Binds to APP 30 UTR and Enhances APP mRNA and Sta

(A) Analysis of HuD in SK-N-F1 cells following IP with IgG and anti-HuD and WB

weight (MW) markers are indicated.

(B) Limited analysis (using RIP) to survey HuD-interacting mRNAs encoding prot

levels in the IP materials were measured by RT-qPCR analysis, normalized to GA

relative to IgG IP.

(C) Top, schematic ofAPPmRNA, depicting the 50 UTR,CR, and 30 UTR, and thedif

downusing streptavidin beads; HuDwasdetected byWBanalysis. BiotinylatedGA

(D and E) Forty-eight hours after transfecting Ctrl or HuD siRNAs, the levels of pro

and the reduction in APP mRNA levels by RT-qPCR analysis (normalized to GAP

(F) Cells transfected as in (D) were treated with actinomycin D, and the levels ofAP

by RT-qPCR; the t1/2 of APP andGAPDHmRNAwere quantified by measuring the

relative to time 0 hr.

(G) Polysomes were prepared from cells transfected as in (D) by fractionating cytop

sedimentation. Theminus sign (‘‘�’’) indicates no ribosomal components. Small (40

progressively largerpolysomes, ranging from low tohighmolecularweight (LMWand

of APP and GAPDHmRNAs was studied by RT-qPCR analysis of RNA in gradient

(H) Left, schematic of reporters prepared to analyze the influence ofAPP 30 UTRon

Ctrl or HuD siRNAs, cells were further transfected with psiCHECK2 or psiCHECK-

transfected plasmid and normalized to luciferase activity (RL/FL) in Ctrl siRNA (l

GAPDH mRNA, were quantified by RT-qPCR analysis and plotted relative to the

Graphs in (B), (E), (F), and (H) display the mean and SD from three independent e

C

anti-HuD in parallel with control immunoglobulin G (IgG) IP. The

interaction of HuD in the IP material (Figure 1A) with bound RNAs

was assayed by reverse transcription (RT) and subsequent real-

time, quantitative PCR (qPCR) amplification. An earlier survey in

the human neuroblastoma BE(2)-M17 cells (Abdelmohsen et al.,

2010) revealed that APP mRNA was a potential target of HuD.

Experiments to investigate this possibility directly revealed that

APP mRNA was significantly enriched in HuD IP samples

compared with IgG IP samples and additionally showed that

several HuD-bound mRNAs encoded proteases that cleave

APP to generate Ab peptide. Among them, the BACE1 mRNA

was also significantly enriched, as previously observed by

Bolognani et al. (2010), whereas HuD associated less promi-

nently with mRNAs encoding components of the g-secretase

complex (PSEN1 and PSEN2 mRNAs, encoding presenilins,

and APH1A and APH1B mRNAs, encoding presenilin-stabiliza-

tion factors) (Figure 1B). The PEN2 mRNA (encoding presenilin

enhancer 2) and the NCSTN mRNA (encoding nicastrin, a

component of the g-secretase protein complex) showed no

significant enrichment in HuD IP (Figure 1B). We thus focused

on analyzing the interaction of HuDwithAPP andBACE1mRNAs

in human neuroblastoma SK-N-F1 cells.

To identify areas of interaction of HuD with APP mRNA,

biotinylated segments spanning the 50 UTR, coding region (CR)

and 30 UTR of the APPmRNAwere synthesized in vitro and incu-

bated with cytoplasmic lysates of SK-N-F1 cells. After pull-down

using streptavidin-coated beads, HuD association with the

biotinylated transcripts was assessed by western blot (WB)

analysis. As shown in Figure 1C, several APP 30 UTR segments

associated with HuD in vitro, but segments of the APP CR, the

APP 50 UTR, or a negative control RNA (glyceraldehyde 3-phos-

phate dehydrogenase [GAPDH] 30 UTR) did not. Although HuD

bound multiple APP 30 UTR segments, the most robust affinity

and regulation (Figure S1) were mapped to segment 30d. The
consequences of the interaction of HuD with the APP mRNA

were assessed by silencing HuD; 48 hr after transfecting SK-

N-F1 cells with a small interfering RNA (siRNA) directed to
bility and Translation

analysis. HuD (arrowhead), immunoglobulin heavy chain (HC), and molecular

eins with roles in APP production or processing. Following IP as in (A), mRNA

PDH mRNA levels in each IP reaction, and represented as ‘‘Fold enrichment’’

ferent biotinylatedRNAsegments (gray lines) tested for binding toHuDafter pull-

PDH 30 UTRwas included as negative control ‘‘Input,’’ 20 mg ofwhole-cell lysate.

teins APP, HuD, and loading control b-actin were assessed byWB analysis (D),

DH mRNA levels) (E).

PmRNA andGAPDHmRNA (encoding a housekeeping protein) were assessed

time required for transcript levels to decline to 50% of their original abundance

lasmic extracts through sucrose gradients. The arrow indicates the direction of

S) and large (60S) ribosomal subunits andmonosomes (80S) in fractions 2–4, and

HMW,respectively) in fractions6–11are shown in the rightpanel. Thedistribution

fractions and is represented as percentage (%) of total RNA in the gradient (left).

gene expression. In the right panels, 12 hr after transfecting SK-N-F1 cells with

APP(30 UTR), and 24 hr later, luciferase activity was measured (RL/FL) for each

eft). RL mRNA and FL mRNA levels in each transfection group, normalized to

changes in the psiCHECK2 group (right).

xperiments. *p < 0.05.
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Figure 2. HuD Associates with BACE1

mRNA

(A) Top, schematic of BACE1 mRNA, indicating

the different biotinylated RNA segments (gray un-

derlines) that were prepared and tested for binding

to HuD after pull-down using streptavidin beads;

HuD was detected by WB analysis as explained in

Figure 1C.

(B–E) Forty-eight hours after transfecting SK-N-F1

cells with the siRNAs indicated, BACE1 mRNA

levels were measured by RT-qPCR analysis (*p <

0.05) (B), and the t1/2 of BACE1 mRNA (C) was

quantified as explained in Figure 1F. The levels of

BACE1 protein were assessed by WB analysis (D),

and the relative distribution of BACE1 mRNA on

polysomes (E) was studied as explained in Fig-

ure 1G.
HuD, the decline in HuD levels caused a marked decrease in the

levels of APP andAPPmRNA, as assessed byWB and RT-qPCR

analyses, respectively (Figures 1D and 1E).

HuD Enhances the Stability and Translation of APP
mRNA
Because HuDwas shown to stabilize a number of target mRNAs,

we investigated if the loss in APPmRNA after silencing HuD was

due at least in part to changes in APP mRNA stability. After

silencing HuD expression in SK-N-F1 cells, actinomycin D was

used to inhibit de novo transcription; the time needed for APP

mRNA to be reduced to 50% of its initial abundance (its half-

life [t1/2]) was then calculated by measuring APP mRNA levels

using RT-qPCR and normalizing to 18S rRNA levels. As shown

in Figure 1F, APP mRNA t1/2 in control cells (Ctrl siRNA;

>6.0 hr) was much longer than that measured in HuD siRNA cells

(�4.0 hr). The t1/2 ofGAPDHmRNA, a stablemRNA that encodes

a housekeeping protein, was not shortened by HuD silencing
1404 Cell Reports 7, 1401–1409, June 12, 2014 ª2014 The Authors
(Figure 1F). HuD was also shown to

promote mRNA translation (Fukao et al.,

2009); to investigate if HuD also affected

APP translation, we silenced HuD in SK-

N-F1 cells and quantified the fraction of

APP mRNA associated with the tran-

slation machinery in each transfection

group. Cytoplasmic extracts from the

Ctrl siRNA and HuD siRNA groups were

fractionated on sucrose gradients, and

the relative abundance of APP mRNA in

each fraction indicated the association

of APPmRNAwith the cellular polysomes

and hence its translation status. The

polysome-fractionation pattern was

identical in both groups, suggesting

that silencing HuD does not affect tran-

slation globally. In Ctrl siRNA cells, APP

mRNA levels were very low in nontran-

slating and low-translating fractions of

the gradient (fractions 1–4, where free

RNA and 40S and 60S subunits, as
well as 80S monosomes, are found), but they were abundant

in the actively translating fractions of the gradient (fractions

5–10, spanning low and high molecular weight polysomes)

(Figure 1G) and peaking at fraction 9. However, in HuD siRNA-

transfected cells, APP mRNA showed a leftward shift on

the gradient, peaking at fraction 8, indicating that APP

mRNA formed on average smaller polysomes after silencing

HuD. These results agree with a role for HuD both elevating

APP mRNA abundance and enhancing the translation of APP

mRNA.

These effects were further examined using heterologous lucif-

erase reporter vectors that expressed Renilla luciferase (RL)

lacking or containing the APP 30 UTR (psiCHECK2 or psi-

CHECK2-APP[30 UTR], respectively). The ratio of RL to firefly

luciferase (FL) (encoded by an internal control reporter transcript

within the same plasmid) was set as one (‘‘1’’) for the parent

vector (psiCHECK2). The lower RL/FL ratios for HuD

siRNA-transfected cells (�48%) relative to those for Ctrl
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siRNA-transfected cells indicated that the presence of APP 30

UTR reduced luciferase production when HuD was silenced

(Figure 1H, left). As shown in Figure 1H, right, there was a parallel

reduction in RL mRNA levels compared with FL mRNA levels

in HuD-silenced cells (�52%), indicating that accelerated

decay of the RL-APP(30UTR) chimeric mRNA contributed to

the decrease in RL expression. In sum, HuD enhanced both

the stability and translation of APP mRNA.

HuD Stabilizes BACE1 mRNA and BACE1AS RNA
Next, we examined the interaction of HuD with BACE1

mRNA. HuD associated in vitro with partial biotinylated

segments of the 30 UTR but not the CR or 50 UTR of BACE1

mRNA, showing preferential binding to a distal BACE1 30 UTR
segment (30b) (Figures 2A and S2). The levels of BACE1

mRNA were lower in the HuD siRNA group, and this reduction

was achieved at least in part through a decline in BACE1

mRNA stability (Figures 2B and 2C), just as seen for APP

mRNA (Figure 1F); nontargets of HuD, including mRNAs encod-

ing g-secretases, did not show this trend (Figure S2). BACE1

protein levels were correspondingly lower, but the translation

of BACE1mRNA did not appear to be affected by HuD silencing

(Figures 2D and 2E).

The stability of BACE1 mRNA was not previously reported

to be affected by other RBPs, but it was shown to be stabilized

via interaction with the lncRNA BACE1AS (Faghihi et al., 2008).

Thus, we asked if the present regulatory paradigm involved

BACE1AS. RIP analysis revealed that BACE1AS was robustly

present in HuD RNP complexes (Figure 3A) and that HuD

associated in vitro with partial biotinylated segments of

BACE1AS RNA; negative controls GAPDH 30 UTR and the

lncRNA 7SL were included (Figure 3B). This interaction likely

stabilized BACE1AS because silencing HuD lowered the

steady-state levels (Figure 3C) and the t1/2 of BACE1AS (Fig-

ure 3D). Further evidence that BACE1 mRNA and BACE1AS

interacted in our study system was obtained by engineering

a plasmid that expressed a chimeric BACE1AS tagged

with MS2 RNA hairpins (pMS2-BACE1AS). By 36 hr after trans-

fecting SK-N-F1 cells with pMS2 or pMS2-BACE1AS along

with plasmid pMS2-YFP, which expressed a fluorescent fusion

protein, MS2-YFP (Lee et al., 2010; Figure 3E), RIP analysis

was carried out with anti-YFP to bring down the YFP-MS2

protein bound to MS2-bearing RNAs. As shown in Figure 3F,
Figure 3. lncRNA BACE1AS Is the Target of HuD and BACE1 mRNA

(A) RIP analysis of the interaction of BACE1AS RNA with HuD.

(B) Schematic of human BACE1AS RNA, depicting the 50 and 30 segments (50

biotinylated BACE1AS RNA with HuD was assayed by biotin pull-down (biotinyla

GAPDH 30 UTR and 7SL were included as negative controls.

(C and D) Forty-eight hours after transfecting SK-N-F1 cells with the siRNAs indic

t1/2 of BACE1AS was quantified as in Figure 1F (D).

(E and F) SK-N-F1 cells were transfected with the plasmids shown (schematic). P

BACE1AS (expressing full-length BACE1AS) was cotransfected along with plas

MS2-tagged RNA) (E). By 24 hr after transfection of the plasmids in (E), lysates w

BACE1 mRNA in IP samples from each transfection group was assessed by RT-

(G) Schematic of proposed influence of HuD upon the expression and b-cleavage

translation. (2) HuD binds to BACE1 mRNA and stabilizes it. (3) HuD binds to BA

production. Arrowhead points to subsequent cleavage by g-secretase that relea

In (A), (C), (D), and (F), the graphs reflect the mean and SD from three independe
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BACE1 mRNA, as measured by RT-qPCR analysis in the IP

samples, was significantly more abundant in MS2-BACE1AS

IP than in control IP (pMS2 transfection group), indicating that

BACE1 mRNA and BACE1AS associated physically in SK-N-

F1 cells.

Collectively, these results suggest a model whereby HuD

jointly controls three transcripts on the route to generating

amyloidogenic Ab: (1) HuD binds to APP mRNA and enhances

APP levels, (2) HuD binds to BACE1 mRNA and promotes

BACE1 production, and (3) HuD binds to BACE1AS RNA and

increases its levels, further augmenting BACE1 production. By

acting on functionally related RNAs, HuD serves as a master

coordinator of Ab production (Figure 3G).

HuD Influence on APP/Ab Production in the Brain
Based on the model proposed presented in Figure 3G, we

hypothesized that HuD may affect Ab production in the brain.

We tested this possibility using two different models. In trans-

genic mice overexpressing HuD (HuD-Tg mice) as a tagged

protein (Myc-HuD; Figure 4A), the levels of Ab40, as measured

by ELISA (Experimental Procedures), were significantly higher

than in WT mice (Figure 4B), and the levels of Elavl4 mRNA

(encoding HuD), App mRNA, Bace1 mRNA, and Bace1as RNA

were higher in hippocampus, cortex, and cerebellum, relative

to the levels in age-matched WT mice (Figure 4C).

We also studied the levels of HuD in the brains of patients with

AD. Brain sections from the superior temporal gyrus (STG) from

ten persons with AD and ten age-matched healthy individuals

were used for RNA and protein analysis. RNA prepared from

these samples was analyzed by RT-qPCR; as shown in Fig-

ure 4D, ELAVL4 mRNA and BACE1AS RNA were markedly

higher in AD brains relative to healthy brains, whereas APP

mRNA and BACE1 mRNA were moderately higher in patients

with AD. The relative levels of protein followed these general

differences (Figure 4E; Faghihi et al., 2008), with greater than

2-fold higher levels of HuD and BACE1 in AD brains. In keeping

with the higher levels of BACE1, Ab peptide (Ab40 and Ab42) was

also more abundant in AD brains (Figure 4F). In summary, in the

brains of HuD-overexpressing mice, the levels of APP, BACE1,

and Ab40 correlated with the heightened abundance of HuD,

whereas in human AD brains, HuD levels were significantly

elevated and correlated with higher levels of BACE1, BACE1AS,

and Ab.
S and 30S) as well as the double-stranded (DS) segment. The interaction of

ted segments assayed are shown; gray underlines). FL, full-length BACE1AS.

ated, BACE1AS RNA levels were measured by RT-qPCR analysis (C), and the

lasmid pMS2, which expressed 24 repeats of MS2 hairpins, or plasmid pMS2-

mid pMS2-YFP (expressing a fusion protein [MS2-YFP] capable of detecting

ere subjected to RIP analysis using an antibody against YFP. The presence of

qPCR analysis (F).

of APP. (1) HuD binds toAPPmRNA and promotes APPmRNA stabilization and

CE1AS and stabilizes it, in turn increasing BACE1 mRNA stability and BACE1

ses Ab peptide (blue).

nt experiments. *p < 0.05.
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DISCUSSION

Our results indicate that HuD controls the expression of

three RNAs affecting APP production and processing into Ab.

The three-pronged actions of HuD include binding to APP

mRNA, causing it to be more stable and translated; binding

to BACE1 mRNA, increasing its stability and hence BACE1 pro-

duction; and binding to and stabilizing BACE1AS, which further

contributes to the production of BACE1. In keeping with this reg-

ulatory paradigm, HuD levels were positively linked to Ab levels

in three systems: in neuroblastoma SK-N-F1 cells expressing

normal versus silenced HuD levels, in the brains of WT and

HuD-overexpressingmice, and in the brains from AD and normal

subjects.

The discovery that HuD influences the production of the key

pathogenic peptide Ab raises the immediate question of what

determines the levels of HuD in neuronal tissues. Among the

possible transcriptional regulators of HuD expression is FoxO1;

the repression of ELAVL4 gene transcription in pancreatic b cells

was relieved by exposure to high glucose or insulin (Lee et al.,

2012). Whether FoxO1 also suppresses ELAVL4 gene transcrip-

tion in neuronal tissues and whether this regulation is dependent

on glucose/insulin await further study. Posttranscriptional regu-

lators of HuD production include the miRNA miR-375, which

binds to ELAVL4 mRNA, lowers its stability, and represses

HuD translation (Abdelmohsen et al., 2010; Supplemental

Discussion).

The notion that a single RBP, HuD, can jointly control the

expression of three transcripts (APP mRNA, BACE1 mRNA,

and BACE1AS RNA) that are functionally related supports the

‘‘posttranscriptional operon/regulon’’ model put forth by

Keene and Tenenbaum (2002). According to this model, a

single RBP can associate with and coordinate the expression

of multiple mRNAs that share a given RNA sequence with

affinity for the RBP and whose encoded gene products are

implicated in a specific cellular function. To establish a simple

analogy with a ‘‘transcriptional’’ operon/regulon, the RBP

functions as the equivalent of a transcription factor that

binds to a shared DNA sequence present in the promoter of

genes encoding proteins with related functions (as in eukary-

otes) or synthesizes a polycistronic RNA whose individual

RNA components encode proteins functionally linked. In light

of our findings, the traditional posttranscriptional operon/

regulon model would help to explain HuD function; we pro-

posed a slightly revised version of the model that includes non-

coding RNA.
Figure 4. In Mice Overexpressing HuD, the Levels of AppmRNA, Bace1

Target Transcripts and Encoded Proteins, and Ab Are Elevated

(A) The levels of tagged HuD in whole-brain lysate frommice (three WT and three o

by WB analysis. Ponceau S staining was used to assess sample loading.

(B) ELISA was used to measure soluble Ab in WT and HuD-Tg (whole-brain lysat

(C) The levels of Elavl4mRNA (encoding HuD), AppmRNA, Bace1mRNA, and Ba

RT-qPCR; data were normalized to 18S rRNA.

(D and E) Lysates prepared from STG from normal subjects (n = 10) and from AD s

mRNA, and BACE1AS RNA using RT-qPCR (D) and for the encoded proteins (six

levels were normalized to GAPDH mRNA levels, protein levels to b-actin levels.

(F) The levels of Ab40 and Ab42 were assayed in ten normal and ten AD brains (S

In (B)–(F), the graphs reflect the mean and SD from three independent experime
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Our studies did not identify a specific RNA element present in

the three transcripts. However, most RBPs do not have strict

sequence requirements and instead associate with loosely vari-

able RNA elements, often within the context of a given secondary

structure. Approaches such as photoactivatable-ribonucleo-

side-enhanced crosslinking and IP identification of HuD-bound

RNAs can give us a more precise view of the subset of tran-

scripts with which HuD interacts. A more complete understand-

ing of the collection of HuD-interacting coding and noncoding

RNAs will be particularly informative as we strive to understand

the underlying causes of Ab processing in AD.

EXPERIMENTAL PROCEDURES

Cell Culture, siRNA, and Plasmids

Human neuroblastoma SK-N-F1 cells were cultured in Dulbecco’s modified

Eagle’s medium (Invitrogen) supplemented with 10% (v/v) fetal bovine serum

and antibiotics. The plasmids and siRNAs used are described in Supplemental

Experimental Procedures.

Protein Analysis

WBanalysis and fractionation of polyribosomes are explained in Supplemental

Experimental Procedures. Ab levels (Ab40 and Ab42) in SK-N-F1 cells were

measured in conditioned media, and Ab in human brain samples was assayed

directly from protein lysates. Human Ab was measured by ELISA (Invitrogen;

KHB3481 and KHB3441), and the manufacturer’s protocol included incuba-

tion with guanidine; [methyl(phenyl)-l3-oxidanyl]formic acid solution. Ab levels

in mouse brain lysates were analyzed by ELISA (Invitrogen).

RNA Analysis

RNA-binding assays RIP (RNP IP) and biotin pull-down, as well as mRNA t1/2
measurements, are explained in Supplemental Experimental Procedures.

TRIzol (Invitrogen) was used to extract total RNA, and acidic phenol (Ambion)

was used to extract RNA for RIP analysis (Lee et al., 2010). RT was performed

using random hexamers and Maxima Reverse Transcriptase (Thermo Scienti-

fic), and real-time qPCR was done using gene-specific primers (Supplemental

Experimental Procedures). RT-qPCR was performed using SYBR Green

Master Mix (Kapa Biosystems) in an Applied Biosystems 7300 instrument.

Human Subjects

The sample consists of 20 participants (19 females and 1 male) from the

Baltimore Longitudinal Study of Aging (BLSA) (National Institute on Aging

[NIA], National Institutes of Health); cognitive status was determined based

on standardized consensus diagnostic procedures for the BLSA (Driscoll

et al., 2012) and eventually came to autopsy. Participants were between 55

and 98 (AD) and 56 and 95 (normal) years of age. All studies were approved

by the local institutional review boards, and all participants gave written

informed consent prior to each assessment. In addition, next of kin or legally

designated power of attorney provided consent for autopsy. STG regions of

the brain were used for protein and RNA analysis.
mRNA, Bace1as RNA, and Ab Are Elevated; in AD Brains, HuD, HuD

verexpressing the Myc-HuD transgene [9-month-old females]) were assessed

es; three mice per genotype).

ce1as in each mouse brain group (n = 3 mice per genotype) were measured by

ubjects (n = 10) were assayed for levels of ELAVL4mRNA, APPmRNA, BACE1

normal, seven AD) by WB analysis followed by densitometric analysis (E). RNA

TG) by using ELISA.

nts. p values are indicated in (D) and (E). *p < 0.05.



Animals

HuD-Tg (Bolognani et al., 2010; a kind gift fromDr. N.I. Perrone-Bizzozero) and

WT mice in the C57BL/6J background were obtained from in-house breeding

colonies of the NIA (Baltimore) (details are provided in Supplemental Experi-

mental Procedures).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Results, Supplemental

Discussion, Supplemental Experimental Procedures, and two figures and

can be found with this article online at http://dx.doi.org/10.1016/j.celrep.

2014.04.050.
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Kullmann, M., Göpfert, U., Siewe, B., and Hengst, L. (2002). ELAV/Hu proteins

inhibit p27 translation via an IRES element in the p27 5’UTR. Genes Dev. 16,

3087–3099.

Lee, E.K., Kim, H.H., Kuwano, Y., Abdelmohsen, K., Srikantan, S., Subaran,

S.S., Gleichmann, M., Mughal, M.R., Martindale, J.L., Yang, X., et al. (2010).

hnRNP C promotes APP translation by competing with FMRP for APP

mRNA recruitment to P bodies. Nat. Struct. Mol. Biol. 17, 732–739.

Lee, E.K., Kim, W., Tominaga, K., Martindale, J.L., Yang, X., Subaran, S.S.,

Carlson, O.D., Mercken, E.M., Kulkarni, R.N., Akamatsu, W., et al. (2012).

RNA-binding protein HuD controls insulin translation. Mol. Cell 45, 826–835.

Moore, M.J. (2005). From birth to death: the complex lives of eukaryotic

mRNAs. Science 309, 1514–1518.

Morris, A.R., Mukherjee, N., and Keene, J.D. (2010). Systematic analysis of

posttranscriptional gene expression. Wiley Interdiscip. Rev. Syst. Biol. Med.

2, 162–180.

Pascale, A., Gusev, P.A., Amadio, M., Dottorini, T., Govoni, S., Alkon, D.L., and

Quattrone, A. (2004). Increase of the RNA-binding protein HuD and posttran-

scriptional up-regulation of the GAP-43 gene during spatial memory. Proc.

Natl. Acad. Sci. USA 101, 1217–1222.

Pascale, A., Amadio, M., and Quattrone, A. (2008). Defining a neuron: neuronal

ELAV proteins. Cell. Mol. Life Sci. 65, 128–140.

Perrone-Bizzozero, N.I., Tanner, D.C., Mounce, J., and Bolognani, F. (2011).

Increased expression of axogenesis-related genes and mossy fibre length in

dentate granule cells from adult HuD overexpressor mice. ASN Neuro 3,

259–270.

Yoon, J.H., Abdelmohsen, K., and Gorospe, M. (2013). Posttranscriptional

gene regulation by long noncoding RNA. J. Mol. Biol. 425, 3723–3730.
ell Reports 7, 1401–1409, June 12, 2014 ª2014 The Authors 1409

http://dx.doi.org/10.1016/j.celrep.2014.04.050
http://dx.doi.org/10.1016/j.celrep.2014.04.050

	HuD Regulates Coding and Noncoding RNA to Induce APP→Aβ Processing
	Introduction
	Results
	HuD Associates with mRNAs Involved in APP Processing
	HuD Enhances the Stability and Translation of APP mRNA
	HuD Stabilizes BACE1 mRNA and BACE1AS RNA
	HuD Influence on APP→Aβ Production in the Brain

	Discussion
	Experimental Procedures
	Cell Culture, siRNA, and Plasmids
	Protein Analysis
	RNA Analysis
	Human Subjects
	Animals

	Supplemental Information
	Acknowledgments
	References


