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In the present note we want to give some remarks on the gen-
eral case of anisotropic second strain gradient elasticity given by
Lazar et al. (2006) and especially on the symmetries of the material
tensors entering in the generalized stress–strain relationships. In
Lazar et al. (2006), the strain energy density W has the following
form

W ¼ 1
2

CijklEijEkl þ
1
2

CijklmnEij;kElm;n þ
1
2

CijklmnpqEij;klEmn;pq

þ DijklmEijEkl;m þ DijklmnEijEkl;mn þ DijklmnpEij;kElm;np; ð1Þ

where the last three contributions are cross terms. From Eq. (1) we
obtain the following constitutive equations for the second (Cauchy-
like), third (double), fourth (triple) order stress tensors

rij ¼ CijklEkl þ DijklmEkl;m þ DijklmnEkl;mn;

sijk ¼ DlmijkElm þ CijklmnElm;n þ DijklmnpElm;np;

sijkl ¼ DmnijklEmn þ DmnpijklEmn;p þ CijklmnpqEmn;pq; ð2Þ

where rij ¼ @W=@Eij; sijk ¼ @W=@Eij;k and sijkl ¼ @W=@Eij;kl. Here
Cijkl;Cijklmn;Cijklmnpq;Dijklm;Dijklmn and Dijklmnp are the material tensors
with the constitutive coefficients, which Lazar et al. (2006) as-
sumed, for simplicity, to possess additional symmetry properties
than those implied by their definitions (see also Agiasofitou and La-
zar (2009)). In general, the material tensors in anisotropic second
strain gradient elasticity possess only the following symmetries:

CðijÞðklÞ � CðklÞðijÞ � CðijÞjðklÞ;

CðijÞkðlmÞn ¼ CðlmÞnðijÞk � CðijÞkjðlmÞn;

CðijÞðklÞðmnÞðpqÞ ¼ CðmnÞðpqÞðijÞðklÞ � CðijÞðklÞjðmnÞðpqÞ: ð3Þ

The material tensors DðijÞðklÞm;DðijÞðklÞðmnÞ and DðijÞkðlmÞðnpÞ do not possess
additional symmetries. The additional symmetries for CðijÞkðlmÞn and
CðijÞðklÞðmnÞðpqÞ given in (2.27) by Lazar et al. (2006) were obtained by
substituting Eq. (2) into the stress equilibrium condition

r
�

ij;j ¼ 0; r
�

ij ¼ rij � sijk;k þ sijkl;kl: ð4Þ

The terminology adopted by Lazar et al. (2006) for r
�

ij was ‘total
stress’ whereas the terminology ‘Cauchy stress’ was adopted for
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the stress rij with the dimension of force=ðlengthÞ2, while the ter-
minology ‘double stress’ and ‘triple stress’ was adopted for the
hyperstress sijk which has the dimension of force=length and sijkl

which has the dimension of force. Alternatively, the self-equilibrat-
ing stress r

�
ij could be identified with the Cauchy stress (e.g. Aifantis

(2010) and references quoted therein) and then, Eq. (4.b) would
play the role of a ‘constitutive equation’ for r

�
ij.

In order to obtain the additional symmetries for DðijÞðklÞm and
DðijÞkðlmÞðnpÞ given in (2.27) by Lazar et al. (2006), we assumed that
the crossing terms of the tensors of odd rank cancel each other
out in Eq. (4). Moreover, the symmetry for the material tensor
DðijÞðklÞðmnÞ which is of even rank was assumed for simplicity. Of
course, from the group theoretical point of view, the material ten-
sors possess only the symmetries given above, i.e. those listed in
Eq. (3).

If we substitute the constitutive relations given by Eq. (2) into
the equilibrium condition given by Eq. (4), we find for the general
anisotropic case the result:

CðijÞjðklÞEkl;j � CðijÞkjðlmÞnElm;jkn þ CðijÞðklÞjðmnÞðpqÞEmn;jklpq

þ ðDðijÞðklÞm � DðklÞðijÞmÞEkl;jm þ ðDðijÞðklÞðmnÞ þ DðklÞðijÞðmnÞÞEkl;jmn

� ðDðijÞkðlmÞðnpÞ � DðlmÞkðijÞðnpÞÞElm;jknp ¼ 0: ð5Þ

In addition, the stress tensor r
�

ij, for the general case of anisotropic
second strain gradient elasticity, reads

r
�

ij ¼ CðijÞjðklÞEkl � CðijÞkjðlmÞnElm;kn þ CðijÞðklÞjðmnÞðpqÞEmn;klpq

þ ðDðijÞðklÞm � DðklÞðijÞmÞEkl;m þ ðDðijÞðklÞðmnÞ þ DðklÞðijÞðmnÞÞEkl;mn

� ðDðijÞkðlmÞðnpÞ � DðlmÞkðijÞðnpÞÞElm;knp: ð6Þ

Lazar et al. (2006) considered, in Eqs. (2.23)–(2.27), the case of
anisotropic second strain gradient elasticity. Afterwards they spe-
cialized to the isotropic case. All the solutions derived by Lazar
et al. (2006) are valid for the isotropic case.
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