

On stronger conjectures that imply the Erdős-Moser conjecture

B.C. Kellner
Mathematisches Institut, Universität Göttingen, Bunsenstr. 3-5, 37073 Göttingen, Germany

A R T I C L E I N F O

Article history:

Received 16 March 2010
Revised 29 November 2010
Accepted 3 January 2011
Available online 12 February 2011
Communicated by David Goss

MSC:

primary 11B83
secondary 11A05, 11B68

Keywords:

Erdős-Moser equation
Consecutive values of polynomials

Abstract

The Erdős-Moser conjecture states that the Diophantine equation $S_{k}(m)=m^{k}$, where $S_{k}(m)=1^{k}+2^{k}+\cdots+(m-1)^{k}$, has no solution for positive integers k and m with $k \geqslant 2$. We show that stronger conjectures about consecutive values of the function S_{k}, that seem to be more naturally, imply the Erdős-Moser conjecture.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let k and m be positive integers throughout this paper. Define

$$
S_{k}(m)=1^{k}+2^{k}+\cdots+(m-1)^{k}
$$

Conjecture 1 (Erdős-Moser). The Diophantine equation

$$
\begin{equation*}
S_{k}(m)=m^{k} \tag{1}
\end{equation*}
$$

has only the trivial solution $(k, m)=(1,3)$ for positive integers k, m.

[^0]In 1953 Moser [7] showed that if a solution of (1) exists for $k \geqslant 2$, then k must be even and $m>$ $10^{10^{6}}$. Recently, this bound has been greatly increased to $m>10^{10^{9}}$ by Gallot, Moree, and Zudilin [2]. So it is widely believed that non-trivial solutions do not exist. Comparing S_{k} with the integral $\int x^{k} d x$, see [2], one gets an easy estimate that

$$
\begin{equation*}
k<m<2 k . \tag{2}
\end{equation*}
$$

A general result of the author [5, Prop. 8.5, p. 436] states that

$$
\begin{equation*}
m^{r+1}\left|S_{k}(m) \quad \Longleftrightarrow \quad m^{r}\right| B_{k} \tag{3}
\end{equation*}
$$

for $r=1,2$ and even k, where B_{k} denotes the k-th Bernoulli number. Thus a non-trivial solution (k, m) of (1) has the property that m^{2} must divide the numerator of B_{k} for $k \geqslant 4$; this result concerning (1) was also shown in [6] in a different form.

Because the Erdős-Moser equation is very special, one can consider properties of consecutive values of the function S_{k} in general. This leads to two stronger conjectures, described in the next sections, that imply the conjecture of Erdős-Moser.

2. Preliminaries

We use the following notation. We write $p^{r} \| m$ when $p^{r} \mid m$ but $p^{r+1} \nmid m$, i.e., $r=\operatorname{ord}_{p} m$ where p always denotes a prime. Next we recall some properties of the Bernoulli numbers and the function S_{k}. The Bernoulli numbers B_{n} are defined by

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!}, \quad|z|<2 \pi .
$$

These numbers are rational where $B_{n}=0$ for odd $n>1$ and $(-1)^{\frac{n}{2}+1} B_{n}>0$ for even $n>0$. A table of the Bernoulli numbers up to index 20 is given in [5, p. 437]. The denominator of B_{n} for even n is described by the von Staudt-Clausen theorem, see [4, p. 233], that

$$
\begin{equation*}
\operatorname{denom}\left(B_{n}\right)=\prod_{p-1 \mid n} p \tag{4}
\end{equation*}
$$

The function S_{k} is closely related to the Bernoulli numbers and is given by the well-known formula, cf. [4, p. 234]:

$$
\begin{equation*}
S_{k}(m)=\sum_{v=0}^{k}\binom{k}{v} B_{k-v} \frac{m^{\nu+1}}{v+1} \tag{5}
\end{equation*}
$$

3. Stronger conjecture - Part I

The strictly increasing function S_{k} is a polynomial of degree $k+1$ as a result of (5). One may not expect that consecutive values of S_{k} have highly common prime factors, such that $S_{k}(m+1) / S_{k}(m)$ is an integer for sufficiently large m.

Conjecture 2. Let k, m be positive integers with $m \geqslant 3$. Then

$$
\begin{equation*}
\frac{S_{k}(m+1)}{S_{k}(m)} \in \mathbb{N} \quad \Longleftrightarrow \quad(k, m) \in\{(1,3),(3,3)\} \tag{6}
\end{equation*}
$$

Note that we have to require $m \geqslant 3$, since $S_{k}(1)=0$ and $S_{k}(2)=1$ for all $k \geqslant 1$. Due to the wellknown identity $S_{1}(m)^{2}=S_{3}(m)$, a solution for $k=1$ implies a solution for $k=3$. Hereby we have the only known solutions

$$
\begin{equation*}
\frac{1+2+3}{1+2}=2 \quad \text { and } \quad \frac{1^{3}+2^{3}+3^{3}}{1^{3}+2^{3}}=4 \tag{7}
\end{equation*}
$$

based on some computer search. Since $S_{k}(m+1) / S_{k}(m) \rightarrow 1$ as $m \rightarrow \infty$, it is clear that we can only have a finite number of solutions for a fixed k. By $S_{k}(m+1)=S_{k}(m)+m^{k}$, one easily observes that (6) is equivalent to

$$
a S_{k}(m)=m^{k} \quad \Longleftrightarrow \quad(a, k, m) \in\{(1,1,3),(3,3,3)\},
$$

where a is a positive integer. This gives a generalization of (1).
Proposition 1. Conjecture 2 implies Conjecture 1.
Proof. Eq. (1) can be rewritten as $2 S_{k}(m)=S_{k}(m+1)$ after adding $S_{k}(m)$ on both sides. Conjecture 2 states that $S_{k}(m+1) / S_{k}(m)$ is not a positive integer except for the cases $(k, m)=(1,3)$ and $(k, m)=$ $(3,3)$ as given in (7). This implies Conjecture 1 , which predicts $S_{k}(m+1) / S_{k}(m) \neq 2$ for $k \geqslant 2$.

4. Stronger conjecture - Part II

The connection between the function S_{k} and the Bernoulli numbers leads to the following theorem, which we will prove later. In the following we always write $B_{k}=N_{k} / D_{k}$ in lowest terms with $D_{k}>0$ for even k. For now we write (a, b) for $\operatorname{gcd}(a, b)$.

Theorem 1. Let k, m be positive integers with even k. Define

$$
g_{k}(m)=\frac{\left(S_{k}(m), S_{k}(m+1)\right)}{m}
$$

Then

$$
\min _{m \geqslant 1} g_{k}(m)=\frac{1}{D_{k}} \quad \text { and } \quad \max _{m \geqslant 1} g_{k}(m) \geqslant\left|N_{k}\right|
$$

Generally

$$
g_{k}(m)=1 \quad \Longleftrightarrow \quad\left(D_{k} N_{k}, m\right)=1
$$

and special values are given by

$$
g_{k}\left(D_{k}\right)=\frac{1}{D_{k}}, \quad g_{k}\left(\left|N_{k}\right|\right)=\left|N_{k}\right|, \quad \text { and } \quad g_{k}\left(D_{k}\left|N_{k}\right|\right)=\left|B_{k}\right|
$$

More generally,

$$
g_{k}(m)=\left|N_{k}\right|, \quad \text { if }\left(D_{k}, m\right)=1 \text { and }\left|N_{k}\right| \mid m
$$

In particular if N_{k} is square-free, then

$$
g_{k}(m)=\frac{\left(N_{k}, m\right)}{\left(D_{k}, m\right)} \quad \text { and } \quad \max _{m \geqslant 1} g_{k}(m)=\left|N_{k}\right|
$$

Remark 1. It is well known that $\left|N_{k}\right|=1$ exactly for $k \in\{2,4,6,8\}$. Known indices k, where $\left|N_{k}\right|$ is prime, are recorded as sequence A092132 in [8]: $10,12,14,16,18,36,42$. Sequence A090997 in [8] gives the indices k, where N_{k} is not square-free: $50,98,150,196,228, \ldots$. By this, all N_{k} are square-free for $2 \leqslant k \leqslant 48$.

Since $S_{k}(m+1)=S_{k}(m)+m^{k}$, we have

$$
\begin{equation*}
\left(S_{k}(m), S_{k}(m+1)\right)=\left(S_{k}(m), m^{k}\right) \tag{8}
\end{equation*}
$$

giving a connection with (1). The function g_{k} heavily depends on the Bernoulli number B_{k}. For $2 \leqslant$ $k \leqslant 48$ and some higher indices k we even have

$$
\min _{m \geqslant 1} g_{k}(m) \cdot \max _{m \geqslant 1} g_{k}(m)=\left|B_{k}\right|
$$

The problem is to find an accurate upper bound of g_{k} to solve (1). This relation is demonstrated by Theorem 2 below and we raise the following conjecture based on Theorem 1 and some computations.

Conjecture 3. The function g_{k} has an upper bound as given in Theorem 2.
Theorem 2. Let k, m, r be positive integers with even $k \geqslant 10$. If

$$
\max _{m \geqslant 1} g_{k}(m)<\left|N_{k}\right| \log ^{r}\left|N_{k}\right| \quad \text { for } k \geqslant C_{r}
$$

and (1) has no solution for $k<C_{r}$, where C_{r} is an effectively computable constant, then Conjecture 1 is true. In particular, one can choose $C_{r}=10$ for $r=1, \ldots, 6$.

Proof. Considering Theorem 1 and (8), a possible solution of (1) must trivially satisfy

$$
\begin{equation*}
m^{k}=\left(S_{k}(m), m^{k}\right)=m g_{k}(m) \tag{9}
\end{equation*}
$$

For $k=2,4,6,8$ there is no solution of (1), since $\left|N_{k}\right|=1$. Now let $k \geqslant 10$. Using the relation of B_{k} to the Riemann zeta function by Euler's formula, cf. [4, p. 231], we have

$$
\left|B_{k}\right|=2 \zeta(k) \frac{k!}{(2 \pi)^{k}}
$$

Since $\zeta(s) \rightarrow 1$ monotonically as $s \rightarrow \infty$ and $\zeta(2)=\pi^{2} / 6$, we obtain

$$
\left|N_{k}\right|<\frac{\pi^{2}}{3} \frac{k!}{(2 \pi)^{k}} D_{k}<\frac{2 \pi^{2}}{3} \frac{k!}{\pi^{k}}
$$

using the fact that $D_{k} \mid 2\left(2^{k}-1\right)$, see [1]. Stirling's series of the Gamma function, cf. [3, p. 481], states that $k!<\sqrt{2 \pi k} k^{k} e^{-k+1 / 12 k}$. Since $e^{1 / 12 k}<\frac{11}{10}$, we deduce that

$$
\left|N_{k}\right|<\eta k^{\frac{3}{2}}\left(\frac{k}{e \pi}\right)^{k-1} \quad \text { with } \eta=\frac{11}{15} \frac{\pi}{e} \sqrt{2 \pi} \approx 2.12
$$

Further we conclude that $\log \left|N_{k}\right|<k \log (k / \pi)$. Finally, we achieve that

$$
\begin{equation*}
\left|N_{k}\right| \log ^{r}\left|N_{k}\right|<f_{r}(k)\left(\frac{k}{e \pi}\right)^{k-1} \tag{10}
\end{equation*}
$$

with

$$
f_{r}(k)=\eta k^{\frac{3}{2}+r} \log ^{r}(k / \pi) .
$$

For a fixed r we have $\sqrt[k-1]{f_{r}(k)} \rightarrow 1$ as $k \rightarrow \infty$. Define

$$
I(r)=\min \left\{n \geqslant 10: \sqrt[k-1]{f_{r}(k)}<e \pi \text { for all } k \geqslant n\right\},
$$

which is an increasing function depending on r. A short computation shows that $I(r)=10$ for $r=$ $1, \ldots, 6$. We set $C_{r}=I(r)$. Consequently (10) turns into

$$
\begin{equation*}
\sqrt[k-1]{\left|N_{k}\right| \log ^{r}\left|N_{k}\right|}<k \quad \text { for } k \geqslant C_{r} . \tag{11}
\end{equation*}
$$

Now, we assume that (1) has no solution for $k<C_{r}$ and that

$$
\begin{equation*}
\max _{m \geqslant 1} g_{k}(m)<\left|N_{k}\right| \log ^{r}\left|N_{k}\right| \quad \text { for } k \geqslant C_{r} . \tag{12}
\end{equation*}
$$

According to (9), (11), and (12), we then achieve that $m<k$ for $k \geqslant C_{r}$, which contradicts (2). Thus there is no solution of (1) for all $k \geqslant 2$ implying Conjecture 1 .

To prove Theorem 1, we shall need some preparations and a refinement of (3).
Theorem 3. Let k, m be positive integers where k is even and $m \geqslant 2$. Then

$$
\begin{array}{ll}
S_{k}(m) \equiv B_{k} m \quad(\bmod m), & \text { if } k \geqslant 2, \\
S_{k}(m) \equiv B_{k} m \quad\left(\bmod m^{2}\right), & \text { if } k \geqslant 4 \text { and }\left(D_{k}, m\right)=1, \\
S_{k}(m) \equiv B_{k} m \quad\left(\bmod m^{3}\right), & \text { if } k \geqslant 6 \text { and } m \mid N_{k}
\end{array}
$$

More precisely for $p^{r} \| m$:

$$
\begin{array}{lll}
S_{k}(m) \equiv B_{k} m & \left(\bmod p^{2 r}\right), & \text { if } k \geqslant 4 \text { and } p \nmid D_{k}, \\
S_{k}(m) \equiv B_{k} m & \left(\bmod p^{3 r}\right), & \text { if } k \geqslant 6 \text { and } p \mid N_{k} .
\end{array}
$$

Proof. This follows by exploiting the proof of [5, Prop. 8.5, pp. 436-437].
Lemma 1. Let a, b be positive integers. The sequence $\left\{\left(a, b^{\nu}\right)\right\}_{\nu \geqslant 1}$ is increasing and eventually constant. If $\left(a, b^{r}\right)=\left(a, b^{r+1}\right)$ for some $r \geqslant 1$, then $\left\{\left(a, b^{\nu}\right)\right\}_{\nu \geqslant r}$ is constant. Especially if $\operatorname{ord}_{p} a \leqslant \operatorname{sord}_{p} b$, then $\operatorname{ord}_{p}\left(a, b^{\nu}\right)=\operatorname{ord}_{p} a$ for $v \geqslant s$.

Proof. If $(a, b)=1$, then $\left(a, b^{\nu}\right)=1$ for $v \geqslant 1$. Assume that $(a, b)>1$. For each $p \mid(a, b)$, we have $\operatorname{ord}_{p}\left(a, b^{\nu}\right)=\min \left\{\operatorname{ord}_{p} a, v \operatorname{ord}_{p} b\right\}$, which is increasing and bounded as $v \rightarrow \infty$. It follows that if $\operatorname{ord}_{p} a \leqslant \operatorname{sord}_{p} b$, then $\operatorname{ord}_{p}\left(a, b^{\nu}\right)=\operatorname{ord}_{p} a$ for $v \geqslant s$. Considering all primes $p \mid(a, b)$, we deduce that $\left(a, b^{r}\right)=\left(a, b^{r+1}\right)$ for some $r \geqslant 1$ implies that $\left(a, b^{v}\right)$ is constant for $v \geqslant r$.

Proposition 2. Let k, m be positive integers with even k. Then

$$
\left(S_{k}(m), m\right)=\frac{m}{\left(D_{k}, m\right)} \quad \text { and } \quad \min _{m \geqslant 1} g_{k}(m)=\frac{1}{D_{k}} .
$$

Proof. Let $m>1$, since the case $m=1$ is trivial. By Theorem 3 we have

$$
S_{k}(m) \equiv \frac{N_{k}}{D_{k}} m \quad(\bmod m)
$$

For each prime power $p^{e_{p}} \| m$, we then infer that $p^{e_{p}} \mid S_{k}(m)$, if $p \nmid D_{k}$; otherwise $p^{e_{p}-1} \| S_{k}(m)$, since D_{k} is square-free due to (4). This gives the first equation above. Using Lemma 1 and (8), we deduce the relation

$$
g_{k}(m)=\frac{\left(S_{k}(m), m^{k}\right)}{m} \geqslant \frac{\left(S_{k}(m), m\right)}{m}=\frac{1}{\left(D_{k}, m\right)}
$$

If $m=D_{k}$, then we even have that $\left(S_{k}(m), m^{\nu}\right)=1$ for $v \geqslant 1$, giving the minimum with $g_{k}(m)=$ $1 / D_{k}$.

Proposition 3. Let k, m be positive integers with even k. Then

$$
\frac{\left(S_{k}(m), m^{2}\right)}{m}=\frac{\left(N_{k}, m\right)}{\left(D_{k}, m\right)}
$$

Proof. The case $k=2$ follows by (5), $B_{2}=\frac{1}{6}$, and $((m-1)(2 m-1), m)=1$. Now let $k \geqslant 4, m \geqslant 2$, and assume that $\left(D_{k}, m\right)=1$. Applying Theorem 3 for this case we then have

$$
\begin{equation*}
S_{k}(m) \equiv \frac{N_{k}}{D_{k}} m \quad\left(\bmod m^{2}\right) \tag{13}
\end{equation*}
$$

Thus we deduce that $\left(S_{k}(m), m^{2}\right)=m\left(N_{k}, m\right)$. Now let m be arbitrary. Using Proposition 2 we obtain the relation

$$
\left(S_{k}(m), m^{2}\right)=c_{k, m}\left(S_{k}(m), m\right)=c_{k, m} \frac{m}{\left(D_{k}, m\right)}
$$

with some integer $c_{k, m} \geqslant 1$. Since $\left(N_{k}, D_{k}\right)=1$, those factors of $\left(N_{k}, m\right)$ can only give a contribution to the factor $c_{k, m}$; while other factors of m are reduced by $\left(D_{k}, m\right)$. To be more precise, consider a prime p where $p^{r} \| m$: If $p \mid D_{k}$, then $\operatorname{ord}_{p}\left(S_{k}(m), m^{\nu}\right)=r-1$ for $v \geqslant 1$ by Proposition 2 and Lemma 1. Otherwise $p \nmid D_{k}$ and (13) remains valid ($\bmod p^{2 r}$) by Theorem 3. Hence $c_{k, m}=\left(N_{k}, m\right)$, which yields the result.

Proposition 4. Let k, m be positive integers with even k. Then

$$
\frac{\left(S_{k}(m), m^{3}\right)}{m}=\frac{\left(N_{k}, m^{2}\right)}{\left(D_{k}, m\right)}
$$

Proof. The cases $k=2,4,6,8$ are compatible with Proposition 3 , since $\left|N_{k}\right|=1$. Now let $k \geqslant 10$, $m \geqslant 2$, and assume that $m \mid N_{k}$. Using Theorem 3 we have for this case that

$$
\begin{equation*}
S_{k}(m) \equiv \frac{N_{k}}{D_{k}} m \quad\left(\bmod m^{3}\right) . \tag{14}
\end{equation*}
$$

This shows that $\left(S_{k}(m), m^{3}\right)=m\left(N_{k}, m^{2}\right)$. Now let m be arbitrary. With Proposition 3 we obtain the relation

$$
\left(S_{k}(m), m^{3}\right)=d_{k, m}\left(S_{k}(m), m^{2}\right)=d_{k, m} m \frac{\left(N_{k}, m\right)}{\left(D_{k}, m\right)}
$$

with some integer $d_{k, m} \geqslant 1$. Consider a prime p where $p^{r} \| m$: If $p \nmid N_{k}$, then

$$
\operatorname{ord}_{p}\left(S_{k}(m), m^{\nu}\right) \leqslant r, \quad v \geqslant 1
$$

using Propositions 2 and 3 and Lemma 1. Thus p gives no contribution to $d_{k, m}$. If $p \mid N_{k}$, then (13) and (14) remain valid ($\bmod p^{2 r}$) and (mod $p^{3 r}$) by Theorem 3, respectively. So a power of p gives a contribution to $d_{k, m}$. Counting the prime powers, which fulfill both (13) and (14), we then finally deduce that $d_{k, m}=\left(N_{k}, m^{2}\right) /\left(N_{k}, m\right)$.

Corollary 1. Let k, m be positive integers with even k. Then

$$
\left(S_{k}(m), m^{k}\right)=e_{k, m}\left(S_{k}(m), m^{3}\right)
$$

where $e_{k, m}$ is a positive integer with the property that $p \mid e_{k, m}$ implies that $p \mid N_{k}$.
Proof. As in the proof of Proposition 4, we can use the same arguments. A prime p with $p \nmid N_{k}$ cannot give a contribution to $e_{k, m}$ anymore.

Proof of Theorem 1. The minimum of g_{k} is shown by Proposition 2. As a consequence of Proposition 4 and Corollary 1, it follows for arbitrary m that $g_{k}(m)=1$ if and only if $\left(D_{k} N_{k}, m\right)=1$. Combining Propositions 2-4 we have achieved that

$$
\begin{equation*}
\left(S_{k}(m), m^{v}\right)=m \frac{\left(N_{k}, m^{v-1}\right)}{\left(D_{k}, m\right)}, \quad v=1,2,3 \tag{15}
\end{equation*}
$$

The values of $g_{k}(m)$ for $m=D_{k},\left|N_{k}\right|, D_{k}\left|N_{k}\right|$ follow easily by (15) using Lemma 1 , since ($\left.S_{k}(m), m^{\nu}\right)$ is constant for $v \geqslant 2$ in these cases. If $\left(D_{k}, m\right)=1$ and $\left|N_{k}\right| \mid m$, then $g_{k}(m)=\left|N_{k}\right|$ by the same arguments, which implies that

$$
\begin{equation*}
\max _{m \geqslant 1} g_{k}(m) \geqslant\left|N_{k}\right| . \tag{16}
\end{equation*}
$$

It remains the case where N_{k} is square-free. By (15) and Lemma 1 we conclude that ($S_{k}(m), m^{v}$) is constant for $v \geqslant 2$ for arbitrary m. Thus $g_{k}(m)=\left(N_{k}, m\right) /\left(D_{k}, m\right)$ in this case. Consequently (16) holds with equality.

Acknowledgments

The author wishes to thank both the Max Planck Institute for Mathematics at Bonn for an invitation for a talk in February 2010 and especially Pieter Moree for the organization and discussions on the Erdős-Moser equation.

References

[1] S. Chowla, P. Hartung, An "exact" formula for the m-th Bernoulli number, Acta Arith. 22 (1972) 113-115.
[2] Y. Gallot, P. Moree, W. Zudilin, The Erdős-Moser equation $1^{k}+2^{k}+\cdots+(m-1)^{k}=m^{k}$ revisited using continued fractions, Math. Comp. 80 (2011) 1221-1237.
[3] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, USA, 1994.
[4] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, 2nd edition, Grad. Texts in Math., vol. 84, SpringerVerlag, 1990.
[5] B.C. Kellner, On irregular prime power divisors of the Bernoulli numbers, Math. Comp. 76 (2007) 405-441.
[6] P. Moree, H.J.J. te Riele, J. Urbanowicz, Divisibility properties of integers x and k satisfying $1^{k}+2^{k}+\cdots+(x-1)^{k}=x^{k}$, CWI Reports and Notes, Numerical Mathematics, 1992.
[7] L. Moser, On the Diophantine equation $1^{n}+2^{n}+3^{n}+\cdots+(m-1)^{n}=m^{n}$, Scripta Math. 19 (1953) 84-88.
[8] N.J.A. Sloane, Online Encyclopedia of Integer Sequences (OEIS), electronically published at: http://www.research.att.com/~ njas/sequences.

[^0]: E-mail address: bk@bernoulli.org.
 0022-314X/\$ - see front matter © 2011 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jnt.2011.01.004

