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Abstract

We consider strings with large spin inAdS3 × S3 × M with NS–NS background. We construct the string configurati
as solutions ofSL(2,R) WZW theory. We compute the relation between the space–time energy and spin, and show
anomalous correction is constant, and not logarithmic in the spin. This is in contrast to the S-dual background with R–
where the anomalous correction is logarithmic.
 2003 Published by Elsevier Science B.V.

1. Introduction

Examples where gauge theory perturbative computations can be extrapolated to strong coupling and c
to classical supergravity results are rare when the calculated quantities are not protected by supersymm
important example has been studied by Gubser, Klebanov and Polyakov [1]. They showed that the ene
spinning string with spinS in AdS5 in the limit that its size is much larger than theAdS5 radius is

(1)E = S +
√
λ

π
ln
(
S/

√
λ
)
.

In global coordinates the energy is identified with the dimension of the dual operator. GKP proposed that th
configuration is dual to a twist-2 operator inN = 4 SYM such as

(2)O(µ1···µn) = Trφ∗D(µ1 · · ·Dµn)φ.
In perturbative gauge theory this operator has an anomalous dimension that grows as lnn, which is in agreemen
with the strong coupling result derived from supergravity. Quantum corrections to the energy of the spinnin
were analyzed in [2,3] with no ln2S corrections found. One therefore expects that the leading term in the anom
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dimension to all orders in perturbation theory (and probably non-perturbatively as well) is logarithmic, i.e.,

(3)E = S + f (λ) ln
(
S/

√
λ
)
.

Following the work of GKP many other string and membrane configurations were studied [4–12].
In this Letter we will study spinning strings inAdS3 × S3 × M with NS–NS 2-form background. This is o

interest, since string theory on this background can be exactly solved in terms of theSL(2,R)WZW model [13,14].
We will see that the “planetoid” spinning string solution ofAdS5 is not a solution inAdS3 because of the NS–N
2-form. In Section 2 we will find the explicit form of the classical spinning string configuration, and calcula
energy–spin relation. We will see that the leading behavior is the same as inAdS5, but the anomalous correctio
is constant rather than logarithmic. This is in contrast with the S-dual background with R–R flux (for a
see [15]), where the anomalous correction is logarithmic. Indeed, it confirms the fact that the near horizo
of D1–D5 and F1–NS5 systems lead to very different theories. In Section 3 we will analyze the condition
which the classical string configuration is valid as a quantum state. In Section 4 we consider more gener
configurations that rotate on theS3 part of the metric as well. In the last section we discuss the results.

2. Classical spinning strings in AdS3

String theory onAdS3 × S3 × M has many classical solutions. We will be interested in a class of clas
solutions that correspond to spinning closed strings [16–18]. Similar string configurations were also ana
[19] in the context of open strings.

The NS–NSAdS3 background, in global coordinates, is given by

(4)ds2 =R2
(

−(1+ r2) dt2 + dr2

1+ r2
+ r2dφ2

)
, with Btφ =R2r2.

We will consider the following ansatz for a time dependent embedding of a closed string inAdS3

(5)t = c1τ + t̃ (σ ), φ = c2τ + φ̃(σ ), r = r(σ ).

c1 andc2 are constants, andc1 is assumed to be positive to insure forward propagation in time.τ andσ denote the
world-sheet coordinates andσ 	 σ + 2π .

The GKP ansatz is the one in whicht̃ = φ̃ = 0. At first sight this seems to be a solution of the classical equa
of motion. The energy–spin relation for such a configuration will be as in [1]. For strings larger than the AdS
it takes the form (3), with

√
λ = R2/α′. However, we will see that while this configuration solves the constra

T±± = 0, theSL(2,R) Kac–Moody currents associated with it are not holomorphic. Note, however, that
fundamental spinning string in a R–RAdS3 background, given by the near-horizon limit of the D1–D5 system
simpler ansatz is perfectly valid.

The world-sheet action for a closed string embedding of the form (5) reads

S = R2

2πα′

∫
dτ dσ

[
−(1+ r2)

(
−c2

1 +
(
dt̃

dσ

)2
)

+ 1

1+ r2

(
dr

dσ

)2

(6)+ r2

(
−c2

2 +
(
dφ̃

dσ

)2
)

− 2r2

(
c1

(
dφ̃

dσ

)
− c2

(
dt̃

dσ

))]
.

From (6) we get two conservation laws

(7)
dt̃

dσ
= c2r

2 − k1

1+ r2 ,
dφ̃

dσ
= c1r

2 − k2

r2 ,
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wherek1 andk2 are integration constants. The constraint on the energy–momentum tensor of the system is

(8)T±± = Tσσ + Tττ ± 2Tτσ = 0.

In (8) we assumed that there are no other contributions to the energy–momentum tensor from the interna
S3 ×M. It is, however, easy to generalize this calculation to include contributions from the internal CFT. I
a case the constraint is on the sum of energy–momentum tensors

(9)T AdS±± + T S
3×M±± = 0.

We will discuss this generalization in Section 4. From the requirement thatTστ = 0 we get thatc1k1 = c2k2. To
simplify the notation we define

(10)α = k2
1 − k2

2, β = c2
1 + 2c1k2.

With these definitions the energy–momentum constraint reduces to

(11)

(
dr

dσ

)2

= αβ

k2
2r

2

(
r2 − k2

2

β

)(
k2

2

α
− r2

)
.

The solution to this equation is given by

(12)r2(σ )= k2
2

2αβ

(
(α + β)− (α − β)sin

[√
4αβ

k2
σ

])
.

For a closed string we need to imposer(2π)= r(0) which leads to the quantization ofn.

(13)n=
√

4αβ

k2
= integer.

The angular coordinate can be deduced from (5) and (7) to be

(14)φ(σ, τ )= c1k1

k2
τ + c1σ − arctan

[
(α+ β) tan

[
n
2σ
]− (α − β)√

4αβ

]
.

Note that (14) is discontinuous whenever tan[ n2σ ] diverges. In order to get a continuous function we should adπ
after each discontinuous point (nπ altogether). In order to ensure the periodicityφ(2π, τ)= φ(0, τ )mod2π , we
should have either (i)c1 an integer andn even, or (ii)c1 half-integer andn odd. A few examples are plotted
Fig. 1 forτ = 0.

The time coordinate is given by

(15)t (σ, τ )= c1τ + c2σ − (c2 + k1)
√

4αβ

n

√(
k2

2 + α
)(
k2

2 + β
) arctan



(
1+ k2

2(α+β)
2αβ

)
tan
[
n
2σ
]− k2

2(α−β)
2αβ√(

k2
2+α)(k2

2+β)
αβ


 .

The periodic boundary conditiont (2π, τ)= t (0, τ ) is obeyed ifk2 satisfies (again note that arctan[· · ·] gets shifted
by nπ )

(16)c2 = (c2 + k1)
√
αβ√(

k2
2 + α

)(
k2

2 + β
) .

This can be solved using the definitions ofα andβ , and gives the allowed value fork2

(17)k2 = 2c3
1

n2 − 4c2
.

1
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Fig. 1. Parametric polar plots depicting the string atτ = 0 for (i) n = 3, c1 = 1/2. (ii) n = 4, c1 = 1. The radial coordinate isr(σ ) and the
angular coordinate isφ(σ). Note that these plots show the string at constant world-sheet time, which is not the same as target sp
because of (5).

Note that the values ofn andc1 should be restricted ton > 2c1. At the pointn= 2c1 the size of the string diverge
We will analyze this limit below. Forn < 2c1 we have the unphysical resultr2(σ ) < 0. Substitutingk2 back in
Eqs. (12), (14) and (15) we get

(18)r2(σ )= 2

n2

(
c2

1

(
n2 + c2

1

)
n2 − 4c2

1

+ c2
1

(
n2 − c2

1

)
n2 − 4c2

1

sin[nσ ]
)
,

(19)φ(σ, τ )= n

2
τ + c1σ − arctan

[
n2 + c2

1

2c1n
tan

[
n

2
σ

]
+ n2 − c2

1

2c1n

]
,

(20)t (σ, τ )= c1τ + n

2
σ − arctan

[
n4 − 2c2

1n
2 + 2c4

1

n2(n2 − 2c2
1)

tan

[
n

2
σ

]
+ 2c2

1(n
2 − c2

1)

n2(n2 − 2c2
1)

]
.

The space–time energyE and spinS of the system are given by

E = R2

2πα′

2π∫
0

dσ
δL

δṫ
= R2

2πα′

2π∫
0

dσ

(
c1(1+ r2)− r2dφ

dσ

)
,

(21)S = R2

2πα′

2π∫
0

dσ
δL

δφ̇
= R2

2πα′

2π∫
0

dσ

(
−c2r

2 + r2 dt

dσ

)
.

Using (7), the integrals can be calculated explicitly, and we can expressE andS in terms ofc1 andn as

(22)E = R2(c1 + k2)

α′ = R2c1

α′
n2 − 2c2

1

n2 − 4c2
1

, S = R2k1

α′ = R2

α′
c2

1n

n2 − 4c2
1

.
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It is straightforward to solve this system and get the energy–spin relation

(23)E(S,n)= R2

α′
n2 + 2n2α′S/R2

n3

√
n2α′S/R2

n+ 4α′S/R2 .

Let us examine this relation in the limits where the string size is much smaller or much larger than thAdS3
radius. These two limits will correspond to the 2c1 � n and the 2c1 → n limits, respectively. When 2c1 � n the
string is mostly concentrated near the origin ofAdS3, as can be seen from taking the limit of (18)

(24)r2(σ )→ 2c2
1

n2

(
1+ sin[nσ ]).

In other words, the string size is much less than theAdS3 radius. In this limit we get the flat space relation betwe
the energy of the string and its spin

(25)S = α′E2

R2n
.

On the other hand, if we takeε = n2 − 4c2
1 → 0 the asymptotic form of (18) is

(26)r2(σ )→ n2

8ε

(
5+ 3 sin[nσ ]).

In this limit the size of the string is much larger than theAdS3 radius, and the leading relation betweenE andS is
given byE = S. This linear behavior was also found for open rotating strings in [19]. Using (22) we can ac
calculate all the classical corrections to the leading linear behavior

(27)E = S + 3

8

R2n

α′ − 10

256

R4n2

α′2S
+O

(
R6n3

α′3S2

)
.

The first correction is a constant. Note in comparison that inAdS5 or AdS3 with R–R background the leadin
correction is lnS.

3. Quantum spinning strings

The spectrum of strings onAdS3 with NS–NS background was analyzed in [14]. In this section we will u
similar analysis in order to identify theSL(2,R) representation corresponding to the spinning string solution
will investigate when is this state expected to be part of the physical spectrum of strings onAdS3.

In order to identify the corresponding representation ofSL(2,R), we switch to light-cone coordinates, a
calculate theSL(2,R) currents associated with the spinning string solution. The solution of the previous s
satisfiesT AdS±± = 0, which implies that the Casimir ofSL(2,R), C2 = −j (j − 1)= 0. We therefore should look fo
a representation withj = 1.

We definek =R2/α′. We also define new target space coordinates

(28)u= 1

2
(t + φ), v = 1

2
(t − φ).

The light-cone coordinates on the world-sheet are:x± = τ ± σ . Using the conservation laws (7) we evaluate
right and leftSL(2,R) currents. In the following we shall only need the explicit form ofJ 3

J 3
R = k

(
∂+u+ (1+ 2r2)∂+v

)= k(c1 + k2 − k1),

(29)J 3
L = k

(
∂−v + (1+ 2r2)∂−u

)= k(c1 + k2 + k1).
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The other two components,J±, can be determined in the same way.
Note that had we used the ansatz witht̃ = φ̃ = 0 the currents would have been

(30)J 3
R = k

(
(c1 + c2)+

(
1+ 2r2(σ )

)
(c1 − c2)

)
, J 3

L = k
(
(c1 − c2)+

(
1+ 2r2(σ )

)
(c1 + c2)

)
.

By taking c1 = ±c2 we can the make left/right current holomorphic/anti-holomorphic, but not both. In W
theory the holomorphy of the currents is equivalent to the equations of motion, thus such a configuration d
solve the field equations of theSL(2,R) WZW model.

The zero modes of the currents (29) are

(31)J 3
0 =

2π∫
0

dx+

2π
J 3
R, J̄ 3

0 =
2π∫
0

dx−

2π
J 3
L.

We denote bym andm̄ the eigenvalues ofJ 3
0 andJ̄ 3

0 which are given by

(32)m= k
n2c1 − 2c3

1 − nc2
1

n2 − 4c2
1

, m̄= k
n2c1 − 2c3

1 + nc2
1

n2 − 4c2
1

.

Because the currents (29) are constant, the solution has only a zero mode and no other higher mod
J 3
ν ∼ ∫

J 3
Le
iνx+

dx+ vanishes unlessν = 0. For this solution to be a valid quantum state it must be in a un
representation ofSL(2,R). The full quantum spectrum will be associated with the corresponding representa
the affineSL(2,R) subject to the physical state constraint.

Recall that the unitary representations of theSL(2,R) Lie algebra are:

• Discrete representations:D+
j andD−

j for realj , for whichm= j, j ± 1, j ± 2, . . . ;
• Continuous representations:Caj (0 � a < 1) for j = 1/2 + is (s is real); or for 1/2< j < 1 andj − 1/2<

|a − 1/2|, for whichm= a, a ± 1, a ± 2, . . . ;
• Identity representation:j = 0.

Our solution hasj = 1 so it cannot correspond to a unitary continuous representation. It can correspond
of the discrete representations but only ifm andm̄ are integers. If they are not integers they can still belong
non-unitary continuous representation, but we will not consider them as physical quantum states. It is c
to have integerm andm̄, k must be rational. Let us examine the spectrum fork = 1 as an example. There do n
seem to be solutions with integerm andm̄ for oddn in this case. For evenn there are solutions. The first one
n= 24, c1 = 6. In this case the string state corresponds to the WZW state

|j = 1,m= 5〉 × |j̄ = 1, m̄= 9〉.
For higher values ofk there will be other solutions. It is not clear though whether all integers can be genera
(32) for a given value ofk.

It was argued in [14] that using spectral flow one can generate new classical solutions

(33)t (τ, σ )→ t (τ, σ )+ωτ, φ(τ, σ )→ φ(τ,σ )+ωσ,

whereω is an integer. These new solutions were shown to be important in understanding the nature of lon
states inAdS3. TheSL(2,R) currents, and the energy–momentum tensor are modified by the spectral flow t

(34)J 3
0 → J 3

0 + kω

2
, T++ → T++ −ωJ 3

0 − k

4
ω2,

and the same for̄J 3
0 , andT−−. The spin of the flowed state is the same as the unflowed state, since it isS =m− m̄.

The energy, however, is shifted bykω. Since the energy tensor is modified by the spectral flow one must imp
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(35)T
(ω)
++ = T++ −ωJ 3

0 − k

4
ω2 = 0,

and the same forT (ω)−− . Clearly, sinceT±± = 0 for the original solutions, andJ 3
0 �= J̄ 3

0 , there cannot be a solutio
to the physical state condition other thanω = 0. In fact, this will also be true even if there are contributions fr
the CFT onS3, as long asT S

3

++ = T S
3

−−.
We now describe the standard way in which the quantum spectrum of strings inAdS3 × S3 ×M is built around

the classical spinning string solution we presented. We consider the state|ψ0〉 = |j, j̄ ,m, m̄,h, h̄〉 as the ground
state, where(h, h̄) are the conformal weights of some state of the internal CFT onS3 ×M. In our caseh= h̄= 0.
The excited states are constructed by applying the operatorsJ a−ν , with

∑
νi = N andL−µi with

∑
µi =M (and

the same for the anti-holomorphic sector)

(36)|ψ〉 =
∏

L−µi
∏

L̄−µ̄i
∏

J
ai−νi
∏

J̄
ai−ν̄i |ψ0〉,

and imposing the physical state conditions [20]

(
L

AdS3
0 − 1+N +M + h

)|ψ〉 =
(

−j (j − 1)

k − 2
− 1+N +M + h

)
|ψ〉 = 0,

(37)Jν |ψ〉 = Lν |ψ〉 = 0, ν > 0,

and a similar constraint for the anti-holomorphic part. For the state to be invariant under arbitrary translatio
world-sheet coordinateσ , one must also impose a level matching condition

(38)
(
LTotal

0 − L̄Total
0

)|ψ〉 = 0,

which can also be stated as

(39)−j (j − 1)

k − 2
+N +M + h= − j̄ (j̄ − 1)

k − 2
+ N̄ + M̄ + h̄.

4. Adding momentum on S3

In this section we would like to generalize the discussion of spinning strings inAdS3 to include rotation in the
S3 part of the metric. The simplest ansatz is to assume that the string is point-like onS3. TheS3 background is
given by

(40)ds2 =R2(cos2x dθ2 − sin2x dθ̃2 − dx2), Bθθ̃ = 2R2 cos2x,

with the angular variables taken to be periodic

(41)θ ∼ θ + 2π, θ̃ ∼ θ̃ + 2π.

Consider a string embedding inS3 of the formθ = ωτ , andθ̃ = x = 0. The contributions toT S
3

++ equals that for

T S
3

−− since the string embedding isσ -independent

(42)T S
3

±± =R2ω2.

The physical state condition reads

(43)T AdS±± +R2ω2 = 0.
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This modifies (11) to be

(44)

(
dr

dσ

)2

= αβ

k2
2r

2

(
r2 − k2

2

β

)(
k2

2

α
− r2

)
−ω2(1+ r2).

In order to get a closed string solution, we must assume that

(45)∆= (α − β)2 −ω2(2α+ 2β + 4k2
2 −ω2)> 0.

Forω2 = 0 this is automatically satisfied. However, for generic values ofω it is not the case. We shall proceed
solve (44) under this assumption, and at the end check if (45) is obeyed. The solution forr(σ ) is similar to the one
found forω = 0

(46)r2(σ )= k2
2/2

αβ + k2
2ω

2

(
(α + β −ω2)+ √

∆sin

[√
4αβ

k2
2

+ 4ω2σ

])
.

For the string to closer(σ )= r(σ + 2π), we need

(47)nω =
√

4αβ

k2
2

+ 4ω2 = integer.

The solution to the other two coordinates can be found in the same way as for theω = 0 case. In particular, th
periodic boundary conditions on the angular coordinate will lead to the same result as in theω = 0 case withn
replaced bynω. The time coordinate is given by

t (τ, σ )= c1τ − c2σ+
(c2 + k1)

√
4αβ + 4k2

2ω
2

nω

√(
k2

2 + α
)(
k2

2 + β
)

(48)× arctan



(
1+ k2

2/2

αβ+k2
2ω

2 (α + β −ω)
)

tan
[
nω
2 σ

]+ k2
2/2

αβ+k2
2ω

2

√
∆√

(k2
2+α)(k2

2+β)
αβ+k2

2ω
2


 .

Imposingt (τ,0)= t (τ,2π) gives

(49)k2 = 2c3
1 − 2c1ω

2

n2
ω − 4c2

1

.

We now return to (45), and check if this assumption is correct. We first note that from the definition ofnω it is
now bounded from below,nω > 2ω. To ensurek2 � 0 we must havec1 � ω. Combining all these relations we g
nω > 2c1 � 2ω. It can be seen by direct substitution ofk2 in (45) that this is enough to ensure∆� 0. Whenc1 = ω,
∆= 0. We will shortly see what is the physical meaning of this point.

Using this result and (22) we can write down the energy and spin of the string

(50)E = R2(c1 + k2)

α′ = R2c1

α′
n2
ω − 2c2

1 − 2ω2

n2
ω − 4c2

1

, S = R2k1

α′ = R2

α′
nω
(
c2

1 −ω2
)

n2
ω − 4c2

1

.

It is again straightforward, though lengthy, to write downE = E(S,nω,ω). Several important limits of our resu
can, however, be easily analyzed. The first one is by settingω = 0 and retrieving the earlier result (22). The seco
one is by takingc1 = ω. We get a string state with vanishing spin inAdS3. At this point the energy of the strin
depends only onω in the expected way:

(51)E = R2ω

′ .
α
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The last interesting limit is that of “long” strings, which corresponds toε = n2
ω − 4c2

1 → 0. In this limit we get

(52)E = S + 3

8

R2nω

α′ + 1

2

R2ω2

α′nω
+O

(
R4n2

ω

α′2S

)
.

Again a leading linear behavior followed by a constant correction.

5. Discussion

In this Letter we analyzed spinning strings inAdS3 ×S3 ×M with NS–NS 2-form background. We saw that t
“planetoid” spinning string solution ofAdS5 is not a solution inAdS3 because of the NS–NS 2-form. According
the AdS/CFT duality string theory onAdS3 ×S3 ×M is dual to a superconformal field theory on a cylinder, wh
is the boundary ofAdS3 in global coordinates. In fact string theory on this background can be exactly solv
terms of theSL(2,R) WZW model and the dual (space–time) conformal field theory can be constructed. Th
an exact correspondence between the bulk string states and the boundary operators. We denote byLn the Virasoro
operators of the boundary superconformal theory, and byJ 3 the generator ofU(1)⊂ SU(2) subgroup of the(4,4)
superconformal algebra. These are not to be confused withL0 andJ 3 of the bulk WZW model. The relation to th
bulk parametersE, S andω is

(53)E = L0 + L̄0, S = L0 − L̄0, J 3 = J 3 = ω.

Using the known relation between the space–times energy inAdS3 and the eigenvalues ofJ 3
0 and J̄ 3

0 from the
WZW model we get thatL0 = J 3

0 and L̄0 = J̄ 3
0 . Thus, for a string state with a given(m, m̄) (32) we know the

exact space–time energyE =m+ m̄ and spinS =m− m̄. The classical string solutions that we found also g
the information about the general semi-classical relation between the two,E(S). We saw that the leading behavi
of the relation is the same as inAdS5, but the anomalous correction is constant rather than logarithmic.

In comparison, the S-dual background has R–R charge. The conformal theory in this case can be thoug
IR fixed point of a(1+ 1)-dimensional gauge theory on the D1–D5 system. A spinning fundamental string
background is of the same, “planetoid”, form as the GKP string, and is likely to be dual to a similar oper
the conformal theory side. In this case the relation between the energy and spin of the string exhibits the sS
behavior in the “long” string limit. We saw that the conformal field theory dual to theAdS3 NS–NS background i
quite different in this respect.
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