Note

Estimates of weighted Hardy-Littlewood averages on the p-adic vector space

Kyung Soo Rim ${ }^{1}$, Jaesung Lee ${ }^{*, 1}$
Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
Received 6 January 2006
Available online 15 February 2006
Submitted by William F. Ames

Abstract

In the p-adic vector space \mathbb{Q}_{p}^{n}, we characterize those non-negative functions ψ defined on $\mathbb{Z}_{p}^{*}=$ $\left\{w \in \mathbb{Q}_{p}: 0<|w|_{p} \leqslant 1\right\}$ for which the weighted Hardy-Littlewood average $U_{\psi}: f \rightarrow \int_{\mathbb{Z}_{p}^{*}} f(t \cdot) \psi(t) d t$ is bounded on $L^{r}\left(\mathbb{Q}_{p}^{n}\right)(1 \leqslant r \leqslant \infty)$, and on $B M O\left(\mathbb{Q}_{p}^{n}\right)$. Also, in each case, we find the corresponding operator norm $\left\|U_{\psi}\right\|$. © 2006 Elsevier Inc. All rights reserved.

Keywords: p-Adic field; p-Adic vector space; Weighted Hardy-Littlewood averages; BMO

1. Introduction

For a prime number p, a non-zero element w of the p-adic field \mathbb{Q}_{p} is uniquely represented as a canonical form $w=\sum_{j=\gamma}^{\infty} a_{j} p^{j}$, where $a_{j} \in \mathbb{Z} / p \mathbb{Z}, \gamma \in \mathbb{Z}$ and $a_{\gamma} \neq 0$. We call $\gamma=\operatorname{ord}_{p}(w)$ the order of w. And then $|w|_{p}=p^{-\operatorname{ord}_{p}(w)}$ becomes a non-Archimedean norm in \mathbb{Q}_{p} and \mathbb{Q}_{p} is the completion of \mathbb{Q} with $|\cdot|_{p}$ [7]. We let $\mathbb{Z}_{p}=\left\{w \in \mathbb{Q}_{p}:|w|_{p} \leqslant 1\right\}$ be the class of all p-adic integers of \mathbb{Q}_{p} and denote $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}$.

For a given $n \in \mathbb{N}$, the space \mathbb{Q}_{p}^{n} denotes a vector space over \mathbb{Q}_{p}, which contains all n-tuples of \mathbb{Q}_{p}. If we define $\|x\|=\max _{1 \leqslant k \leqslant n}\left|x_{k}\right|_{p}$ for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Q}_{p}^{n}$, then \mathbb{Q}_{p}^{n} becomes a Banach space with the norm $\|\cdot\|$. For $\gamma \in \mathbb{Z}$, we denote B_{γ} as a γ-ball of \mathbb{Q}_{p}^{n} with center at 0 ,

[^0]containing all x with $\|x\| \leqslant p^{\gamma}$, and $S_{\gamma}=B_{\gamma} \backslash B_{\gamma-1}=\left\{x \in \mathbb{Q}_{p}^{n}:\|x\|=p^{\gamma}\right\}$ its boundary. Also, for $a \in \mathbb{Q}_{p}^{n}, B_{\gamma}(a)$ consists of all x with $x-a \in B_{\gamma}$. Similarly, $x \in S_{\gamma}(a)$ means that $x-a \in S_{\gamma}$.

Since \mathbb{Q}_{p}^{n} is a locally compact Hausdorff space, there is the Haar measure $d x$ on the additive group \mathbb{Q}_{p}^{n}, normalized by $\int_{B_{0}} d x:=\left|B_{0}\right|=1$, where $|E|$ denotes the Haar measure of a measurable set $E \subset \mathbb{Q}_{p}^{n}$. By a simple calculation the Haar measures of any balls and spheres can be obtained. Especially, we frequently use $\left|B_{\gamma}\right|=p^{n \gamma}$ and $\left|S_{\gamma}\right|=p^{n \gamma}\left(1-p^{-n}\right)$.

A measurable real-valued function f on \mathbb{Q}_{p}^{n} is said to be in $L^{r}\left(\mathbb{Q}_{p}^{n}\right)(1 \leqslant r<\infty)$ provided

$$
\begin{equation*}
\|f\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)}:=\left(\int_{\mathbb{Q}_{p}^{n}}|f(x)|^{r} d x\right)^{1 / r}<\infty \tag{1.1}
\end{equation*}
$$

Also, $L^{\infty}\left(\mathbb{Q}_{p}^{n}\right)$ consists of the set of all measurable real-valued functions f on \mathbb{Q}_{p}^{n} satisfying

$$
\begin{equation*}
\|f\|_{L^{\infty}\left(\mathbb{Q}_{p}^{n}\right)}:=\underset{x \in \mathbb{Q}_{p}^{n}}{\operatorname{ess} \sup }|f(x)|<\infty \tag{1.2}
\end{equation*}
$$

The space $\operatorname{BMO}\left(\mathbb{Q}_{p}^{n}\right)$ which consists of all measurable functions $f \in L_{\text {loc }}^{1}\left(\mathbb{Q}_{p}^{n}\right)$ with bounded mean oscillation

$$
\begin{equation*}
\|f\|_{B M O}:=\sup _{B} \frac{1}{|B|} \int_{B}\left|f(x)-f_{B}\right| d x<\infty \tag{1.3}
\end{equation*}
$$

where the supremum is taken over all balls and $f_{B}=|B|^{-1} \int_{B} f(x) d x$ stands for the average of f over B. To mention some of the previous results on harmonic analysis on the p-adic field, Haran [2,3] obtained the explicit formula of Riesz potentials and developed an analytic potential theory in the p-adic field. In [1], authors proved conditions of boundedness of maximal operators over the p-adic field \mathbb{Q}_{p}.

For a function f on \mathbb{Q}_{p}^{n} and a function $\psi: \mathbb{Z}_{p}^{*} \rightarrow[0, \infty)$, we define the weighted p-adic Hardy-Littlewood average $U_{\psi} f$ on \mathbb{Q}_{p}^{n} as

$$
U_{\psi} f(x)=\int_{\mathbb{Z}_{p}^{*}} f(t x) \psi(t) d t
$$

In case f is defined on the real field \mathbb{R} and $\psi \equiv 1, U_{\psi}$ is just reduced to the classical HardyLittlewood average $U f$ such as

$$
\begin{equation*}
U f(x)=\frac{1}{x} \int_{0}^{x} f(y) d y \quad(x \neq 0) \tag{1.4}
\end{equation*}
$$

In Theorem 327 of [4], Hardy proved the following inequalities: For $1<r<\infty$,

$$
\begin{equation*}
\left(\int_{0}^{\infty}|U f(x)|^{r} d x\right)^{1 / r} \leqslant \frac{r}{r-1}\left(\int_{0}^{\infty}|f(x)|^{r} d x\right)^{1 / r} \tag{1.5}
\end{equation*}
$$

where the constant $r /(r-1)$ is the best possible. For $r=\infty$,

$$
\begin{equation*}
\underset{x \neq 0}{\operatorname{ess} \sup }|U f(x)| \leqslant \underset{x \neq 0}{\operatorname{ess} \sup }|f(x)|, \tag{1.6}
\end{equation*}
$$

which is also a sharp inequality. Hardy's result still remains to be an important one as it is closely related to the Hardy-Littlewood maximal functions in harmonic analysis [5].

In 2001, Xiao generalized inequalities (1.5) and (1.6) to the n-dimensional Euclidean space [8]. However, as far as we understand, theories of functions from \mathbb{Q}_{p}^{n} into \mathbb{R} play an important role in the p-adic quantum mechanics and the theory of p-adic probability in which real-valued random variables have to be considered to solve the covariance problems [6]. For this reason, the purpose of this paper is to prove the continuities of weighted p-adic Hardy-Littlewood averages on $L^{r}\left(\mathbb{Q}_{p}^{n}\right)$, and on $B M O\left(\mathbb{Q}_{p}^{n}\right)$. Indeed, we classify those functions ψ for which the operator U_{ψ} is bounded on $L^{r}\left(\mathbb{Q}_{p}^{n}\right)(1 \leqslant r \leqslant \infty)$, and on $B M O\left(\mathbb{Q}_{p}^{n}\right)$. And then we determine the corresponding operator norms. Here are our main results.

Theorem 1.1. For $r \in[1, \infty], U_{\psi}$ is bounded on $L^{r}\left(\mathbb{Q}_{p}^{n}\right)$ if and only if

$$
\int_{\mathbb{Z}_{p}^{*}}|t|_{p}^{-n / r} \psi(t) d t<\infty
$$

Moreover,

$$
\left\|U_{\psi}\right\|=\int_{\mathbb{Z}_{p}^{*}}|t|_{p}^{-n / r} \psi(t) d t
$$

Theorem 1.2. U_{ψ} is bounded on $B M O\left(\mathbb{Q}_{p}^{n}\right)$ if and only if

$$
\int_{\mathbb{Z}_{p}^{*}} \psi(t) d t<\infty
$$

Moreover,

$$
\left\|U_{\psi}\right\|=\int_{\mathbb{Z}_{p}^{*}} \psi(t) d t
$$

The proofs of Theorems 1.1 and 1.2 are given in Section 2.
In case $\psi \equiv 1$, we have

$$
\begin{align*}
\int_{\mathbb{Z}_{p}^{*}}|t|_{p}^{-n / r} d t & =\sum_{-\infty<\gamma \leqslant 0} \int_{S_{\gamma}}|t|_{p}^{-n / r} d t \tag{1.7}\\
& =\sum_{-\infty<\gamma \leqslant 0} p^{-\gamma n(1 / r-1)}\left(1-p^{-n}\right) \tag{1.8}\\
& =\left(1-p^{-n}\right) \sum_{\gamma=0}^{\infty} p^{\gamma n(1 / r-1)}, \tag{1.9}
\end{align*}
$$

which has a finite value of \mathbb{R} if and only of $1<r \leqslant \infty$. Hence by Theorem 1.1, U_{ψ} is bounded on $L^{r}\left(\mathbb{Q}_{p}^{n}\right)$ for $1<r \leqslant \infty$, but not bounded on $L^{1}\left(\mathbb{Q}_{p}^{n}\right)$, which is an analogue of the classical Hardy-Littlewood average case on the real field. Also form Theorems 1.1 and 1.2, we can see that on $B M O\left(\mathbb{Q}_{p}^{n}\right)$, the boundedness condition of U_{ψ} and its operator norm are the same as those on $L^{\infty}\left(\mathbb{Q}_{p}^{n}\right)$.

2. Proofs of main theorems

First we provide proofs of Theorem 1.1 and then by using a lemma on $B M O$ norm of p-adic logarithmic function, we prove Theorem 1.2.

Proof of Theorem 1.1. Since the case of $r=\infty$ is trivial, it suffices to consider $r \in[1, \infty)$. Suppose $\int_{\mathbb{Z}_{p}^{*}}|t|_{p}^{-n / r} \psi(t) d t<\infty$. Using the Minkowski's inequality for integrals and the change of variables $t x=y[7,(4.2)]$, we have

$$
\begin{equation*}
\left\|U_{\psi} f\right\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)} \leqslant \int_{\mathbb{Z}_{p}^{*}}\left(\int_{\mathbb{Q}_{p}^{n}}|f(t x)|^{r} d x\right)^{1 / r} \psi(t) d t=\|f\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)} \int_{\mathbb{Z}_{p}^{*}}|t|_{p}^{-n / r} \psi(t) d t \tag{2.1}
\end{equation*}
$$

Thus U_{ψ} maps boundedly $L^{r}\left(\mathbb{Q}_{p}^{n}\right)$ into itself.
Conversely, suppose $r \in[1, \infty)$ and U_{ψ} is bounded operator on $L^{r}\left(\mathbb{Q}_{p}^{n}\right)$. Then there exists a constant $C=C(r)>0$ such that

$$
\begin{equation*}
\left\|U_{\psi} f\right\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)} \leqslant C\|f\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)}, \quad f \in L^{r}\left(\mathbb{Q}_{p}^{n}\right) \tag{2.2}
\end{equation*}
$$

Now, for any rational number $\epsilon>0$, we let

$$
f_{\epsilon}(x)= \begin{cases}0, & \|x\|<1 \tag{2.3}\\ \|x\|^{-n / r-\epsilon}, & \|x\| \geqslant 1\end{cases}
$$

Then

$$
\begin{align*}
\left\|f_{\epsilon}\right\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)}^{r} & =\int_{\|x\| \geqslant 1}\|x\|^{-n-\epsilon r} d x \tag{2.4}\\
& =\sum_{k=0}^{\infty} \int_{\|x\|=p^{k}} p^{-(n+\epsilon r) k} d x \tag{2.5}\\
& =\sum_{k=0}^{\infty} p^{-(n+\epsilon r) k} p^{n k}\left(1-\frac{1}{p^{n}}\right) \tag{2.6}\\
& =\frac{1}{1-p^{-\epsilon r}}\left(1-\frac{1}{p^{n}}\right) \tag{2.7}
\end{align*}
$$

Thus $f_{\epsilon} \in L^{r}\left(\mathbb{Q}_{p}^{n}\right)$, for each ϵ. Since $0<|t|_{p} \leqslant 1$ for $t \in \mathbb{Z}_{p}^{*}$, we have

$$
U_{\psi} f_{\epsilon}(x)= \begin{cases}0, & \|x\|<1 \tag{2.8}\\ \|x\|^{-n / r-\epsilon} \int_{1 /\|x\| \leqslant|t|_{p} \leqslant 1}|t|_{p}^{-n / r-\epsilon} \psi(t) d t, & \|x\| \geqslant 1\end{cases}
$$

Evaluating $\left\|U_{\psi} f_{\epsilon}\right\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)}$ for ϵ such that $|\epsilon|_{p}>1$, we have

$$
\begin{align*}
& C^{r}\left\|f_{\epsilon}\right\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)}^{r} \tag{2.9}\\
& \quad \geqslant\left\|U_{\psi} f_{\epsilon}\right\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)}^{r} \tag{2.10}\\
& \quad=\int_{\|x\| \geqslant 1}\left(\|x\|^{-n / r-\epsilon} \int_{1 /\|x\| \leqslant|t|_{p} \leqslant 1}|t|_{p}^{-n / r-\epsilon} \psi(t) d t\right)^{r} d x \tag{2.11}\\
& \quad \geqslant \int_{\|x\| \geqslant|\epsilon|_{p}}\left(\|x\|^{-n / r-\epsilon} \int_{1 /|\epsilon|_{p} \leqslant|t|_{p} \leqslant 1}|t|_{p}^{-n / r-\epsilon} \psi(t) d t\right)^{r} d x \tag{2.12}
\end{align*}
$$

(put $x=\epsilon y$)

$$
\begin{align*}
& =\int_{\|y\| \geqslant 1}\|y\|^{-n-\epsilon r} d y|\epsilon|_{p}^{-\epsilon r}\left(\int_{1 /|\epsilon|_{p} \leqslant|t|_{p} \leqslant 1}|t|_{p}^{-n / r-\epsilon} \psi(t) d t\right)^{r} \\
& =\left\|f_{\epsilon}\right\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)}^{r}\left(|\epsilon|_{p}^{-\epsilon} \int_{1 /|\epsilon|_{p} \leqslant|t|_{p} \leqslant 1}|t|_{p}^{-n / r-\epsilon} \psi(t) d t\right)^{r}, \tag{2.13}
\end{align*}
$$

which implies

$$
\begin{equation*}
\int_{1 /|\epsilon|_{p} \leqslant|t|_{p} \leqslant 1}|t|_{p}^{-n / r-\epsilon} \psi(t) d t \leqslant C|\epsilon|_{p}^{\epsilon} . \tag{2.14}
\end{equation*}
$$

Now we take $\epsilon=1 / p^{k}(k=1,2,3, \ldots)$. Then $|\epsilon|_{p}=p^{k}>1$. Letting $k \rightarrow \infty$, then $\epsilon \rightarrow 0$ and $|\epsilon|_{p}^{\epsilon}=p^{k / p^{k}} \rightarrow 1$. Thus from (2.14) and Fatou's lemma, we have

$$
\begin{equation*}
\int_{0<|t|_{p} \leqslant 1}|t|_{p}^{-n / r} \psi(t) d t \leqslant C . \tag{2.15}
\end{equation*}
$$

Moreover, if we assume that U_{ψ} is bounded on $L^{r}\left(\mathbb{Q}_{p}^{n}\right)$, then from (2.1) we have

$$
\begin{equation*}
\left\|U_{\psi}\right\| \leqslant \int_{\mathbb{Z}_{p}^{*}}|t|_{p}^{-n / r} \psi(t) d t \tag{2.16}
\end{equation*}
$$

On the other hand, by using the above $f_{\epsilon} \in L^{r}\left(\mathbb{Q}_{p}^{n}\right)$ to obtain

$$
\begin{align*}
\left\|U_{\psi}\right\|^{r}\left\|f_{\epsilon}\right\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)}^{r} & \geqslant\left\|U_{\psi} f_{\epsilon}\right\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)}^{r} \\
& \geqslant\left\|f_{\epsilon}\right\|_{L^{r}\left(\mathbb{Q}_{p}^{n}\right)}^{r}\left(|\epsilon|_{p}^{-\epsilon} \int_{1 /|\epsilon|_{p} \leqslant|t|_{p} \leqslant 1}|t|_{p}^{-n / r-\epsilon} \psi(t) d t\right)^{r} . \tag{2.17}
\end{align*}
$$

Once again, by taking $\epsilon=1 / p^{k}(k=1,2,3, \ldots)$ in (2.17) and letting $k \rightarrow \infty$, we have

$$
\begin{equation*}
\left\|U_{\psi}\right\| \geqslant \int_{\mathbb{Z}_{p}^{*}}|t|_{p}^{-n / r} \psi(t) d t \tag{2.18}
\end{equation*}
$$

Hence, from (2.16) and (2.18), we obtain the operator norm $\left\|U_{\psi}\right\|$ and this completes the proof of Theorem 1.1.

For $t \in \mathbb{Q}_{p}$, we define a dilation $t B_{\gamma}$ of B_{γ} by $t B_{\gamma}=B_{\gamma-\operatorname{ord}_{p}(t)}$. Then we get $\left|t B_{\gamma}\right|=$ $|t|{ }_{p}^{n}\left|B_{\gamma}\right|$.

Similarly we define $t B_{\gamma}(a)=t B_{\gamma}+a$. Since the Haar measure is translation-invariant, for any $t \in \mathbb{Q}_{p}$ and for any ball $B \subset \mathbb{Q}_{p}^{n}$, we get $|t B|=|t|_{p}^{n}|B|$.

We need the following lemma to prove Theorem 1.2.
Lemma 2.1. The p-adic logarithmic function has a non-trivial BMO norm, i.e., if $g(x)=$ $\log \|x\|$, then $g \in B M O\left(\mathbb{Q}_{p}^{n}\right)$ and $\|g\|_{B M O}>0$.

Proof. Let $\delta \in \mathbb{Q}_{p}$. For $f \in B M O\left(\mathbb{Q}_{p}^{n}\right)$, let $f_{\delta}(x)=f(\delta x)$ be a scaling function of f by δ. By change of variables, we have

$$
\begin{equation*}
\frac{1}{|B|} \int_{B} f_{\delta}(x) d x=\frac{1}{|\delta|_{p}^{n}|B|} \int_{\delta B} f(x) d x=\frac{1}{|\delta B|} \int_{\delta B} f(x) d x \tag{2.19}
\end{equation*}
$$

where B is any ball. Thus scaling transformations map $B M O\left(\mathbb{Q}_{p}^{n}\right)$ into itself. Under these scalings, $g(x)=\log \|x\|$ is changed by at most an additive constant. To show that $g \in B M O\left(\mathbb{Q}_{p}^{n}\right)$ thus it suffices to check the alternative assertions that there is a constant C such that

$$
\begin{align*}
& \int_{B_{0}(a)}|\log \|x\|| d x \leqslant C \quad \text { for }\|a\| \leqslant 1, \tag{2.20}\\
& \int_{B_{0}(a)}|\log \|x\|-\log \|a\|| d x \leqslant C \quad \text { for }\|a\|>1 . \tag{2.21}
\end{align*}
$$

To see this, if $\|a\|<1$, then $B_{0}(a)=B_{0}$. Thus we have

$$
\begin{align*}
\int_{B_{0}(a)}|\log \|x\|| d x & =\int_{B_{0}}|\log \|x\|| d x \\
& =\left(1-1 / p^{n}\right) \log p \sum_{k=-\infty}^{0}|k| p^{k n} \equiv C<\infty . \tag{2.22}
\end{align*}
$$

Also if $\|a\|=1$, then $B_{0}(a) \subset B_{0}$. Thus we have

$$
\begin{equation*}
\int_{B_{0}(a)}|\log \|x\|| d x \leqslant \int_{B_{0}}|\log \|x\|| d x=C, \tag{2.23}
\end{equation*}
$$

where the equality follows from (2.22).
Finally if $\|a\|>1$, then for $x \in B_{0}(a)$, we get $\|x\|=\|x-a+a\|=\|a\|$.
Put $\|a\|=p^{\gamma}$. Then

$$
\begin{equation*}
\int_{B_{0}(a)}|\log \|x\|-\log \|a\|| d x=\int_{S_{\gamma}}\left|\log \|x\|-\log p^{\gamma}\right| d x=0 . \tag{2.24}
\end{equation*}
$$

Moreover, from (2.22) we have $\|g\|_{B M O}>0$, which completes the proof of the lemma.
Now we prove Theorem 1.2.
Proof of Theorem 1.2. First, suppose U_{ψ} is bounded on $B M O\left(\mathbb{Q}_{p}^{n}\right)$. Then we consider a constant function $f \equiv 1$ to get $U_{\psi} 1 \in B M O\left(\mathbb{Q}_{p}^{n}\right)$. This means that $U_{\psi} 1(x)$ has a finite value at almost every $x \in \mathbb{Q}_{p}^{n}$. Hence

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}^{*}} \psi(t) d t=U_{\psi} 1(x)<\infty \tag{2.25}
\end{equation*}
$$

Conversely, suppose $\int_{\mathbb{Z}_{p}^{*}} \psi(t) d t<\infty$. Let $f \in B M O\left(\mathbb{Q}_{p}^{n}\right)$ and let B be a ball. Then by Fubini's theorem and change of variables, we have

$$
\begin{align*}
\left(U_{\psi} f\right)_{B} & =\int_{\mathbb{Z}_{p}^{*}}\left(\frac{1}{|B|} \int_{B} f(t x) d x\right) \psi(t) d t \tag{2.26}\\
& =\int_{\mathbb{Z}_{p}^{*}} f_{t B} \psi(t) d t \tag{2.27}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{|B|} \int_{B}\left|U_{\psi} f(x)-\left(U_{\psi} f\right)_{B}\right| d x \\
& \quad \leqslant \frac{1}{|B|} \int_{B}\left(\int_{\mathbb{Z}_{p}^{*}}\left|f(t x)-f_{t B}\right| \psi(t) d t\right) d x \\
& \quad=\int_{\mathbb{Z}_{p}^{*}}\left(\frac{1}{|B|} \int_{B}\left|f(t x)-f_{t B}\right| d x\right) \psi(t) d t=\int_{\mathbb{Z}_{p}^{*}}\left(\frac{1}{|t B|} \int_{t B}\left|f(x)-f_{t B}\right| d x\right) \psi(t) d t \\
& \quad \leqslant\|f\|_{*} \int_{\mathbb{Z}_{p}^{*}} \psi(t) d t \tag{2.28}
\end{align*}
$$

which implies that U_{ψ} is bounded on $B M O\left(\mathbb{Q}_{p}^{n}\right)$ and $\left\|U_{\psi}\right\| \leqslant \int_{\mathbb{Z}_{p}^{*}} \psi(t) d t$.
Therefore, to complete the proof, it remains to show that $\int_{\mathbb{Z}_{p}^{*}} \psi(t) d t \leqslant\left\|U_{\psi}\right\|$. Now we use $g(x)=\log \|x\|$. We know that, from Lemma 2.1, $g \in B M O\left(\mathbb{Q}_{p}^{n}\right)$ and $\|g\|_{B M O} \neq 0$. Also, we get

$$
\begin{equation*}
U_{\psi} g(x)=g(x) \int_{\mathbb{Z}_{p}^{*}} \psi(t) d t+\int_{\mathbb{Z}_{p}^{*}} \log |t|_{p} \psi(t) d t \tag{2.29}
\end{equation*}
$$

Since $\int_{\mathbb{Z}_{p}^{*}} \psi(t) d t=U_{\psi} 1(x)<\infty$, the second integral of (2.29) has to be finite. Taking the $B M O$-norm on both sides of (2.29), we have

$$
\begin{align*}
\|g\|_{B M O} \int_{\mathbb{Z}_{p}^{*}} \psi(t) d t & =\left\|g \int_{\mathbb{Z}_{p}^{*}} \psi(t) d t\right\|_{B M O} \\
& =\left\|g \int_{\mathbb{Z}_{p}^{*}} \psi(t) d t+\int_{\mathbb{Z}_{p}^{*}} \log |t|_{p} \psi(t) d t\right\|_{B M O} \\
& =\left\|U_{\psi} g\right\|_{B M O} \leqslant\left\|U_{\psi}\right\|\|g\|_{B M O} . \tag{2.30}
\end{align*}
$$

From this we get $\int_{\mathbb{Z}_{p}^{*}} \psi(t) d t \leqslant\left\|U_{\psi}\right\|$, which completes the proof of Theorem 1.2.

References

[1] L.C. Jang, M.S. Kim, J.W. Son, T. Kim, S.H. Rim, On p-adic bounded functions II, J. Math. Anal. Appl. 264 (2001) 21-31.
[2] S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math. 101 (1990) 697-703.
[3] S. Haran, Analytic potential theory over the p-adics, Ann. Inst. Fourier (Grenoble) 43 (4) (1993) 905-944.
[4] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, second ed., Cambridge Univ. Press, London, 1952.
[5] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
[6] V.S. Vladimirov, I.V. Volovich, p-Adic quantum mechanics, Comm. Math. Phys. 123 (1989) 659-676.
[7] V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, p-Adic Analysis and Mathematical Physics, Ser. Soviet \& East European Math., vol. I, World Scientific, Singapore, 1994.
[8] J. Xiao, L^{p} and $B M O$ bounds of weighted Hardy-Littlewood averages, J. Math. Anal. Appl. 262 (2001) 660-666.

[^0]: * Corresponding author.

 E-mail addresses: ksrim@sogang.ac.kr (K.S. Rim), jalee@ sogang.ac.kr (J. Lee).
 1 The authors are supported by grant R14-2002-044-01001-0(2003) from ABRL of KOSEF.

