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1. INTRODUCTION

Consider

Z=A0, 1, Az + F(z, 0,1, 1)

(L1},
0=00,1,.)+G(z, 0,1, 4),
where (2,0, A)e R"x T*x R™, F=0(|z|*), G=0(|z]), as 21 =0.
Assume that
== A(6(1), 1,0) z, (1.2)

where (1), the solution of 6’ = Q(0, t, 0) with 6(0) = . has an Exponen-
tial Dichotomy on R uniformly for 6, e T*. Then it is shown in Yi [35]
that (1.1); has for each “small” 2 a unique integral manifold of type

Si={(f:(8,1),6,1) 0 T* te R} (1.3),

and S, enjoys the same kind of “smoothness™ as the original system (1.1),.

In the classical integral manifold theories (see Hale [9, 10], Chow and
Hale [4] for the cases that 4 is a constant matrix), it is known that the
integral manifold S, looks locally like a “saddle node,” that is, the stable
and unstable manifolds of S,, W}, and W exist and can be characterized
by

W # = {(z4, 0, 7)| the solution (Z, §) of (1.1), through
(zg, ) at time t satisfies |[Z—f;(0,7)]—-0
“exponentially” as t » + x }. (1.4),

From this definition, we see that any “trajectory” (£(1), 9(1), NeWi (W;)
(by trajectory, we mean that (3(r), 6(r)) solves (1.1) ) is attracted (repelled)
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by a “curve” (f,-.(é(t), t), 9(1), tyon S; ((f;_(é(t), t), é(z)) is not necessarily
a solution of (1.1);), and hence is attracted (repelled) by S,.

We will show in Section 5 that the classical stability results hold true in
our generalized case (1.1); and (1.2). However, compared to the classical
theories, our stable (unstable) manifold W (W) of §; is constructed in
a different but equivalent way so that any “trajectory” on W} (W) is
attracted (repelled) by a true “trajectory” on S;. That is, S; actually enjoys
“orbital” stability (see Henry [13] for a similar result). To be more precise,
we have the following theorem.

THEOREM. Consider (1.1);, (1.2). Assume that A, Q are C" (r=1)in 8, 4,
and F, G are C" in Z, 8, and A so that A, Q, F, G and all their partial
derivatives are uniformly bounded and uniformly continuous on T* x Rx I or
ExT*xRxI, where I={ieR"||A|<1} and EcR" is an arbitrary
compact subset. Let 6, be the smallest Lyapunov exponent of (1.2) in
absolute value, Lo=:Supy. 1« ,c g |CoQ(0, 1, 0)|. Suppose that L, <dy/(r + 1).
Then for any €4, 0 <eq < (0q— (r+ 1) Ly)/2, there is a Ay=Aq(83), 0 < Ao < 1,
such that for each Ael,j=:{ie R™| || <Ay}, there are integral manifolds
W(S;), Wi (S,)to(1.1),, referred to as the stable and unstable manifolds
of S,. Moreover, the following are satisfied:

(1) W(S,)={(z,0,t)e R"x T*x R| solution (2(n), 0(1)) of (1.1),
through (z,0) at time t satisfies sup,.g= |2(t) —=f1(0(1), )] e T < o0 for
some nelLy+éeg, 8g—¢0)}=1{(z,0,1)e R"xT*x R| there is a unique
(f:(80, 1), 8, T)ES, such that sup,. g: | Ni(z, 8, 1) = N} ([ (80, 1), 6, 7)|
e*" < o for some ne [ Lo+ &y, 80— 0]}, where N7(z, 0, 1) is the solution
of (1.1); with N*(z,8, 1) =(z, 0). ‘

(2) W (S)) are foliated by disjoint immersed and invriant C’ leaves
W/t (60’ 1) = {{Z’ 8» ‘L’)G R"x T* x {‘EHS‘-lplERr lN,(Z, 69 T) = N:(fn(eos T),
By, 1) et <o for some nel[Ly+ey, 0o—6]}, that is, WE(S;)=
Uaee rt.cer Wi (00, 1). Moreover, W} (8,,1), W, (0y,1) are locally C’
diffeomorphic to the stable and unstable subspaces of

Z=A(6,1, A)e, (14);
respectively, where 0 satisfies
0'=0(6,1, 1)+ G(f,(0,1),0, 1 4) (1L.5);

and 6(t)=80,. They also interest transversally at (f,(8,,71), 0,1)€ S,
(the “invariance” of leaves W I (8, ) means if n,(8,, 1) is denoted as the
solution of (1.5); through 8, at time t, then N, (WF(0,,17)), t+1)=
Wi (n,(8o, 7))

(3) W} (0y, 1) varies C"~ " smoothly in i and 0,, C* smoothly in 1.
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(4) If (1.1), is autonomous, S;, W (S;)=Ugyerx W (8,) then
reduce to invariant manifolds to the flow generated by (1.1);. In this case,
Wi (0,) are C" manifolds which vary C*~ ' smoothly in 0, i; hence W} (S,)
are C" ' manifolds which vary C™ " smoothly in 4 (see [5] for a reason that
the leaves W (64, t) vary only C"~ ' continuously).

As an application of our stability results, we discuss in Section 6 the
so-called orbital stability of quasi-periodic motions. We consider

X' =f(x), xeR" (1.5)

where fis a C? function. Suppose that (1.5) has a quasi-periodic solution
d(t)=g(w, 1, .., w,t) with k frequencies ,, .., w; (g: T —> R"), and that
the Sacker—Sell spectrum (see Sect. 2) of the variational equation

V=1(81)y (1.6)

satisfies 2’y < (— oo, 0). Here 2 is referred to as the normal spectrum (see
Sect. 2) of (1.6). Then {¢(¢)} is of asymptotic orbital stability in the sense
that there is an &£>0 such that if a solution x(t) of (1.5) satisfies
Ix(ty)— q(w, t,, .., wi t,)| <e for some #,, t, € R, then there exist constants
hy, ... h, (asymptotic phases) so thatlim, _, , | x(z)—qg(h,+ w1, ... he+©,1)]|
=0 exponentially. We then generalize the classical asymptotic orbital
stability of periodic motions (see, for example, [2]).

Many difficulties arise when we deal with the present case rather than
the classical one. First of all, like the usual idea of working with non-
autonomous systems, we would like to work with the “hull” of (1.1}, rather
than (1.1); itself because of the needs of “compactness” and “uniformity” in
our problems. These ideas were first introduced by G. Sell (see {32]).
However, as far as the smoothness is concerned, it is convenient to use a
modified idea as developed in Johnson [16] and Yi [35]. Following this
idea, (1.1), then gives rise to a (nonlinear) skew-product flow A, on
R"x T* x R2,,, where £, is a topological manifold with compact closure. S,
therefore “becomes” an invariant topological manifold %, to A;. Once we
determine the stable and unstable manifolds to &%, W (S,) follows
immediately as a special case.

Second, since the matrix 4 in (1.1), is time dependent, we need more
detailed understanding about exponential dichotomy (ED) (see Coppel [3],
Sacker and Sell [27], Johnson es al. [17]). For examples, the following
play an important role in our proofs: smoothness of projections associated
to ED (see Palmer [207, Yi[35]), control of ED constants (Yi [35]),
Sacker-Sell spectrum [27, 28] and other related concepts to stability of
linear systems.

Finally, the classical uniform contraction mapping principal (see
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Hale [12]) does not apply when we prove our smoothness results. The
smoothness problems are nontrivial even in autonomous cases (see Chow
et al. [5], Lu[19] for nice arguments). To overcome it, we derive a
generalized version of the uniform contraction mapping principal in
Section 4 similar to Rybakowski [24] and Vanderbauwhede and Van Gils
[34]. We remark here that our techniques also work for foliations of
general invariant manifolds (for example, center stable manifolds) to
differentiable systems.

The stability problems of invariant manifolds (sets) in dynamical systems
have been studied by many authors. J. Hale [9] seems to be the first one
to study the stability of integral manifolds. N. Fenichel [8] and Hirsch ez
al. [14] derived stable—unstable manifolds for general hyperbolic invariant
sets of flows (continuous and discrete flows, respectively). G. Sell [30] and
R. Johnson {16] proved existence of smooth spectrum subbundles (stable
and unstable) which are more or less special cases of (1.1); without the 6
variable. The stability of center manifolds has been discussed by
J. Carr [1], Palmer [23], Chow and Hale [4], Sakamoto [29] (a singular
perturbed system), etc. The work of Henry [13] in systems of FDE and
the work of Chow er al [5] in smooth invariant foliations is also of
importance in this context. For more literature, see Chow and Hale [4],
Hale [9], and Sell [33].

2. PRELIMINARIES AND NOTATIONS

(1) Exponential Dichotomy (ED). We say that the equation
x'=A(1) x, XeR" (2.1)

has an ED on R, if there exists a projection P: R"— R" and positive
constants K, 6 such that

| (1) PO~ (s))| <Ke °~%,  1>5,

|¢(1)(1_P) ¢7I(S)| SKeJ(I*y), Igs, (22)

where @(1) is the fundamental matrix of (2.1) with &(0)=1.
If (2.1) bas ED on R, we define so-called stable and unstable subspaces
(V*, V™ resp.) by

VE={eR"||P(1)¢| »0ast— toc};

then V" =Range P, V" =Null P, and R"=V* @V .

(2) (Linear) Skew-Product Flow. Let X be a finite-dimensional vector
space, and let Y be a Hausdorfl space. Consider the trivial bundle space
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(Xx Y, Y, p) where p is the natural projection onto Y, p~'(y)=X,=
Xx{y}
A flow m on X x Y is said to be a (linear) skew-product flow if

n(x, y, )= (D(y, ) x,y-1), (2.3)

where y-ris aflowon Y, &(y,1): X, - X, , is linear.

It is easy to verify that (a) @(y, t) is jointly continuous in y and ¢, (b)
D(y,0)=1 (c) P(y-t,5)D(y, t)=P(y, t+5), (d) D(y, 1) is nonsingular,
b Yy, y=D(y-t, —1), (e)dlmX =dim X, ,,Vie R.

We say that the skew-product flow (2.3) has an ED on Y, if there is a
continuous family of projections P(y): X — X and positive constants K, o
which are independent of y € ¥ such that

[D(y, 1) P(y)D 'y, 5) <Ke %), =25,

i (2.4)
| Dy, NI = P(y) @~ '(p,5)| < Ke®' ™", 1<

Note that P(y-t) @(y, t)=P(y, t) P(y) holds true for any ye Y, re R In
this case, the bundles

VE={{(x,eXxY||®(y,t)x|>0,as t > + 0}

are well defined and invariant (under flow 7). They are referred to as stable
(with “+7) and unstable (with “—"") subbundles. Their corresponding
fibers

Vi={xeR"|(x,y)eV*} 2.5)

are called srable and unstable subspaces.
Similar to (1), we have VI =Range P(y), V =NullP(y), X=
VIeV, . V! are invariant in the sense that

Py, V)=V,

(3) Lyapounov Exponents. Let n(x,y,1)=(®(y, t)x,y-t) be a linear
skew-product flow on R”x Y, where Y is a compact Hausdorfl space. Let
@ be an invariant probablhty measure on Y (it always exists by the
Krylov-Bogoliubov Theorem). Then it has been proved in [17] that
there is an invariant set Y, <Y with u(Y,)=1 such that for any yeY,
there exist A, (¥)>4,(¥)> --- >4, (y) for some k& (1<k<n) and a
decomposition R"=W,(y)+ --- + W,(y), where {W,} are linearly
independent and measurable subspaces, such that

lim —In | D(y, t) x| =4;(y)

[¢] =
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for every nonzero xe W,(y), j=1,2,.., k. If u is ergodic, then i/s are
independent of y. The 4,(y)'s so defined are called Lyapounov exponents
of n.

For the linear system

xX'=A(t) x, xeR" (2.6)

we denote Q =cl(A4,) in compact open topology, where A,(¢)=A(t+1);
then Q is compact [32]. For each we 2, let ®(w, 1) be the fundamental
matrix of

x'= (1) x, xeR", 2.7)
such that @(w, 0) =7 (1dentity). Then
n(x, w, t)=(P(w, t) x, w-1) (2.8)

defines a linear skew-product flow on R"x Q, where (w - 1)(s) = w(t + s).
We define the Lyapounov exponents of m in (2.8) as the Lyapounov
exponents of Eq. (2.6). We shall agree to fix an invariant measure on £2.

(4) Sacker-Sell Spectrum. Let
T ) =(e MP(y, 1) x, y-1) (29),
be the linear skew-product flow generated by
X' =(A(y-ty— i) x, x€R", (2.10);
where @(y, t) is the fundamental matrix of
X' =A(y-t)x (2.11)

such that @(y,0)=1
For each ye Y, define the resolvent p(y) of (2.11) by

p(y)={ieR|xn, hasan ED on R},
and the spectrum of (2.11) by
2(y)=R\p(y).
For any subset M < Y, define
ZMy= U Z(»

VEM

p(M)= [ p(y)=Z(MY.

ve M

The following results can be found in [25].

505:103:2-5
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THEOREM 2.1 (Sacker and Sell). Let M < Y be an invariant connected
compact subset. Then the spectrum X(M) is a union of compact intervals,
that is,

ZM)=Tla;,b;]Ju - ula, b, ] Jor some 1<k<n.

THEOREM 2.2. (S-S Perturbation Theorem). Denote K(Y) the collection
of all compact invariant subsets of Y. Let M, K(Y).

(1) If Aep(M,), then there is an a >0 and a neighborhood V of M
in Y such that Me K(Y), M <V implies (A—a, A+a)S p(M).

(2) For every neighborhood U of L(M,), there is a neighborhood V of
M, such that Me K(Y), M <V implies X(M)< U.

Note that we can define the S-S spectrum for general linear skew-
product flow (2.3) in the same fashion.

Let ¥y, V7 be the normal and tangential bundles of {0} x Y if they exist.
Then, the restriction of n to ¥V, and V' defines two linear skew-product
flows n, and n, on V, and V,, respectively (see Sell [31], Sacker and
Sell [28]); the S-S spectra X, 2, of m, and n; are hereby referred to as
the normal and tangential spectra of (2.11). It is proved (Sell [31]) that
leXyuland, if XynX,,= then 2=X,0 X,

(5) Notations. (a)Let X be a Banach space. Define for any fe R

Xﬁ+={f:R+"’X| AR 3=SUP|f(1)|€ﬂ'<OO},

t=20

Xy ={f:R =X||fl, =sup|f(0) e "<}
<0
Then X,, are Banach spaces and there are continuous embeddings
Xpy =2 X, iff2a

(b) For Banach spaces Y, .., ¥,, ¥, X, we denote by L(Y, x ¥, x
-xY,, Y) the Banach space of continuous p-linear mappings A4:
Y, x .- xY,— Y. We also define L*(X, Y) inductively by L%(X, Y)=7,
L**Y(X, Y)=L(X, LXX, Y)) (k=0, 1,..). We will identify L*(X, Y) with

L(X x = x X, Y) because of the isomorphism between them.

(c) As in [24], we denote by N’ the set of j-tuples of elements of
N={1,2,3,..}. For any v=(v(1), ., v(j)eN’ let |v[=37/_, v(s). We
define N°=¢¥ and |v| =0 for ve N°.

(d) All norm or absolute value symbols will have their obvious
meaning unless specified otherwise.
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3. MAPPINGS ON WEIGTED NORM SPACE

Consider

X'=d(y t)x, (3.1)

where xe R”, yve Y, Y is a C” Finsler manifold.

Assume that (3.1) has ED on R for each y € Y uniformly; that is, the ED
constants 4, K are independent of ye Y. We denote the family of ED
projections by P(y): R" — R".

Let @(y, t) be the fundamental matrix of (3.1) satisfying @(y, 0)=1 We
define mappings S, : Y > L(R" X, ), K, Y- L(X, ., X, )for0<p<d
as the following:

(S, (MENN=D(y, 1) P(y) ¢ (120), (3.2)
(SN =S(y,)I-P(y))c (1<0) (3.3)

for any & e R":
(KL (3100 = @3 0) P D (3,5) gls) ds

[T o nu-PN @ (s p)ds (120, (34)
(K- (1) 800 = = [ @3 O =P(3) (3, 5) gls) d

+] e 0PRO s (<0, (35)

for any ¢e X, .
It is easy to verify that

IS4 (1) ¢l <KL, (3.6)

and

K (W) @l,oe <2KOG—p) " 1@],45 (3.7)

hence, S, , K, are well defined.
Our Theorem 3.4 will give (Lipschitz) continuity and smoothness results
of the above mappings.

THEOREM 3.1. Consider (3.1).
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(1) If A is uniformly bounded on Y x R and uniformly continuous in y
on YxI, where I'< R is an arbitrary compact subset, then P is uniformly
CONLinUOUS.

(2) If A(y,t)is Lipschitz in y and there are constants C >0, Ne [0, §)
which are independent of y and t such that Lip, A< Ce™'"\, then P is
uniform Lipschit:z.

(3) If A(y,t) is C" (r=1) in y, and for any compact subset 1< R,
S A(y, 1)y (p=1,2,..,r) are uniformly continuous in y on YxI, and
moreover |37 A(y, )| < Ce " (1<p<r) for any yeY, teR, where
C>0,Ne[0,3/(r+1)) are constants which are independent of y, t, and p,
then P(y) is C" and bounded (that is, its derivatives up to order p are
continuous and bounded).

To prove the theorem, we need the following lemma.

LeMMa 3.2 (Palmer). Consider
x'=A(t) x+f(2), (3.8)

where xe R" or xe M,, (nx n matrix space). Suppose that
"= A(1) z, ze R”, (3.9)

has ED on R with ED constants 8, K and projection P. Let Be (-9, ).
If |flpe <00 (1flg. <), then (38) has for each e R" a unique
solution x (1) (x_ (1)) satisfying [x, |4, <o ({x_|4, <o), Px,(0)=P¢
((I—P)yx_(0)y=(— P)&). Moreover,

|X, 1pe SKIEI+2KO—1B1) "1 f1ps- (3.10)

This lemma can be found in Palmer [20], or Yi[35].

Proof of Theorem 3.1. Parts (2), (3) are proved in Yi [35]. We now
prove (1). For any y,, y€ Y, consider the matrix equation

x'=A(yo, 1) x+£(1), (3.11)

where f(1)=[A(y,1)— A(yy, 1)] @(», 1) P(y). By ED properties, then
f(1)—0, as t > + oo uniformly. It follows from our conditions upon A4 that
for any ¢> 0, there is ¢ :=d(¢) > 0 such that d(y, y,) < implies | f |o, <&,
where d is a metric on Y. Now x* (y, 1)=®@(y, t) P(y) is clearly a solution
of (3.11) satisfying P(yg) x¥(», 0) = P(ye) P(»), Jx*]p,. < K By
Lemma 3.2, such a solution is unique. It is easy to verify also that x*(y, 1)
satisfies

X (¥, ) =D(yo, 1) P(yo) P(y) + fo D(3o, 1) P(yo) D~ (3o, ) f(s5) ds

[ B30, NI = P(ye) @ (30, 9 f(5) d.

t
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Let =0 in above. Then
P() = P(3o) P(y) = [ (1= P3o)) @ (30, ) (s) ds
therefore,
U= P PONSE | flow <56 (3.12)

If we replace fin (3.11) by f=[A(y, 1) — A(yo, )] D(», t)}(I— P(y)) and
apply Lemma 3.2 with “—" (that is, 1<0), then, a similar argument as
above yields

K K
IP(.V(J)(I‘P(.V))ISglf'O— <3 (3.13)

Combine (3.12), (3.13). Then

[ P(y) = P(yro)l I P(yo)I = PN+ [(1—P(yo)) P(y)l
2K

<—6—8.

Hence, P is uniformly continuous. ||

LemMMa 3.3, Consider (3.1) and define

o OND=—U=PyN® (31 (+=0),
J (Hy=P(y)® '(y1) (1<0).

(1) If the conditions in Theorem 3.1(1) hold, then J, .Y —>X,,
(0 < p < d) are continuous.

(2} If the conditions in Theorem 3.1(2) hold, then J,:Y—X,,
(0< p<d— N) are Lipschitz, and

| Jt(yl)_‘]i(y2)lpt <Mid(y,, y,) (3.14)

(0<p<d~N), for any yp,,y,€Y, where M,=KM,+ 2CK?*N,
My,=Lip P.

(3) If the conditions in Theorem 3.1(3) hold, then J,: Y- X,, is
p-times differentiable if 0 < p<d—(p+ 1) N, and is C* (1 < p < r) and bounded
fO0<p<d—(p+1)N. Moreover, if J' (1 <p<r) are defined by taking
pth derivatives on the right-hand side of J . (y), then J . Y - L((TY)", X ,..)
are well defined if 0< p<Jd—pN, and are continuous if 0 < p <5 —pN.
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Proof. The proofs of (2) and the first part of (3) can also be found in
Yi [35]. Proofs of (1) and the second part of (3) are quite similar to the
following proofs for the results of S,. |

THEOREM 3.4, Consider (3.1) with S, , K, being defined as before.

(1) If the conditions in Theorem 3.1(1) hold, then S, : Y — L(R", X, )
is continuous provided 0 <p<9é, and K,:Y—L(X,,,X,,) is continuous
provided 0 < p <n <$.

(2) If the conditions in Theorem 3.1(2) hold, then
S,: Y- LR, X,,) (0<p<d-—N)
K, Y->L(X,.,X,,) (N<n<d,0<p<n—N)

are uniformly Lipschitz.
(3) If the conditions in Theorem 3.1(3) hold, then
S,:Y->LR"X,,) 0<p<d—(p+1)N)
K, Y-oLX,,.X,,) ((p+1)N<n<d, 0<p<n—(p+1)N)

are C? (1 < p<r) and bounded.

Moreover, for p=1,2,..,r, if 87, (y), K, (y) are defined by taking pth
derivatives with respect to y on the right-hand sides of (3.2)-(3.5), respec-
tively, then: S7, . Y = L(R" x(TY), X,. ) are well defined if 0< p <J — pN,
continuous if 0< p <& —pN; and, K2 Y > L(X,. x(TY)", X,.) are well
defined if (p+ 1) N<n<d,0<p<d—pN, continuous if (p+ 1) N<n<4,
0<p<dé—pN.

Remark. We shall see from the proofs of the theorem that S7,, K/, are
just formal derivatives D”S,, D’K, of S, , K, , respectively.

Proof. (1) For any y,, ve Y, { € R”, consider

x'=A{y,, t) x+ F(1), (3.15)

where F(¢)=[A(yq, t)— Ay, ) (S, (¥) E)e). Tt is clear that x*(f)=:
(S (yo) EXeY—A{S . (¥)E)(r) is a solution of (3.15) such that P(yy) x*(0) =
P(yo)(P(yo)—P(¥)) & Ix7 |, <o for pe{0,d). By Lemma 3.2, we have

[x7 ],  SK[P(yo)— PN [E1+2K(6—p) ' IFl,.. (3.16)

For any £>0, let T=T(¢) be chosen so that 2C,K-¢~"° #T <¢, where
Co=sup, .y ,.rlA(y,t)]. For such 7, since A(y, t) is uniformly
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continuous in y on Yx [0, T], and P(y) is continuous by Theorem 3.1,
there is d=4(¢)>0 such that d(y,, y)<d implies |P(yo)— P(y)| <g,
[ A(yo, 1) — A(y, 1) <&/K for any t€ [0, T]. Therefore,

|Fl, . =sup|F(r)| e

20
<max { sup |A(yo, 1)—A(p, )] -K|&|,2C,Ke™ " #T|E]}
o< T
<el&].

By (3.12),

(X", S[K+2K(6—p)~'Telll,

that is, S, is continuous. Similarly, S _ is continuous.
To prove the continuity of K, in y, we notice that for any y,, y€ Y, and
any geX,, (0<n<d), w*(t):=(K, (yo) #)1) — (K, (y) #)(2) satisfies

w' = A(yo, ) w+ F(1), (3.17)
where F=[(A(y,, t)— A(y, tH 1K, (y) ¢)(1). Moreover,

Po 0= P ([ 1 06 = ()60 651 s ),

and |w*|,, <o. Since K, (y)¢e? -0 uniformly as (— +oc, where
0<p<n<d, we can just apply Lemma 3.2, Lemma 3.3(1) and use the
exact same arguments as before to prove the continuity of X, . For X _,

the proofs are similar.

(2) For any y,yveY, ¢&eR" define x*(1)=(S,(yo) E)Ne)—
(S, E)Ne). Then x*(t) satisfies (3.15) and (3.16). By the Lipschitz
conditions on A4, we have |F|,, <SCKd(y,,y) || (0<p<J~ N). Since P
is Lipschitz by Theorem 3.1(2), (3.16) implies

2

CK
W )d()u,yz)lél,

2
[x* ], s(KM0+

where M, =Lip P. Let M, = KM,+ 2CK?*/N. Then

IS () =Syl rrn v,y S Md(yy, y2) (3.18)
Similarly,

IS _(y))—=S _(»)l L(R" X, B Mld(}'la)'z)- (3.19)
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To prove the results for K, (), we consider Eq. (3.17) for any y,, ve Y,
and any ¢€ X, , (N<n<d). Because of (3.7), we have

|Fl,, <2CK(3—n) "1¢l,, d(yo, 1), (3.20)

where 0< p <y —N. By (3.14)
IJt {(yo) _Ji (}’)\wi IR M,d(yo, y) (3-21)

It follows that

[ 02 o) =7 (31T h(s) s
<M (6= N+n) "1, dyo. ) (3.22)

Let w*(1)= (K, (yo) #)t)— (K, (¥)¢)2). Then, w*(¢) is a solution of
(3.17) satisfying |w*],, < oo and P(yo) w*(0)= P(yo) (|5 [/ (yo)ls) —
J . (y)(s)] é(s)ds). By Lemma 3.2, such a solution is unique. Combining
(3.10), (3.18), (3.20), we have

Iw+|p+ SMZ d(yO,y)l¢|n+a (323)

where M, =KM (6 —N+1n) '+4CK*5—p) ' (6§ —n)~". Therefore,
[ K, (o) =K, D < Mad(yo, p). (3.24)

Similarly,
K. (yo) = K_ (3l SM,d(yo, ») (3.25)

for any y,, ye Y.
(3) To simplify the proofs, for any ye Y, we identify an open
neighborhood U of y with an open set in the Banach space V associated

to Y.
For any Ae V, such that y+ he V, and any & € R”, we consider

Z'=A(y, 1) Z+ 3, Ay, 1) (S, (y) £)(1). (3.26)

It is clear that |0, A(y, - ) A(S, () END) 0o SCK A& for0< py<d— N.
Let Z* (y, h, £)(t) be the solution of (3.26) such that P(y) Z* (v, h, £){0)=
P(y)DP(y)h¢ and |Z7|, , <. Lemma 3.2 implies that [Z* |, , <
M |h|| €| for some constant M, > 0. Since Z™ is linear in A, &, if we define
Y*(y)by Z*(y, b, &)=Y (y) h, then

IY* ()l <M. (3.27)
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Next, we consider the equation

W' =A(y, 1) W4+1(1), (3.28)

where f(1) = [A(y + h, 1) — A(p, 1) — 0, A(y, ) RIS, (¥ + h) ) +
S, A, ) ALS .+ M) E)) = (S, (»)ENN]. For p,e[0,5—-2N], since
e P13, A(y, 1) — 0 uniformly as ¢ — +oc, then

[[A(y+h 1) = Ay, 1) =8, A(y, ) RIS 4 (3) SN, 4

1
SKIRIIEIsup [ e 3, A(y +sh, 1) = &, A(y, 1)] ds

120

=o([h]) <] (3.29)

Now (3.29) together with (3.18) then implies | (|, , =o(|h]). Let
W) =(S, (y+h) O — (S, () EN) = YH(yWAE)N1). Then W* (1) is a
solution of (3.28) such that |[W™*|, 6 <oco and P(y)W*(0)=
P(y{P(y+h)y—P(y)—DP(y)h)¢. By Lemma 3.2, Theorem 3.1(3), we
have |W* |, . =o(lhl)|&], thatis, S, : Y- L(R", X, , ) is differentiable
with DS (»)=Y*'(»)e (T, YxR", X, )

We now prove that DS, (y)eL(T,YxR", X,,) is continuous if
0<p<d—2N. To do so, for any h, veV, and any £e R" we define
Yy =Y (y+ ) ol()= Y (p)el()=Z (y+h, 0, E)0) = Z7 (y, v, 1)
Then, Y(r) satisfies

Y =A(y, 1) Y+glt), (3.30)
where
g)=[A(y+h 1}—A(y, )] Z*(y+h v, 1)
+ [0, Ay +h, 1) =2, Ay, )] u(S, (y) EN1)
+8, Ay +h ) e[S (y+h) ) — (S () D]

For any pe [0, —2N), take p,e(p+ N, d— N). We have

f[A(}"f‘h, ')—A(}'» )] Z+(}", v, é)|p+
S(supe N Ay +h )= Ay ODIZT (30,8, 4 s

=20
[[8,A(y+h, ) =0, Ay, )] o(S, (1)),
<Klvl|&lsupe " P18 A(y+h, 1)—3,A(y, 1),

120
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and
10, A(y+h, ) o[S, (y+h E=S, (DN,
<SClol1ENIS, b+ M) =S, (D Lgn v, mor
SCM, |v] ] |Al.

Notice also p,—p>N, §—p>N. We see that V&¢>0, 36>0 such that
| h} <& implies

lgl,, <elvl|¢]. (3.31)

Again, by Lemma 3.2, Theorem 3.1(3), and the facts that |Y],, <o,
P(y) Y(0)= P(yDP(y+ h)— DP(y))vé, we have

I Yl,. sMqeelvlIE] as |h|<dy,

where M,>0 is a constant, d,=min {3, ¢}. Therefore DS, =Y"* is
continuous.

We claim that §4, =Y* : Y —» L(R"xTY, X, , ) is well defined for 0<
po<6—N. For any h,ye A, EecR", let ZV(y, b, ENtY=s (YT (y)hEY)) e
X,,+ be defined by (3.26). Since S, : 4> L(R". X,) (0<p,<I—2N)
is differentiable with DS, (y) = Y*(y) e L(R" x TY, X, ,), then
(DS, (y) hENO)= (Y () hENO). However, by definition, (DS, (y) h&)(0) =
(S'"(y) hé)O0)=DP _(y) he. 1t follows that (S, (y) AENO0)= (Y ¥ (y) hE)O).
Since (S, (3) h&)(r) solves (3.26), by uniqueness, then (S’ (y)hE)(1) =
(Y*(y) hE)1), that is, ' (¥)=Y'(1)eL(R"xTY, X, ,) for 0<p,<
35— N. The continuity of S, =Y*:Y - L(R"xTY,X,) with 0<p,<
d — N follows simply from (3.26) and arguments in (1).

By similar arguments, we can prove the results for S_, S' .

To prove the results for K, (y), we consider for each ¢elX,,
(2N <n <), and each y, he V the equation

W =A(y, ) W+, A(y. ) h(K, (y) $)(1). (3.32)

For poe[0,n—N], let W*(t)=W(y, h ¢)(t) be a solution of (3.32)
with properties that | W* |, < oo, P(y) W (0)=P(») | J' (»)(¢) hel1) db.
Since |0, A(y, ) hK (V) $1,,+ S2CK(d—1n) "|h}|4l,., by Lemma 3.2,
such a solution W *(t) exists and is unique. Furthermore, by Lemmas 3.2
and 3.3, we have

| W e SMs|hllg],. (3.33)

for some constant M > 0. Note that W™ is linear in 4 and ¢. We hereby
define K*(y): T, Y —>L(X,,, X,,,) by W* =K*(y) hp. Then [ K*(y)| <
M. Consider now V(t)=(K, (y+h)&)t)— (K, (y) $)1)— K*(y) h(2).
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For 2N<n <94, p,€[0,n—2N] then | V|, , < oo and P(y) V(0)=P(y) ¢,
where q’:jg [ (v+h)) =T (yNt)—08,J, (y)h] é(1) dr. Furthermore,
V(t) satisfies

Vi=A(y, t) V+ H(1), (3.34)
where
Hit)=[A(y+h )= Ay, 1) =0, A(y, ) hNK (3 + h) $)(1)
+¢, A0y, VUK (y+h) §)1) — (K, (y) $)(1)].

By Using Lemma 3.3, parts (1) or (2) of this theorem, we can easily see that
[El=o(lh1)1gl,,, |H|, . =0o(lh|)|$],,. It then follows from Lemma 3.2
that [V, , =o(|h])|¢l,. . thatis, |K, (»+h)— K, ()= K*(») hl.. =
o(|h}). Hence, K,(y) is differentiable with DK (y)=K*(p)e
LT YxX,,, X, ,)(2N<y<4,0<p <n—2N)

To prove the continuity of DK, (y)=K*(y)eL(T , YxX,,, X, ) for
2N <n <3, 0<p<n—2N, we note that for any h, ve V and any peX,
W(ty=: K*(y+h)vg(t)— K*(y) vg(t) satisfies

W' =A(y, 1) W+3g(1), (3.35)
where
g)=[A(y, )= Ay +h, ) J(K*(y + h) vé(t))

+ [0, A(y, 1) =0, A(y+h, ()] vK, (¥)(@)(1)
+0, A3 +h ) o[K, (y)— K, (y+m)1(P)1);

moreover, |W|,, <oo, P(y) W(0)=P(y)[g [6,J,(y+h)1)=8,J  (¥)1)]
vg(t)dr. For any ¢>0, we first observe that there is >0 such
that |g|,, <el|v|lél,, as |4] <. The continuity of K* then follows
from Lemma 3.2 and Lemma 3.3 by using arguments similar to those
above. Similar to arguments for S',, one can show that K, =K*: Y —
L(X,, xTY, X,,) is well defined if 2N<n<d, 0<p<n—N, and
continuous if 2N <n<9d, 0<p<ny—N. The results for K_ can also be
proved in the same fashion.

For 1<p<r, one is concerned only with elaborations of the above
arguments and applications of inductions on p. We omit the details. |i

LEMMA 3.5, Let f:R"—= R":(x,t)—f(x,1) be C" in x. Assume that
S0, 0)=0, and that & f(x,1) (1<p<r) is uniformly continuous and
uniformly bounded in x on Kx R for any compact subset K< R". Define
G:X,, =X, (p=0) by G()t)=f(@(1), t). Then, G is C* (1 <p<r) and
bounded.
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Proof. We only prove the case when p=1. The case | <p<r can be
carried out by the same arguments.

Take p>0. For any ¢eX,,, let Ko R" be a compact set which
contains the set {¢, (r)|7€ R, sup,., |¢,—¢|<1]. For any £>0, by
uniform continuity of fin x on K, x R, we can find 4, 0 < < 1, such that
18 flx, ) =8, flxp. )i <e for any teR and any x, x,eK, with
|x —x,y] <.

Now, let ¢,eX,,, |dol,. <6 Then |gy(z)]<é for any reR.
Hence |2, f(o(1) +spy(2), 1)— 0, (1), 1)) <¢ for any te R, s€[0,1].
Therefore, | G(d + ¢o) — G(#) — . f(#, *) bol,+ SSUP, g e f§ 10 f(h(2) +
solt), 1) =0, f((1), D do(t)) ds<e)g|,,. This implies that G is
differentiable with DG(¢)=2, f(4, -)e L(X,,, X,,). The continuity of
DG(¢) follows from the uniform continuity of @, f(¢,-). Similarly,
G:X, .~ X, (p=0)is C' and bounded. |

LemMa 3.6, Let X be a locally compact Finsler manifold with metric d.
Consider f: R"x X x R~ R":(x, 0, t)> f(x, a, t). Assume that (0, ¢, 1) =0,
and that, for any compact set K< R", 8. f exists and is bounded on
KxZ xR Define G: X,, xX—=X,, (p=0) by G(, a)(t)=f(¢(1),a,t) If
[ continuous, then G: X ,, x2 — X, (0<n<p) is continuous.

Proof. Let p, n be fixed so that 0 <n < p. For any ¢,eX,, and gy,
denote by K,c R" the compact set which contains {¢,(¢)|7€R,
SUP, 50 @, —@ol <1}. Denote 2= {oeX|d(o, 0,)<1}. For any >0, we
first choose R, >0 such that

2sup |8, f(x, 0, 0) (14o],, +1)e ¥ MRo<e

\'SKp

=y
Since f is uniformly continuous on K,x 2, x [0, Ry], there is 4, 0 <d < 1,
with the property that if x,,x,eK,, |x,—x;|<é, and if ¢,,0,2,,
d(o,,65)<d, then | f(x,,0,, 1) —f(x,, 05, 1) <e "R¢ for any 1€ [0, Ry}
Now, for any ¢e X, ,, o€ 2 such that |¢ —¢,|,, <4, d(o, 5,) <3, we have
| ¢(1)— o (1) <& for any 1€ R. Therefore,

|G(p. 0) — Gldo, 00)l, . =supe™ | f(#(1), 0, 1) = f(Po(1), 60, 1)]

120
<max { sup ™| f(g(1), 0, 1) = f(go(1). 05, 1),
re [0, Ro]
2sup 0, f(x, 0,0 (14ol,, +1)e ¥ nmo}q,
\’EK:()
TR

Similarly, G: X, xZ =X, (0<n<p)is continuous. |
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LEMMA 3.7. Let X be a C’ Finsler manifold. Consider f: R"x X x R —
R":(x,0,t)—>f(x, 0,t) Assume that f(0,6,1)=0, fis C" in x, o, and, for
compact sets K< R", I< R, [ as well as all of its partial derivatives are
uniformly continuous on Kx X x 1. Assume further that there are constants
N=0, C=0 such that for all integers i 20, jZ20 with 1 <i+j<r,

Clx|eN (i=0),

Ce/™ 11 (i>0). (3.36)

e
(1) Define G:X,, xZ—>X,, by G, o)t)=f((t)o.1). If n<
p—pN, then G: X, x2 — X, is C” and bounded, where p=1,2, ..., r.
(2) For any integer i20, j=0 with 1<i+j<r and any
ki ky, k=0, define G"': X, xZ—L([T._ Xe,o x(TZY. X, ) by
G "¢y, )= 00 f(do(-), a,-). Then, G~/ is well defined if

0, < p—IiN (i=0)
Ul k- N (1> 0)

s=1 "

it is continuous if

< p—JN (i=0)
! 'k, —iN  (i>0)

s=1"

Proof. For simplicity, we only do the case when i=0, j= 1. The general
case follows simply by similar arguments.

{1) We want to show that G: X, xX—-X, , is CP (1<p<r)
with 0,6/G($, 0)=2"8L f((-), 0, )e L(X,, x(TZ), X,.) if n<p—pN,
i+ j=p. As before, for any o€ X, we identify an open neighborhood U of
¢ with an open set ¥ of the Banach space equipped to 2. Now, for any
he V such that ¢ + he V, observe by (3.36) that if n <p — N, then

'G(¢v o +h)~G(¢~ J)—@df‘(¢9 g, ')h'qt

< sup [ 10, /(4. 0+sh )=, f(d.a, D) " |h ds

1e RT "0

slhfmax{(l sup |, f(d, 6+ sh, 1)

O 4e[-T. T
— e, f(@, 0, 0N 2C g, e Y "”T'} forany TeR.
It then follows from the uniform continuity of ¢, f on Range {¢} x X x
[—T7, T] that
|G(p.a+h)—Glg.o)—2,flg, 0, )R, =o(lh]),
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that is, G 1s differentiable in ¢ with ¢ G(¢, 0) =2, f(4, o, -). The continuity
of d,G follows from the uniform continuity assumptions on f and the
above arguments.

(2) I n<p—jN, then for any ¢, ¢oeX,,, any o, 0,2, and any
he (TX), we have

G4, 0) bl . =sup ™ 18] f($(1), 5. 1) h]

20
SCl@l,, thlsupe w-m- N
r=0
<ClolL,. 1Al (3.37)

and if #; < p— /N, then we also have

1[G (¢, 6) — G*($o, 06)] hl,, 4

<|hlmax{ sup e’ |8, f(¢(t), 0,1)
te [0, T}

=05 (do(t), 00, N, 2C 1], e "W m M) (3.38)

for any T>0.

By using the arguments in Lemma 3.6, we see that G*/: X, x2 —
L(Xfux(TZ)f, X, +) is well defined if n,<p—jN, and continuous if
m<p—jN. 1

4. UNIFORM CONTRACTIONS ON SCALE OF BANACH SPACES

We give in this section generalizations of the classical uniform contrac-
tion mapping principal.

LemMMa 4.1, Consider Banach spaces Y,, Y such that Yo 5 Y is a
continuous embedding. Let A be a Finsler manifold. Assume that:

(1} T:YxA—Y is auniform contraction, that is, there is a 0 <8< 1
such that |T(y, A)~T(y, AN <O | y—y,| forany y, y e Y and any Ae A.
Let y:A—Y be the fixed point of T. There is y,: A—> Y,y such that
Y(A)=Jye(4).

(2) The mapping Ty: Yox A= Y:(yg, A)—>T(Jy,, A) is (Lipschitz)
continuous in A uniformly in y,.

Then y: A — Y is (Lipschitz) uniformly continuous.
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Proof. We only prove the uniform continuity part. For any &> 0,
because of (2), there isa § > 0, such that | T ({ v, Ag) 4) — To(Vo(4e)s o)} <
(1 —0) ¢ provided that d(4, 45) <O. Here d is a fixed metric on A.

Now, for any 4, i,€ 4, such that d(4, 4,) <9,

| 7(A) = p(2e)] = | T{¥(4), 2) ~ T(¥(44), Ao)|
| T(p(4), 1) — T(¥(4o), A)|
+1To(rol4o), 4) = To(3o(40)s Ao)l
<O y(A)—ylig) + (1 —0) ¢

hence, | ¥(4) — y(4,)] <e. That is, y: A — Y is uniformly continuous. ||

THEOREM 4.2. Let r=1 be an integer. Consider Banach spaces
Y,Y,,..Y .Yy, Ygp,.wY, such that Y-Y,, Y,-Y, ,, Y, =»7T,,
Y= Yuir1) i=1,2,..,r, are continuously embedded (Y4, ,,,:=Y,) We
denote by J,,:Y,» Y, J: Y=Y, the embedding operators for a,
be{l,.,ryu{dl, .. dr} if they exisi. Let A be a C" Finsler manifold
associated with a Banach space %. We denote by @:2 — A the coordinate
system. Assume the following.

(1) T:Y,xA-Y,is auniform contraction with contraction constant
B8 [0, 1). Moreover, if y,: A— Y, is the fixed point of T, then there is a
continuous vo: A — Y such that v, =J, y,.

(2) For any integer i, j=0, 1 <p<r with 0<i+j<p and any ve N’
with O |v|<p—j (if i=0Q, then |v|:=0), there are well-defined mappings

Ti-dr 'YXA—-’L(H Y‘,MX(TA)"-, Y,,)

Ivi+j-
s=1

Ti.i.," . Y)(A—-»L(H Yd‘\(k\-)x(TA)[? de)

diyvl+)e
s=1

Térr ¥ xA-L ( [T Y. x(T4Y, de)

c(ivli+ /)
s=1

such that for any y, y,,y,€Y, 0,,6,€X, A€ A, we have

) (a) ']p.dp Tf\.lfi,(y» ;L) = T:J(jl‘;p[ +4) (y’ )")(Hlx= 1 ‘]v(s].dv(.r) X [I) =
Thor (v, A), where I: TA — TA is the identity;

ottvi+ )
.0, Lo, 4 .
(b) | T,l, PO Dl iy, € 0, | T, "y, A)|1.();,,.. V) S 8;

ifp e ; .
(c) Tyih ., is continuous,
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(d) Tf:qli\'pui)(yl’ 4) - T:('I\HH( V2, 4)

! : A
=J. T"+ ?jfl (S)']+(l -S)y2w/")(yl—y2)dss

v i+
X Thh s @le ) =T, (v, @lay))
= [ T et + (=) 02)
x Do(sa, + (1 —s)o, )0, —0,)ds.

Then vy :=J, 41, A— Yy is C.

Remarks. ()If  i=j=0, then T3%7:=J, T, TH " =T% " =
JiapTo, where Ty: Yx A= Y i To{y, A)=T(J, y, A).

~(2) In applications, T340, Tigl s Tiih ., are usually restric-
tions of formal partial derivatives of 7" to some spaces.

Proof. We prove it by induction. We first claim that y :A4— Y, is
Lipschitz. Without loss of generality, we identify 4 as an open convex set
of 2. Notice that, for any 4,, 1,€ 4, and any y,e Y,

T?io' "(yo, Ay)— T?io' ! (o, 42)

1
=j TON (yo, 5y + (1= 5) Ay )4, — 4,) ds. (4.1)
(4]
Since 70 ' =J, To, T4 "' =J, 4 TS, then (4.1) implies that
1
Tolyo, 4y) = Tolyo, 22)=J T?'H()'m SA (1 —8) AW A — 4,y) ds,
4]

that is, T, is Lipschitz in 4 uniformly in y,. It then follows from Lemma 4.1
that y,: 4 — Y, is Lipschitz.
Let 4,: 4 — L(A, Y,) be the unique fixed point of

A=T " " (yo(A), A) A+ TV (yo(A), A)=:f(A, £).
Then, Ay :=J, 4 A,: A= L(A, Y, ) solves
A=TE N (yo(A), 1) A+ TR (ye(A), 2) =: F(4, 4).
Since

For L(A, Y )X A— L(A, Y) 1 (A, Ay F(J, 51 A, 1)
=THM (vo(A), 2) A+ TON (o (4), 1)
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is continuous, Lemma 4.1 implies that A, =J, nA4,: A - L(A, Y,) is
continuous.
We claim that y,, =J, 4 ¥,: 4> Y, is C' with Dy, =A4,. For any
A he A, denote H(/, W)=y (A+h)—y, (A)— A, () h Then
H(, h)y =T (yo(A), 1) H(Z, h) + R(4, h), (4.2)
where
R(A ) =T (yo(A+h), A+ h) = TS (vo(4), 4)
— T3 (yolA), ) ya (A +h)
+ T3 (3o (A) Ay () + TG (vo(A), A) A
= [T (yoli+ k) 2) = T2 (1o(2), 4)
— T3 (ro(A) A) ¥y (A+ h)
+TEM (3o(2), Ay, (4)]
+ (T8 (oAt h), A+h)= T2 (yo(A+h). 1)
- T?}U (vola+h), i) K]
+ LT (ro(A+4), )= TH (9o(2), )T A

1
= [ ITE svo it b+ (1 =5) po (), £)
0
— TR (o2 ALy Gk ) =y, ()] ds
+j| [TON (vo(A+h), s(i+h) + (1 —5) 4)
(4]

— T8 (yold+h), 1) hds
+ [TO (yolA+h), A) = TU " (yo(A), A)] A

Since y, is Lipschitz, and T4° T%! are continuous, then R(4, )= o(| 4|).
By (4.2), then H(4, h)=o({h]|), that is, y,: 4 — Y, is differentiable with
Dy, = A, . It follows from continuity of 4, that y,:A4— Y, is C..

By induction, we assume that y,,=J, ;,y,: A= Y, is C” for 1<p<

r—1, and, there are 4,: 4 — L(A”, Y,) such that 4,,:=D"y,,=J, ,,A,;
moreover, 4,,, A, satisfy
Ay =T " (yo(h), 4) 4, + HI(A), (4.3)
A,= T},‘“"’(y()(/l), L) A+ H,(4), (4.4)

505.103:2-6
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where HZ(1) is defined as a finite sum of H./(1):=Tulh,  (ye(4), £)
ITi_ | Augis) for some v=(v(1), ., v(i))e N' with 1 <i+j<p, I <|v|<p—j
(if /=0, then we define Y|, = &), H,(4) is given by exactly the same forms
with HZ(4) except we drop “d” in H4(4). Tt is clear by (2)(a) that HY(1)¢e
L(A7, Y,,), H,(A)e L(A7, Y,,).

We first claim  that 87 : A4 - L(TTi_, Yy x 47, Yy,i0)): 4 >
Tohb3 L (vo(A), 4) is C'. To do so, we let

SR =T 052 (o (A), Ay A (A + T 50 (ve(4), 4). (45)

vl 47+ 1)
For any Re[]'_, Y,,,x A", we have

[S¢(A+h)—S¢ ()-S5 (AR R
= [T nt (vold+h), A h) = TH2% ) (vo(A), 4)

=T (e (AN A) A (DY h= T30 500 (o(2), 4) K] R
=[T:000 (oA +h), A4+ hy— T 0% L (yo(4), 4)

o)y} +J) cfivl+0)
- T:a»l|’+l,7++ 1l| (yo(4), L)y (A+h) -y (4))
— TR (ra(2), 4) ] R

clivi+j+ 1D

+ Ti,ﬁ:fiﬁ:,‘,()’g(l), Ay (C+h)—yad)—Ayu(2) h]

X ( IT Jetsr, avin X A’) R

s=1

=j’ [T hmr 1 oy (G4 k) 4+ (1= 5) vo(A), 4+ h)
0

vl +j+ 1)
ST (oA A+ W)Ly (A + ) =y, ()] Rds
! . 4
+ [ LT o). a4 )+ (1 =) &)

= TEi N (ro(A), 2)] AR ds

cvli+j+ 1)

+ TR (vo(A), Dy (A4 H) = v (A) — A gy (A) h]

x ( TT Jots. iy X A—’) R.

s=1

Since T.J14710) Tiiv'i71l, are continuous, y, is Lipschitz, y,, is C', from
(4.6), we see that Sf,: A= LT, ., Yy x A7, Yy, 1)) is differentiable with
DS{ =8¢, Now, for any i,,AeA, and any Re[]{_, Y., x4’ we

notice that
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[S/,(4)—§7,(4:)1 AR
— [Ti+lA/.p+l (}'0(;~1)vi1)‘ Ti+1.j.p+l ()’o('{z), }Q)] Al(il)hk

clivi+j+ 1) clivi+j+1)

+ T&mﬂf::; (yo(A2), A[Ap (A1) —Apn(4s)]

x h ( H s, dvisy X I’) R

s=1

+ LTG50 oA ) = Tef i 1) (vo(4a), 42)T kR

cfivi+ji+ 1) cllvi+ji+1

Then, S—]j’/ is Cf)nginuous. This proves that N ]is C'.Since Jp yip 1) H, (2) =
7_:211;'{]:,‘;(.“0(’“% A IT., Ay = Ti)i’|'vp1:n(y0('l~)~ 4) TTi2) Aa,)» then

H,? =y a1y Hy' is C' with

Dﬁ;f<z>=szf,m(n A)

s=1

+Sf,,-(i)( > 11 Ad‘-f,,-)(i)Ad‘.q.\-oHn(3))' (4.7)
so=1s#s50
Thus, A :=Jy, a1, Ha is C'. ~
Now, we define S, ;(4), 6H,(2) by simply dropping “d” in S (1) and

DHA/(%), respectively. Let A, ,:A—>L(A"Y, Y, ) Aypey:A4-
L(A7*', Yy, . 1,) be fixed points of

A=TI0P N (30(R), ) A+ 5,.0(4) A(A)+ 6H,(4)
and

A=TE000 (vo(A), 2) A+ 5] o(A) A,(A)+ DHI(4) =: Q(A, 1),

dip+1)

respectively. Since

Qo LA Y, )x 4
> LA Yypi1): (Ao A= O, 4 L+ 1) A0s A)
= THO0 1 (9o(2), A) Ao+ 544 (2) A, (4) + DAZ(2)

cp+1)

is continuous, (§‘,’_0().,)Ap(il)—§‘1"0(22)Ag(iz))= [Slli.o(il)—gtli,on(;b)]
Ap(;"l)+ [Ti?;ff\'(.vl(iz), A) Ap(Ay) + T,‘[G,’fﬁ‘(}\ (A1), )»2)][/14,.('11)—
A4 (£2)]), it follows from Lemma4.l again that A,, ., :A4 = L(A4""],
VYuips 1)) is continuous. Let R(A, AY=J 4, ups 1y Agp(A+ 1) =T gy aip+ 1) Aup(4)
— Ayp+1)(2£) h. Then, R(4, h) satisfies
R(A, h)=T352 1 (vol4), 2) R(A, h)
+[SY oA+ h)y—S? (M)~ 87 (A h] A,(4)
+ (A4 +hy— HIA)— DHIA) h].



302 YINGFEI Y1

It follows that R(A, A)=o(|Al), that is,
Ap =T ppapr A A= LA, Yy, 00)

is differentiable with DZ,,,,:A,,”,H, being continuous. This proves
that vy, =J1apcy ¥1: A= Yy, is €77 The theorem is now
complete. |

We now consider an application of this theorem.

Let {Z,};c 017 be a family of C" Finsler manifolds varying continuously
inAsuchthat X, c X, if 4, <

Consider

u'=Ba, tYu+ Flu p,a,t)
B =Ru p o t),

where ue R", fe R”, e 2.

(4.9)

Hypothesis. (I) For any compact set /< R, B is uniformly continuous
on X, x I, and, the equation

u' = B(o, 1) u (4.10)

has ED on R uniformly for 1€ 2, with projections P(s) and ED constants
0 and K.

(I1) F, R are C" in u and B such that for any compact set /< R,
F, R as well as their partial derivatives are uniformly bounded on
R"*"x X xR and uniformly continuous on R"*"x 2 xI For fixed
ceZX,, F, R are also uniformly continuous on R"*"” x {g} x R.

(II1) F(0,0,0,¢) = 0, R(0,0,0,1) = 0. Let ¢,(4) = supg,, |8, Fl,
cz(A)—supE‘A,lal,Fl c3(A)=supy;, |8, R|, where E(A)=R"*"x X, xR.
Then ¢;,(A)—»0as A—-0 (i=1,2,3).

COROLLARY 4.3. Consider (4.9) and assume (1), (11), (111) above. Denote

L(4)=sup |0,4R]|,
E(2)
Ly:=L(0). If (r+1)Ly<d, then for any 0 <e<(d—(r+ 1) Ly)/2, there
exists A, €(0, 1] such that the following hold:

(1) Egquation (4.9) has for each £€R", o€, unique solutions
¢ (o, SN =y (0, E)0), B4 (0, EX1)) such that @, (0, &)(1) — O exponen-
nalIy as t — + oo with erponentta[ rate pe[Lo+¢, 0—¢) ¢, (a, E)NO)is C7
in & and is continuous in o. Furthermore, ¢, (¢, 0)(1) =0, P(a) u, (g, )0)=
P(c) ¢, (I—-P(a))u_(a,E)0)= (I~ P(o)) <.
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(2) If B, F, Rare also C" in 6€X,, and there are positive constants
C,Cy,Cs, N, with N, 2Ly, N, — L, as 4 — 0 such that for each i 20, j =0
with 0<i+j<r—1

sup )&} B| < Ce/™ 11,

Z;x R
Collul +1BN ™1 (i=0),
J
S['l‘_l’[:|5mma F|\{ C et (i>0),
and
C m L (CsQul 1B eI (i=0),
Vi 3 S .
i}(l,g(@(u‘,,,CGRl {Cse”v*"' (i>0),

then ¢, (6,¢)(0) is C'"'ingeX, . In fact, ¢ . (o, {)(0) is a C" ' function.

Proaf. Denote for each p>0, X,,ir ={x:R->R"||x|,y <w}, Y, =
{y:R->R"| |y|,, <} Let Z,, =X,, xY,, with norm |(x,y)|,, =
R

Let K,,S, be defined as in (3.2)—(3.5) for Eq. (4.10) with Y=4A=
L, xR" For any pe [L0+e 6—¢], define G:Z,, x2,~Z,, by
G(4, o)(1) = (F(u(1), B(1), 0, 1), R(u(l) B(1), 0, 1)) =:(G\ (¢, s 1), G, (4, 6 )(1)),
R,:£,~LZ, .Z,. )by K, (6)$p=(K,(o)u K, ) here (K, B)1)=
- j, B(s)ds (K B) (t)—j:x[i(v ds. We also define §, : £, — L(R", zZ,.)
by S, (a)&=(S, (6) & 0). Clearly, the above mappings are well defined.

Now for any ¢eX,,i, and any (o, £)e A, define

fo($,2)=R . (0)-Glo,$)+ 5, (o) & (4.11)

Then fixed points of

¢=/.(¢,0¢) (4.12)

solve Eq. (4.9).
By our conditions, it is easy to verify that

| fe(81.0,8) =1 (2.0, ), <OA) 16— 62l (4.13)

for any ¢,.¢,€ X,, and any (o, {)e A, where 0(L) =max {(2K/e) ¢, (1) +
(A Lg+¢e), (2K/e) ¢(A)+ L(AY/(Lo +¢)}. Hence, there is a A, >0 such
that 6(4,) <1, that is, (4.12) are uniform contractions on Z,, x): X R
for any pe[Ly+¢ d—¢]. We denote the fixed points by $. (o, i)—
(uy(0,8), B4 (0, )

For any pe(Ly+e d—¢), let us take p,, p, such that Ly+e<p, <
ps<p. Then by Lemma 3.6 and Theorem 34(1), G: Z,,x&, »Z

prt
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K, &, »L(X,,:,X, ;) S.:2, - L(R", X, ,) are continuous. There-
fore, f,:Z,, xX; xR"—»Z, . are continuous. It then follows from
Lemmad4.l that ¢,:%, xR"—>Z,, are continuous. Specifically,
¢, (0, £)(0) are continuous in ¢ and & As £ =0, since 0 is clearly a fixed
point of (4.12), by uniqueness, we have ¢, (o, 0){7)=0. The identities
P(o)u_(0,E)0) = P(o) &, (I—P(a))u_(0,E)0) = (I-P(o)) ¢ follow
directly from the definitions of f, .

To prove that ¢, (o, ¢)(0) are C” in ¢ for fixed o€ Z; , we apply the
classical uniform contraction mapping principal on Y* xA; here
Y*:=2Z,, forsome pe(Lo+¢6—¢), A:=R" Since G: Y* - Y* are
by Lemma 3.5, then f, : Y*¥ x A — Y* are C". But f, are uniform contrac-
tions; hence the fixed points ¢, (-,6): R"—Z,, are C". In particular,
¢, (& 0)(0) are C"in ¢

(2) We now verify the conditions of Theorem 4.2. Let N:=N; . For
any fixed ne((r+1)N+¢ 6—¢), take a pe((r+1)N+eg n) Define
pols)=n—3sN, p(s)=p—sN, s=12,.,r—L Let Y=X,,., Y.=X, .,
Yu=X,5+- Then Y>VY, Y. =Y .y, Y=Yy, Y, =Y, s=
l,.,r—1, are continuously embedded (Y, :=Y,,_,) Since N+e<
po(ly<n<d—g by (1), T:f, are uniformly contractions on both Y and
Y,. We denote by y, :=¢5, y, :=¢* the fixed points of T in ¥, T, respec-
tively. Then, y, =J, y,, where J,: Y — Y, is the embedding. It also follows
from arguments of (1) that y,: 4 — Y is continuous. Now, for any i, j with
1 <i+j<r—1 we differentiate T formally / times with respect to ¢, j times
with respect to . We then have

T/ (¢, 0) = §I¢ (6) E+ Z (ril) f(’; (6)° G~ "(py, 0), (4.14)
m=0

for any ¢,€ ¥, oe A, where §/, =(S,,0), K7 =(K",0) (m>0, i>0)
with S/, K7 being defined in Theorem 3.4. ($9 =5, K, :=K,), and,
G*/~" is defined in Lemma 3.7 with f= (F, R).

Forany m, i, j, p=0, with 1 <p<r—1,0<m<, 0<i+/j<p and any
ve N' with 0< [v| <p—J, since

polj—m+|vy=n—-(—-—m+{v)) N

<{n—(j—m)N (i=0)
Sl =1vIN)=(j—m)N  (i>0),

pli—m+ivy=p—(j—m+|v)}N

<{n—(j—m)N (i=0)
Sllip—IvIN)=(j—m)N  (i>0),

it follows from Lemma 3.7 that G*/ =™ : Y x A — L(TT'_, Y, x(TA) ™™,
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Yy oo G Y x A= LT Ly Yoy X (TAY "™ Y g 1ey) are well
defined. Since (m+1)N<p0(] m+vi)<d, 0<po(p)<polj—m+
[vI)=mN, (m+ 1) N<p(j—m+|v])<d, 0<p(p)<p(j— m+!vl)*mN
0<py(p)<d—/N, 0<p(p)<5 —jN, Theorem 3.4 implies that K"' :
LOY,; s X (TAY", Y ), K™ - A= LY gy oy X (TAY", Y1), S A-+
LUTAY, Y,), 8, : 4 ——»L((TA)’, Y,,) are well defined. Therefore, T’ J
A_.(n_l m,x(m)", Y, T Yx A= ([T, Yo x (T4, Yd,,) are
well defined. We now take 1, ; such that

n—(—mN (i=0)
p(p)+mN<nm<j<{(i,7_|vlN)_(j—m)N (f>0).

By Lemma 3.7, G/~ : Y x A4 - ([T}_, Yy ¥ (TA)’ X,,,+ ) are continuous,
and, by Theorem 3.4, §/, : 4 — L((TA), Y,,), K™ : 4 —»L(X i X (TA)™,
Y, ) are continuous, that is, 7°/: ¥Yx A — L (Hy_, Y X% (TA) Y,,) are
continuous. Similar to (1), we also have

| T1'0(¢0a U)luyp. Y,,)< 0('1*), | T1'0(¢0, 0')'1_1 Yap. Yap) <0(']~*)~

Thus, conditions (1), (2}{a)(c) of Theorem 4.2 are verified. Condition
(2)(d) of Theorem 4.2 is trivial in this case because 3/, , K7, G/~ are all
formal partial derivatives. We then conclude from Theorem 4.2 that
$,: 4> Yy _,=X,_(_1m2s are C" . Therefore ¢, (o, £)(0) are C"~'
in o. By using exactly the same arguments, one proves that ¢, (o, £) are
C" ! functions. J

5. STABILITY OF INTEGRAL MANIFOLDS

Consider systems
(6,t,Ayz+ F(z,0,1, 1)

(5.1);
=6, 1, 1)+ G(z,0, 1, 4),
where ze R", e T, Ae R™.
Hypotheses. (1) The equation
2 =AB(1),1,0) z (5.2)

has ED on R uniformly for each 0,e T* with projection P(6,) and ED
constants which are independent of 8,e T*, where 9(t)—9(00, t) is the
solution of

=0(6,1,0) (5.3)
such that 6(0)=6,.
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(I1) Denote I, = {Ae R™||4] < 1}. Assume that 4, @ are (" in 6, / such
that A, Q as well as all of their partial derivatives are uniformly bounded
and uniformly continuous on T x Rx[,, F, G are C’ in z, 8, A such that
F, G and all their partial derivatives are uniformly bounded and uniformly
continuous on Ex T*x RxI,, where Ec R" is an arbitrary compact set.
Furthermore, F(0,0,1,0)=0, J.F(0,0,1,0)=0, G(0,0,1,0)=0 for any
feT" teR

(IIT) Denote by 6° the smallest Lyapounov exponent of (5.2) in absolute
value, and L° :=sup,. .z 18,08, 1,0)| <8°/(r + 1).

For functions 4, Q, F, G which satisfy hypothesis (II), it has been shown
in Yi[35] that for any &,>0, there exists a flow (Q, R), with (£, d)
compact metric such that (i)Q=cl{w,-t{re R} for some wyeQ,
(i) dw, - t, o, -t)y<e " d(w,, w,) for any w,, w,e 2 and te R, (iil) there
are continuous functions a: T*xQx1,-»M,, fiExT"xQxI, —R",
G T*xQx1, T g E,xT*xQx1, - T with a(0, w,-1, 1) = A(6, 1, }),
f(z,0,09-t, AY=F(z,0,1, 1), q(0,wy-1,2)=0Q(0,1,4), g(z,0,w,-t, A)=
G(z, 0,1, 7), where E,={zeR"||z|<1}, I,={AeR"||A|< 1}, (iv)aq, q,
/., g are C”" continuous in z, A, 1 and uniform Lipschitz in « with Lipschitz
constants less than or equal to ¢,.

In the language of topological dynamical systems, 2 is referred as the
hull of {4, Q, F,G} in the compact open topology [32]. Note that
Qy=:{wy-t|1eR} is a one-dimensional topological manifold with
compact closure €.

For each &, 0<g,<1, as remarked in the introduction, we shall
consider a class of equations based on the hull , namely,

Z=a@,w-t,\yz+f(z,0, -1, 1)

(5.4),,
0=q6,0-t, )+ h(z,0, w1, 4)

for we Q. Note that (5.4),, coincides with (5.1);.
Let (z(2), 8(¢)) be solutions of (5.4),, such that z(0) =z, 8(0)=0,. Then
A7 (29, O, )= (2(2), (1), 0 - 1) (5.5),

defines a (nonlinear) skew product flow on E, x T* x 2 for each ie/{,.
The following invariant manifold theorem can be found in Yi [35]).

THEOREM 5.1, Consider (5.5),. Assume that (1), (II), and (111} hold.
Then for each e, 0<ey< (65— (r+1YLy)2, there is a i°=:i%¢,),
0 < A< 1, such that for each Aye (0, A°] we have:

(1) The skew product flow (5.5), has for each i€l
manifold of type

a unique invariant

Ay

Fo={{p,(6,w),0,w)|0eT, weQ,}, (5.6);
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where p; (0, w) is C" in 8, i and is uniformly Lipschitz in w, p,(0, ) —0
uniformly as 4 — 0.
(2) For any 8, T, let @(1) =0(8,, 4, w, 1) be the solution of

0=q@,w-t,A)+eglp;(8,w-1),8,w-t,4) (5.7)
with @(0)=0,. Then the equation
Z=al@(), w1, 2)z (5.8),

has ED on R uniformly for each 8, T*, w e Q,, and i€ I, with projections
P,(8,, w) and ED constants K> 0, §,,> 0. Furthermore, 3, € (0, 8° — &,/3),
8;,— 0" —¢0/3 as Ay —0.

(3) There are constants M, >0, M,>0, M;>0, and N, =2 L,+¢,,
with N, — Lo+¢, as 4o — 0, such that

T*sup [050(1)] < M, e™u!"), (5.9)
x.Q()xl;“

sup  |8LO(1)] < Mye™Malr (5.10)
T xQx Ly

sup Lip,, @(1) < Mye™=!", (5.11)
7% % Qo x I

foralli=1,2, .. r
(4) Let £,(60,t)=p, (8, vy t). Then

S, =1(f:(0,1),8,0e T te R}

defines an integral manifold of (5.1); for each A€ I .

Note. Let @(t) be defined in the theorem. Then the flow on % is given
by

A7(pi8o, ), 85, @) = (p,(B(1), w-1), O(1), - 1).
This is equivalent to the flow
(8, w):=(0), w-1) (5.12)
on T*x Q,.

We are now ready to state our main theorems in this section.

THEOREM 5.2.  Under conditions of Theorem 5.1, for any ¢, with 0 <g, <
(0% = (r+ 1) LY)2, there is a iqg=:Ag(ee), 0<Ao< 1, such that for each
rel, , there are invariant topological manifolds % [ (%), W , (&) to the

20
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skew product flow A’ referred to as the stable and unstable manifolds of ¥,
respectively. Moreover, we have the following:

(1) # 1 (S)={(z,0,0)e R"xT"xQ,| there is unique (p,(6,, w),
0,, w)e S, such that sup,eRi | A} (z, 0, w) — A} (p; (04, ), By, W) e < 0
for some ne[Lg+eg, 6° —so]} ={(z,0, w)e R"x T"x Q4| the solution
(Z (t) 0 )) of (5.4), with ((0), 0(0))—(«, ) is such that sup, - |3(t)—
2,(8(t), - 1) eX" < ¢ for some ne [Lo+ ey, 6°— 5]}

(2) W * (&) are foliated by disjoint immersed C’-submanifolds
W (0, w)={(z,0, w)e R"x T x {w}]
sup | A47(z, 6, w) = 47 (p,(89, @), b5, )| e*" < 0

1e RY

Sor somene[Ly+eq, 6°—¢4]},

that is, W (%) =Ugert wea ¥ i (00, ©). Furthermore, W } (0, ») are
invariant in the sense that A, W ¥ (8y, w)=# ([, (6,, )).

(3) There are small tubular neighborhoods D, = { (&, 0, w)e R" x T x
Qo1 E—p; (0, w)| <a} of &, such that W [ (8,, ) D,, ¥ [ (6, 0)n D,
are C" diffeomorphic to the stable subspace V} (8, w) and unstable subspace

1 (By, w) of (5.8), respectively.

(4) W ¥ (8,, w) vary continuously in we Ry, C"~ ' smoothly in 6, and
A Furthermore, W [ (8y, w) and # [ (8,, w) intersect transversally at
(p:(by, ), 8y, w)e .

To state our next theorem, we let N'(z, 6, ) be solution map of (5.1);
(namely, N(z, 0, t) solves (5.1); with N*(z, 6, t)=(z, 8)). We also denote
by n,(8, t) the solution map of

=0(0,1, 1)+ G(f,(0,1),0,1,2) (5.13)
{namely, n,(8, 1) solves (5.13) and n,(6, 1) =0).

THEOREM 5.3. Consider (5.1),, assuming the conditions of Theorem 5.1.
Then, for any e, with 0<ea<(8°—(r+1)L%)/2, there is Ay:=iy(e),
0<do<1, such that for each Al , there are integral manifolds W} (S,),
W (S,) to Eq. (5.1), referred to as the stable and unstable manifolds of S,
respectively. Moreover, we have the following:

(1) WE(S)={(z,0,71)e R"x T*x R | there is unique (f;(0,,1),
0y, 1)€ S, such that sup,th (NH(z,0,1)—= N (f:(0o, 1), Op, 1) et <00
for some ne [Lo+ey,8°—¢6]} = {(z,0,t)e R" x T* x R| the solution ((1),
(1)) of (5.1), through (z, 0) at time t is such that sup,_g- |3(1) f)(O(t)
)| e*™ < oo for some ne [Lo+¢eg, 6° —¢o]}.
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(2) W (S,) are foliated by disjoint immersed C’-submanifolds
WE(0,1)={(z,0,1)e R"x T"x {1}]
sup [N (z, 6, 1) = N (f:(80, 1), 85, T)| €7 < o0

re R*

for some ne [Ly+ ey, 6°—¢&,]},

that is, WX(S;)=Uger:cr W00, 7). Furthermore, Wi (0,, 1) are
invariant in the sense that

NIHWE (8o, 1) = W (n,(85, 7).

(3) W8y, 1), W (00, 1) are locally (in a tubular neighborhood of
S,) C" diffeomorphic to the stable and unstable subspaces of

2= A(n,(B,, 1), 1, 2) 2, (5.14)

respectively.

4y W (8, 1) vary continuously in 1, C*~' smoothly in 0, and A.
Furthermore, W} (8,, 1), W (8y, 1) intersect transversally at (f;(8,, 1),
B,.1)€S;.

Remark. (1) A, in Theorems 5.1, 5.2, 5.3 depends on &,; however, we
could fix a small g; to begin with, for instance, ¢, = (6 — (r + 1) L,)/4.
(2) Theorem 5.3 is a consequence of Theorem 5.2 by simply setting
W0, 1)=% (b, w-1), W).i’(si)zsupﬂge’r“'.reR W (8o, 7).

Proof of Theorem$5.2. Let A° be defined as in Theorem 5.1. For any
4€1,0 and any € T, weQ,, let &(¢) be the solution of (5.7) such that
@(0)=106,. Consider the transformation

p=z—p;(6(1), w-1)

. (5.15)
B=6-06()
to Eq. (5.4),. Then
p'=B(0y, 1, 1) p+ Folp, B, 0o, 4, 0, 1)
0 NP olp, B, 8o (5.16)
Blz Ro(Ps ﬁa 003 A, CU, ’)
with
B=a(0)

Fo=f(p+p., B+6,w-1, 1)

—f(p,, 8,01, )+ (a(B+O)—a(O))p +p,)
Ry=(g( +0)—q(8))

+(glp+p, B+ 6, w-1.2)—g(p,, 0, w1, 1))
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where @ =: 6(1), p, =: pi(é(t), w-t), a@) =: a8, w -1, 1), q(8) =:
q(6, w1, 1)
It then follows from Theorem 5.1(2) that

u'=B(B,. i o, t)u (5.17)

has ED on R uniformly for any 8, T*, Ae I (0 <4, <2°), and any we Q,
with projections P;(0,, w) and uniform ED constants K, ¢, with
3, <8%°—¢y/3,8, >8%°—¢y/3as i, -0

We choose 4, < A° first so that 6 :=4, > 8% — 2¢,/3.

Letg: R"— [0, 1} bea C™ functionequal to 1 if | x] < 1,equal to 0 | x| > 2.
For any i,e(0,4,), denote n°:=n°4,)=sup,, Foeyiel, [ p.(6, ).
Since p; is C!in 4 and p, =0, then

n° < M, (5.18)

for some constant M > 0.
Denote

Fi(p, B, 0o, 4, 0, 1) = Fo(¢(p) p, B, 04, 4, 0, 1)
R] (P’ B’ 0()9 /:» w, I) = R()(¢(P) ps ﬁ’ 00’ Aa w, 1)-
Then, the equation

p':E(BO, ;t’ , t)p-’rFl(p, ﬂw 9()’ Ai’ w, t)

! (5.19)
ﬁl = Rl (pv B5 OU) /"’ w, t)
is identical with (5.16) if [p| < 1.
We now rescale (5.19) by
p—hgu
B8P
Then the equation for (u, f#) becomes
u'=B(0,, 4 o, )u+Fu, B, 80, i o, t)
0 0 (5.20)

ﬂ, = R(u» ﬁ, 0[}9 )*'9 ), I)’
where

= 1 —
F=~f Fi(Jhou, B, 0o, 4 0, 1)
4o

R=R,(Jiou, B, 0y, 2 v, 1).
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Let 5, =TI, xQ,, E

20 AQ

W=R'"T"XZ; xR, Cl(io)=:sup5,.0|6u1~71,
Cy(4o) =:supg, |04F|, C3(/:0)=:sup%lauﬁ|, L,,=:supy, |8,4R|. It is
clear by our assumptions that C,(4) =0, L; — Ly, L, =Ly, as 4,—0
(i=1,2,3). Furthermore, if N, is defined as in Theorem 5.1, then it is
easy to verify that there are constants C, C,,C,>0 such that for
o=(0y, A)eTrx1,

Ag?

i x _ JCIUul+ 1B ™! (i=0),
Sup Ic(u./)’)arlfFlg{C l)/'N,‘OIr[ ('>0)’
Ei 1
s _ (Collul +[Bye™" (i=0),
HPNGEN '{ IR .
o {Cze’m"‘m, (i>0)
sup {¢/ B| < Ce/Val!!

Z,nx R

hold true for all i20, j20 with 0<i+j<<r—1.

For & := g,/3, we conclude from Corollary 4.3 that there is A*(e) =: 4y(g) =
Ay < A, such that (5.20) has for each iel,, weQ,, Oy T*, £ € R” unique
solutions ¢ (&, 8y, w, Ao, 1) = (5, (. 0g, @, Ao, 1), B% (& 8o, w, 4g. 1)) €
Z,, with ne[Ly+&0/3, 8,—¢y/3]. Note that [Lo+e,0°—¢g]c
[Lo+80/3, 8, —£0/3]; hence ne [Ly+ &y, 8% —&0].

By applying Corollary 4.3 with X, :=T*x [, or X, :=Q,, respectively,
we see that ¢% (&, 0y, w, 25,0y are C"in e R", €7 'inB,eT" and 2€1,,,
and continuous in w € Q.

Since 6;u’; (&, 8q, w, Ag, 1) exist and are bounded for re R*, and
u’, (0, 0, w, o, 1)=0, there exists an a,:=aq(i,)>0, such that
|70t (E, 0, 0, 2o, D] < 1T [E[ < aq.

Now, we denote

Z4 (&, 80, @, ko) =1 i ', (p, B0, @, Ao, 0)+ p (65, ®),
O’ (&, 0, , 4g)=: B, (£, 09, ©, A9, 0) + b,
D(ag)=: {(& 0, 0)e R"xT"x Q4| || <a,},
VE(By, 0, a0)=: VI (8, w)n Diay).
Here V'*(0,, w) are stable and unstable subspaces of (5.17). Let
A (0,, w, a,)
={(Z% (&, 0, 0, Ao), B (&, 00, @, Ao), )| EEVE(By, 0, a5)}.  (5.21)

and

# Hay)= ) # 56 v, a,) (5.22)
de T

wme 2
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Claim 1. # ¥ (8,. w, ay) are C" diffeomorphic to VE (8, w, a,).

Proof. Define for fixed 6, w, 4, fif , ;1 Vi (0y, 0, a) > W*(0,, w,a,)
by [, (8)=(Z4(5 6,0, 4), ©4( 0y, w A),w). We only need
to check that f . are one-to-one. This follows from Corollary 4.3,
that is, P,(6,, w)u’ (& 84, w, g, 0)=P,(0y, w) &, and (I—P,(B,, w))
ut (& 04, w, Ay, 0)=(I— P;(0,, w)) &. Q.E.D.

CLAM 2. W[ (0, w, ag) RH [ (65, 0, ag) at (p;(0,, w), 8y, w)e F,.

Proof. Define %} (6o, w, i) = {(u (& 0o, @, Ao, 0) + p.(6,, @),
0%, (& 0y, w, Ag), w)|E€ Vi (By, w)}. Then, to prove the claim, it is
equivalent to show that

H (00, , Ag) B H S (B4, 0, ig).

From our constructions, we observe that
6(“1 (Ea BO, w, 0’ O)l Vi, w) = ]’ a{ﬂoi (5’ 00) w, 0, O)l V(b m) = 0

Then, T{ézo}“/i”c? 8y, w, 0)= VI (8, ). Hence

# (O, w0, 0) R H (6, w, 0). (5.23)
Therefore,

H (0, , Ao) DA (g, w, 4y) (5.24)
for 4, small and all Ae /. Q.ED.

CLaM 3. # ¥ (a,) are overflowing invariant to A7

Proof. Take (z,0,w)e # F(ay). Then (z,0,w)e W *(f,, w, ay) for
some (8, w)e T*x Q,. It follows from Claim | that there is a unique
e VF(0y, w, a0) such that (z, 0, w) =/ (&) Let

2,(0)= S uh (& 0o, @, Ao, 1)+ p (1, (8,, @)

) _ ﬂ ) (5.25)
0, ()= 00, 0,4, 1)+ 0 .(0y, w, 1)

Since |&| < a,, then l\/gu‘i (&, 04, w, 1) <1 for re R*. Therefore
Az, 8,0)=(Z, (1) 8, (), w-1), reR* (5.26)

Denote by @&;(8;,w,t) the fundamental matrix of (5.17) with
@,(8,, 0, 0)=1I It is not hard to verify by our constructions that

(fi (t)’ ét (t), w‘[): (Z)i (¢A(00» a, t) é’ rt(00~ Cl)), ;vn’ O)’
@)i (¢2(90’ w’t)c~ r/(o(hw)’ )‘Os 0)’(‘0'1)' (527)
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Combining (5.26), (5.27) we see that A%(z, 6, w)e ¥ * (I",(8,, w), a,) for
re R*. Q.ED.

17’"3(a0) and 17"',._’ (ay,) are referred to as local stable and unstable
manifolds to % by the following:

Ciamm 4. EX(8,, w,ro) = # £ (B, , ag) = E} (84, , 1), where

E:_’(G()s war):= {(:’ G,QJ)GR”XTkXQO‘ lz_pl(gi)s w)‘sr’
Sup |A,(Z, H’w)—A:(Pa(QO-w)v Qo,w)'eim<w,

re Rt

forsomene[Lo+¢6y,8"—¢0]}  forany r>0 (5.28)

and

Proof. For any (z,0,w)e W ¥ (0, w, a,), there exists a unique
Ee VE(0,, w, a,) such that

2= Aot (& 8y, @, 29, 0) + p, (8o, ),
6 = ¢/:t (é’ 003 (1), /{()a 0) + 00'

Let 2, (1), éi(z) be given in (5.25). By the same reasoning as before,
Az 0, 0)=(G, (1), B.(1). w-1), and | /iqu (& 8y, @, Ao, 1) <1 for
te R*. In particular, |z—p;(0y, )| <1, A(z,0,w)—A(p;(0,, ),
B, ) = (/Ao ', (& Oo, w, Ao, 1), B4 A(E Oy, @, 4g, 1),0) € Z,, for ne
[Lo+ €9, 8°— &3] This proves that # *(8,, w, ap) < Ef (64, w, 1).

Next, we take (2, 0, w)€ E (6, @, ro) and define & = (1/\/7y) P; (65, ®)
(z—p;(0,, w)). By the way that r, is chosen, we see that |&|<a,.
Let (z(1), 0(r)) be the solution of (54), with (z(0),6(0))=(z, 6);
define u(t)=(1/\/2o)Nz(1) = p; (I (6o, ®))), B(2)=0(1)— (B, w, 7). Then
(u(t), B(1))€ Z,, for ne[Ly+&g,0°—¢0], and, (u(1), f(1)) solves (5.20).
Since P,(0,, w) &= P,(0,, w)u(0), by uniqueness (Corollary 4.3), then,
ulty=u’, (& 04, 0, 4o, 1) and B(1) = B*, (&, Oy, @, 4o, 7). Specifically,

2= kot (& 8y, @, Ao, 0) +p, (0o, @)
6=pB" (& 8y, 0, Ay, 0) + 8.

Il

Recall that |&| < a,. Hence, (z, 0, w) e # (8, v, a,). Therefore,
E} (04, w.ro)= #' (8,, w, a,). Similarly, E, (8y, w, rg) =¥, (8o, w, ap).
Q.ED.
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CLaM 5. W 2 (0o, 0, ag) " H F(0,,0,a0)=¢ if 0,#6,.

Proof. If not, there is a (z, 0, w)e W0, w, a,) " W*(0,, w, a,). By
Claim4, 8(1)=0,(8,, 0, 1) — O, (0,, w, 1)e X, with ne [Ly+¢,,6°—¢,].
Consider

ﬁl =f).(ﬁs I)a ﬁETk’ (529)

where [, (B, 1)=q(f+ 6, (Oo, @, 1), -1, /{)+g(p,1(ﬁ+@ (6o, 0, 1), w-1),
B+ 6(0o, , 1), 4) — q(O, (8, w, 1), 0 -1, 1) — g((p; (0,00, 0, 1), © - 1),
6(0,, w, 1), 1), 4). Tt is clear that

£0,1)=0  and  sup [y fi(B. 1)l =2 c(ho) = Lo
/;:;l:*

as A, — 0. Without loss of generality, we assume that ¢(4y) < L,+¢,. For
ne[Ly+éey, 6°—~&,], we define mappings F,:X,, »X,, by F,(f)=
~ {7 f.(B(s), s)ds, F_(B)=["_ f;(B(s), 5) ds. It follows from the contrac-
tion mapping principle that there is a unique fixed point f, € X, to F,

which is clearly a solution of (5.29). Since f=0e X,, and = OEX,,+ are
both solutions of (5.29). By uniqueness of the fixed point, then 8(z)=0; in
particular, 8, =0, Q.E.D.

We now define

W E (O, w)= ) A4,(# £(0,, w, ap)),

te R
and
ﬂ’i(%)z U ﬂﬁi(e()’w)
dpe T¢
we
CLAM 6.

W E (0, w)={(z,0,w)e R"x T x Q, |
x sup | 4,(z,0,w) = 4,(p; (0o, ©), 5, w)| e*" < x

te R’
Sfor some ne[Ly+ey, 6°—¢gy1)-
Proof. For any (2,6, w)e W I (8,, w), we have
(:7 9’ w)EAr(G/iu/i (9()’ w, a(l))c Ar(E,i (0[]’ w, l ))

for some e R*. Therefore,

Sup ‘Al+r(z’ B’w) ,+t(p,(90, (l)) 00, w)l €""<OC. (5.30)

te Rt
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Hence
sup |4,(z,0, w)—A,(p;(8,, @), B, )] e*" < oc. (5.31)

teRT

On the other hand, if (z, 6, w) is such that (5.31) holds, then there is
te R* so that {A (2,0, w)— A,(p;(8,, w}, 8y, @) <1y, that is,

(z.0, w)e E} (I',(85, w), ro) = # £ (I (8, ©), ag)
= A (F F (04, , ap)) = W ¥ (0,, w). QE.D.

CrLam 7.
W E(F) = {(z. 0, w)e R x T* x Qq | the solution (3(1), 6(1))
of (5.4),, with (3(0), 8(0)) = (z, 8)

3

tnt

is such that sup IE(t)—pi(é(t), w-t) et <o
te R*
for some e [Ly+eg, 6°—g9]}. (5.32)

Proof. Denote by % & the right-hand side of (5.32). It is clear that
WE(S)e A}

Now, for any (z, 6, w)e # £, let ((1), 6(1)) be the solution of (5.4),
with (3(0), 8(0))=(z, 8). Then sup, gz« |3(1)—p,(B(1), w - 1)]e*" < oo for
some ne[Lo+e&y, 8" —&].

Consider

B =F (B, 1)+ F,(1) (5.33)
where

FB. )=q(B+B(1), -1, 4)—qB(1), -1, )
+e(p;(B+B(1), 0-1), B+B(1), w1, 1)
—g(p,(Bir), -0, B(1), -1, 2),

Fo()=g(p;(B(1), w-1),8(1), -1, 1) — g(Z(1), 8(¢), w - 1, 4).

It is clear that F,eX,,, F(0,1)=0, sup,,e#.,emil._e,m|aﬁFl(ﬁ,1)| =
{ig) € Ly, and c(4y) = Ly, as Ai,— 0. Without loss of generality, we
assume that ¢(4y) < Ly +¢,. Define T, : X, , - X,. by

T.B=—[" (Fi(Bls) 5)+ Fals)) ds,

r ﬁz.‘.[t (Fl(ﬁ(s)s Y)+F2(9))ds

508 103 2-7
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It then follows from the contraction mapping principle that 7', has a
unique f:l_xed point f,e€X,,. Let 6,=p,(0)+6. Then 6,(0,, 0, 1)=
f . (t)+6(t). Since

1) —pi(6,(0g, w, 1), » 1)
= (&N —p(B(1), -]+ [p,(B(1), 0 1) = p; (6, (89, ®, 1), - 1)],
then (1) —p;(6,(0y, o, 1), »-1)€ X, as well. Therefore
A,(2,0,0)—A,(p;(8,, w), 8,5, w)
=(2(2), 8(1), @ - 1) = (P (B, (85, &, 1), @ 1), ,(By, 0, 1), @ - 1)

goes to 0 exponentially with rate ne [Ly+ ¢y, 6° —g,] as t — =+ oo, that is,
(z, 0, w)e W £ (F). Q.E.D.

The proof of Theorem 5.2 is completed by Claims 1-7. |}

COROLLARY 5.4. Consider (5.4),,. Assume that (1), (II), (III) hold. If
(5.2) is linearly stable, that is, P(8,) = I (identity), then there is a i, > 0 suf-
Siciently small such that for each iel,, &, is orbitally and asymptotically
stable in the sense that In,=rny(4o) >0, and if d((z, 6, w), L (w)) <y, then
there is a unique 8y€ T such that A,(z,0,w)—A,(p;(8,, w), 8y, w)—0
exponentially as t— +o0 with rate n=(3"+Ly)/2, where ¥ (w)=
LN (R"xT x{w}), and d is a metric on R"x T* x Q.

Proof. Since P(0,)=1, that is, the S-S spectrum X, of (58), is
contained in (— o0, 0), by the S-S perturbation theorem 34, >0 such that
for each A€ [,,, the S-S spectrums Z'; of (5.8), are all contained in (— <0, 0).
Therefore, P;(6, w)=1 in Theorem 5.2(2); hence, V* (8,, w)=R" for
iel;.

Since 7 := (8° + Ly)/2 € (Ly, 6°), we fix a small ¢ > 0 so that
ne[Lo+e&9,8°—¢g,]. Let A,<4, be given by Theorem 52 so that
the functions u’ (&, 0y, w, 4y, 0), B%, (¢, 6y, w, 4y, 0) in the proofs
of Theorem 5.2 are well defined for Ael,. Since P,(0,, w)=1,
then u? (£, 85, 0, 4, 0) = &, u* (&, Oy, @, iy, 0) = 0. Let f3(, 6, w) =
(VAo E+p;(6, ©), 0+ B (&, 8, 0, 4y, 0), ®). Since 3,87 (0, 6, w, 4, 0) =0,
3¢ Po(8, )=0, we can find >0, 5, <a, (for 4; sufficiently small) such
that

0 -
s (4o)
Ci=( sup 16, 8% 1) o) sup 18,8, <1,
HElSn, ) x T xQox Iy \/'1_0 (&1 <n, ) x T¥xQox Iy

where 7%(4,) < M1, is given by (5.18), and a, is defined in Theorem 5.2.
Denote for iel,,, E (n,)={({0,0)eR" xT"xQy||&I<n,, BeT,



STABILITY OF INTEGRAL MANIFOLDS 317

we y}. For any (,,0,, w,), ({,, 05, w,) € E;(n,) such that f,(£,,6,, w))
=f:({3,0,, w,), then w,=w,=:w, \/’1051+Pi 0,,w \/—-fz‘l'
P05, w), 0,4+ B% (&, 0,, 0, Ay, 0)=0,+ B (&, 05, 0, Ag, O). Therefore,
\/;-0 |Cvlffz|<’70(']vo)|9|_92|, and, |6, —0,]<sup |a¢ﬁi+|‘|£1—52|+
sup |@,8% 110, —8,]<C18,—86,]. Since C < 1, then 8, =0,; hence &, =&,
as well. We then conclude from the above arguments that f;: E;(n,)—
Sf:(E (n,)) is a homeomorphism. (This fact also follows from Claims 1, 5
in the proof of Theorem 5.1.) Since £, (0, 8, w) = (p, (6, w), 6, w), then there
is an n,=n(4q) > 0 such that

W;(no) == 1{(z,8,0) e R"x T* x Q| d((z, §, ®), ,(w)) <o}
cfAE,(m )W (L)

By Theorem 5.2, if (z, 8, w)e %, (n), there is a unique 6, T* such that
A,(z,0, 0)—A4,(p;(8y, w), 8y, ) — 0 exponentially as 1 — + o with rate
n=(Lo+3%/2. 1

As a special case of (5.1); or (5.4),, we consider
Z=B(@)z+ F(z,0, 4)

(5.34);
0 =w+G(z, 0, 1),

where ze R", 0e T%, e R™, w = {(wy, .., w,)T € R*, B, F, G are C? functions
such that G(0,6,0)=0, F(0,0,0)=0, 0.F(0,08,0)=0. It is clear that
S =:{0} x T* is an invariant torus to Eq. (5.34),.

The following corollary is an immediate consequence of Theorems 5.1,
5.2, and Corollary 5.4.

COROLLARY 5.5. Consider (5.34);, and denote by A’ the flow generated
by (5.34);. Assume that

Z=B0 1)z (5.35)

has ED on T*, where 8 -1 =0+ wt. We denote by 8° the smallest Lyapounov
exponent of (5.35) in absolute value. Then there is a Ay>0 such that the
Jfollowing hold:

(1) Equation (5.34), possess for each 4 € I, a unique invariant torus of
type = {(p;(0), 0)| 0 T}, and %, — % as 1 —O.

(2} There are invariant manifolds Wt (%) to Eq. (5.34), such that

(a) WH(¥)={(z,0)e R"x T*| there is a unique (p;(8,), 0,)€ ¥,

such that sup, g: |A4,(z, )= A,(p,(0,), 0o)| eT" < oo for some ne
[6°/4,6°27} = {(z, 0)e R"x T*| the solution (z(t), 6(t)) of (5.34), with
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(z(0), 8(0)) = (z, B) is such that sup,. gz- |z(1) —p, (B(1))| e*" < 0 for some
ne [8°4, 6°/2]}.

(b) WZI(H) are foliated by disjoint immersed submanifolds
WE(0) = {(z,0)e R"x T | sup, g+ | 4,(z,0) = A,(p;(8y), Oo)| =™ <
Jor some ne[8%4, 6%21}, that is, Wi (%) =Ugepr WI(0y). Moreover,
WHO)R W, (8,) at (p,(8,), 60,)e, and, WE(8,) are locally
diffeomorphic to the stable and unstable subspaces Vi (8,) of (5.35).

(3) If (5.35) is linearly stable, that is, its S-S spectrum X < (— oo, 0),
then &, is orbitally and asymptotically stable. That is, there is an
No="10(4o) >0 such that if d((z, 8), %)< n, then there is a unique 0,¢e T*
such that A,(z,0)— A,(p,(0,), 8,) =0 exponentially as t - + o0 with rate
ne [6%4, §°/2].

(4) If F, G, Bare C" (r=2), then &, is a C" manifold which varies
C" continuously in A, Wi (8y) are C° submanifolds which vary C™ '
continuously in 0, A; W (%) are therefore C* ' manifolds varying C" !
continuously in A.

6. ORBITAL STABILITY OF QUASI-PERIODIC MOTIONS

Consider
x'=flx,p), xeR" (6.1),

where fe C?, ueR'. If (6.1), has a periodic solution x=p(¢), and the
variational equation

Y =f(p(1),0)y (6.2)

has n— 1 Floquet exponents A, .., 4, _, whose real parts lie in (— o, 0)
(note that 0 is a Floquet exponent), then it is known from the classical
theory (see [2] or [9]) that there is a py >0 such that (6.1), has for each
u, 0< || <py, a periodic solution g(t, ) with ¢(t, 0)=p(¢). Moreover,
q(t, u) has asymptotic orbital stability. To be more precise, there is an
£=¢(u) >0 such that if a solution ¢ of (6.1),, satisfies |¢(z,) —q(t,, u)| <&
for some ¢, and 7,, there exists a constant ¢(u) (asymptotic phase) such
that lim, , , . |¢(8)—q(t+ ¢, u)| =0.

In the language of S-S spectrum, what has been assumed for (6.2) is
just that its normal spectrum X, = {Re4i,,..,Re4d, ,}=(—2,0) (the
tangential spectrum X, = {0} is trivial), since the S-S spectrum of a linear
periodic system conists of exactly the real parts of the Floquet exponents
(see [27]).

We are now seeking for a generalization of the above theory to the
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quasi-periodic case. We will see in the next theorem that there similar
results in the quasi-periodic case even though the S-S spectrum for a quasi-
periodic linear system may no longer be discrete.

THEOREM 6.1.  Assume (6.1), has a quasi-periodic solution ¢(t) with k
frequencies w,, ..., w, (namely, there is a qe C(T*, R") such that ¢(t)=
glw, t, ..., w,t)), and the S-S spectrum of the variational equation

Y =£(8(1),0) y (6.3)

satisfies Ly (—~oc,0) (Z,= {0} is trivial). Then, there is a p,>0 such
that for 0 <|u| < u,, we have:

(1) Equation (6.1), has invariant smooth k-tori S, = {q(6, p)|0e T*},
q(0,0)=¢q(P) (S, is invariant in the sense that if q(0,u)eS,, then
g0+, u)= S, and x(t) :=q(8 - 1, n) solves (6.1),,, where 8 -t is a flow on ).

(2) S, has asymptotic orbital stability; that is, there is an & = &(u) >0
such that if a solution x(t) of (6.2), satisfies |x(t,)— q(0, u)| <& for some
t,eR and Oe R, there exists a 0,=0,(p)=(8,,..,0,)eR" such that
lim,_, , . |x(1)—q(8, -1, u)| =0 exponentially.

(3) When p=0, there is an ¢ >0 such that if a solution x(t) of (6.1),
satisfies | x(t;) —g(w, t,, .., . t,)| <& for some t, t,€ R, then there exists a
constant vector (h, .., h,)e R, such that lim,_, , . |x(1)—qlh, +wt, ..,
hy + w, )| =0 exponentially.

Proof. Let Q=cl{¢(r)|te R}. Since our assumptions imply that Q is
“normally hyperbolic,” it follows from [30] that  is diffeomorphic to T*;
hence qge C'(T*, R"). By the well-known tubular neighborhood theorem,
there is a family of C' diffecomorphisms x = H ,(z, 6) of a neighborhood U
of {0} x T*< R"~*x T* onto an open neighborhood of Q in R" such that
q=Hol o, > and, H, ' takes (6.1), in the vicinity of 2 to

2’=B(0)z+ F(z 0, p)
(6.4),
0'=ow+G(z, 0, u),

where © = (wy, .., w,)", F=0(]z|*), G=0(|z|) as u =0 (see arguments in
[18]). Furthermore

=
“

‘= B(0) =
, (6.5)
(03]

g

I

has ED on T* with projection P(8)=1 (the S-S spectrum of (6.5) is just
the normal spectrum X of (6.3)). Let &, = {(p,(0),0)|0e T} (1u]<p,
for some u,>0) be the invariant torus of (6.4), given by Theorem 5.1
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Define
q(0, u)=H,(p,(6), 0). (6.6)

Then S, = {¢(6, u)|e T*} is an invariant torus for (6.1),, that is, for any
e T* q(8-1, u) solves (6.1 )., where -1 is the flow generated by

0'=w -+ G(p,(0), 6, ). (6.7),

This proves (1).

To prove (2), we denote by 4,(z, 8) the flow generated by (6.4),. Let
No=o(,) be defined by Corollary 5.4 for (6.4),. Choose & = ¢(u) so that
| x —q(8, n) <e implies d(H;’(x), H,j'(q(@, u))) <n,, where d is a metric
on R"x T* Suppose now that x(r) is a solution of (6.1), such that
|x(1,)—q(0, )l <& for some 1,eR, BeR* Let (3 0)=H, "(x(1,)),
then d((z,8), ¥,)<n,. By Corollary 54, there exists a unique 0,¢e T*
such that lim, , , . d(4,(z, 0), AAp,(8,), 0,)) — 0 exponentially. Let 8, =
8,(—1,). Then x(1)=H,(A,_,(50) qB,-t, w)=H,(A4,(p,(8o), 65)) =
Hy(Ar—r,(pu(O*)a 0*)); hence ,X(f) - (1(90", ,U)l = lHy(Al—tl(‘i 9)) -
H (A, ,(p,(8,), 0,)) =0 exponentially as 1 — + co. This proves (2).

(3) This is just a special case of (2) by noting that the flow {01} on
T* in this case is the twist flow 8- 1=0+ 1.}

Note. (1)To apply the tubular neighborhood theorem in our
arguments, we need to assume that the normal bundle of tori Q is trivial.
However, if the normal bundle is non-trivial, as remarked in [18], we can
add additional coordinates u,, .., 4, and corresponding equations u; = A;u,
(4,<0), j=1,2, .., ¢, for sufficiently large ¢, to Eq. (6.1),. It is a conse-
quence of K-theory that the normal bundle will be trivial if the normal
dimension is sufficiently large. We can therefore just prove our results with
the modified equation then drop the extra coordinates and come back to
our original equation {6.1),,.

(2) Coppel [3] also discussed the orbital stability of quasi-periodic
mitions under the assumption that (6.3) has an exponential tricotomy. We
believe that our conditions here are weaker and more natural in speaking
of a generalization of the periodic case.
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