
An Optimized Intruder Model for SAT-based

Model-Checking of Security Protocols

Alessandro Armando1 Luca Compagna2

AI-Lab, DIST – Università degli Studi di Genova,
Viale Causa 13, 16145 Genova, Italy

Abstract

In previous work we showed that automatic SAT-based model-checking techniques based on a
reduction of protocol (in)security problems to a sequence of propositional satisfiability problems
can be used to effectively find attacks on protocols. In this paper we present an optimized intruder
model that may lead in many cases to shorter attacks which can be detected in our framework by
generating smaller propositional formulae. The key idea is to assume that some of the abilities of
the intruder have instantaneous effect, whereas in the previously adopted approach all the abilities
of the intruder were modeled as state transitions. This required non trivial extensions to the SAT-
reduction techniques which are formally described in the paper. Experimental results indicate the
advantages of the proposed optimization.

Keywords: Security Protocols, Bounded Model Checking, SAT, Rewriting.

1 Introduction

In the last decade we have witnessed a dramatic speed-up of SAT solvers:
problems with thousands of variables are now solved routinely in milliseconds
by state-of-the-art SAT solvers. This has led to breakthroughs in important
areas such as planning and model-checking. Motivated by these results, in
[1,2,3] we proposed reductions of protocol (in)security problems to satisfiability
problems in propositional logic that can be used to effectively find attacks
on protocols. We have developed a model-checker, SATMC, based on these

1 Email: armando@dist.unige.it
2 Email: compa@dist.unige.it

Electronic Notes in Theoretical Computer Science 125 (2005) 91–108

1571-0661 © 2005 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.05.021
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82320818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
file:armando@dist.unige.it
file:compa@dist.unige.it
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

ideas and experimental results obtained by running SATMC against security
protocols drawn from the Clark-Jacob’s library [9] confirm the effectiveness of
the approach.

In this paper we propose an optimized intruder model that leads in many
cases to shorter attacks which can be detected in our framework by generating
smaller propositional formulae. The key idea is to assume that some of the
abilities of the intruder have instantaneous effect as opposed to the previously
adopted approach in which all the abilities were modeled as state transitions.
This required non trivial extensions to the SAT-reduction techniques which
are formally described in the paper. We have implemented the proposed op-
timization within SATMC. Experimental results on protocols drawn from the
Clark-Jacob’s library clearly indicate the advantages of the proposed opti-
mization.

Outline of the paper. We start in Section 2 by presenting, via a well-known
authentication protocol, our model with particular emphasis to an optimized
intruder model based on the concept of axiom. In Section 3 we define the
notion of protocol insecurity problem with axioms. Section 4 is devoted to
the formal description of the automatic compilation of protocol insecurity
problems with axioms into a set of propositional satisfiability problems. Ex-
perimental results and some implementation detail are discussed in Section 5.
We conclude in Section 6 with some final remarks and a discussion of the
future work.

2 Modeling Security Protocols

Although the general verification problem—to prove that the security protocol
satisfies the security guarantees for which it has been designed in a scenario
with an arbitrary number of parallel sessions—is undecidable [12,13], for many
protocols, verification can be reduced to verification of a bounded number of
sessions. Moreover, even for those protocols that should be checked under
a unbounded number of concurrent protocol executions, violations in their
security requirements often exploit only a small number of parallel sessions.
For these reasons, in many case of interest it is sufficient to consider a finite
and small number of parallel sessions. For instance, all known attacks on the
protocols in the Clark-Jacob’s library involve at most two concurrent sessions.

We model the concurrent execution of a security protocol by means of a
state transition system specified in the IF [4] declarative language based on
multi-set rewriting which is particularly amenable to formal analysis [7,15].
States are represented by sets of atomic formulae of a sorted first order lan-
guage called facts and transitions by means of labeled rewrite rules over sets of

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–10892

facts. In our setting, we assume that the network is controlled by means of the
very general Dolev-Yao intruder [11]. 3 In this model the intruder has the abil-
ity to eavesdrop and divert messages as well as that to compose, decompose,
encrypt, and decrypt messages (provided the encryption keys are known). Fi-
nally, he can send those messages to other participants with a false identity.
Besides this, we make the standard assumptions of perfect cryptography i.e. an
encrypted message can be decrypted only by using the appropriate decryp-
tion key and of strong typing i.e. agents only accept type-correct messages and
therefore type confusion is not allowed. 4

In order to clarify our presentation, let us consider the example of the
Needham-Schroeder Public-Key (NSPK) authentication protocol [16]. In the
common Alice&Bob notation, the NSPK protocol looks like follow:

(1) A → B : {A, Na}Kb

(2) B → A : {Na, Nb}Ka

(3) A → B : {Nb}Kb

where A and B are the roles involved in the protocol; Ka and Kb are the
public keys of A and B, respectively; and Na and Nb are nonces 5 generated,
respectively, by A and B. Notice that, the above high level protocol specifica-
tion describes a kind of template NSPK(A, B, Ka, Kb, Na, Nb) parametrized
by some free variables 6 appearing in it. A ground instance of the security pro-
tocol template represents a session of the protocol. Successful execution of the
NSPK protocol should convince both A and B that they have been talking
to each other. The rationale is that only B and A could have formed the
appropriate response to the message issued in (1) and in (2), respectively. In
fact, a malicious agent I can deceit bob (an instance of B) into believing that
he is talking with alice (instance of A) whereas he is talking with I. This is
achieved by executing concurrently two sessions NSPK(alice, I, ka, ki, na, ni)
and NSPK(alice, bob, ka, kb, na2, nb) of the protocol and using messages from
one session to form messages in the other as illustrated by the following pro-

3 It is worth pointing out that the model is not bound to the Dolev-Yao intruder, but, on
the contrary, it is expressive enough to get generic intruder models suited for a variety of
communication networks such as secure channels, wireless channels, etc.
4 As pointed out in [14], in many case of interest, type-flaw attacks can be prevented by
tagging the fields of a message with information indicating its intended type.
5 Nonces are numbers randomly generated by principals and they are intended to be used
only once.
6 Free variables are indicated by means of capital letters excepted I that is used to indicate
the malicious agent.

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108 93

tocol trace:

(1 .1) alice → I : {alice, na}ki

(2 .1) I(alice) → bob : {alice, na}kb

(2 .2) bob → I(alice) : {na, nb}ka

(1 .2) I → alice : {na, nb}ka

(1 .3) alice → I : {nb}ki

(2 .3) I(alice) → bob : {nb}kb

where I(alice) indicates the intruder pretending to be alice. At the end of the
above trace bob believes he has been talking with alice, but this is obviously
not the case.

Let us describe in our setting the state transition system and the security
requirement of the above example.

Facts. The facts useful to describe the NSPK protocol are the following:

• ik(T), meaning that the intruder knows the message T ;

• fresh(N), meaning that the nonce N has not been used yet;

• m(J, S, R, T), meaning that principal S has (supposedly) 7 sent message T

to principal R at protocol step J ; and

• w(J, S, R, [T1, . . . , Tk], C), representing the state of execution of principal R

at step J of session C; in particular it means that R knows the messages
T1, . . . , Tk at step J of session C, and—if J �= 0—also that a message from
S to R is awaited for step J of session C to be executed.

Initial State. The initial state of the system representing two concurrent

7 As we will see, since the intruder may fake other principals’ identity, the message might
have been sent by the intruder.

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–10894

sessions of the NSPK is: 8

w(0, a, a, [a, i, ka, ka−1, ki], 1) (1)

� w(0, a, a, [a, b, ka, ka−1, kb], 2) � w(1, b, a, [b, a, kb, kb−1, ka], 2) (2)

� fresh(nc(n1, 1)) (3)

� fresh(nc(n1, 2)) � fresh(nc(n2, 2)) (4)

� ik(i) � ik(a) � ik(b) � ik(ki) � ik(ki−1) � ik(ka) � ik(kb) (5)

The fact (1) represents the initial state of the honest agent a that plays the role
of initiator in session 1 and knows at the beginning her identity, the identity of
intruder (the agent she would like to talk with), her public and private keys, 9

and the intruder public key. Facts (2) represent the initial state of the honest
agents a and b involved as initiator and responder, respectively, in session 2.
Facts (3) and (4) state the initial freshness of the nonces nc(n1, 1), nc(n1, 2),
and nc(n2, 2). Notice that, since we bound the number of parallel sessions also
the number of fresh terms to be taken into account in the protocol analyses
can be computed and bounded in advance. Facts (5) represent the information
initially known by the intruder (commonly, in a asymmetric cryptosystem, its
identity, its public and private keys as well as the identities of honest agents
and their public keys). Notice that, according to the standard close world
assumption all the facts that do not occur in the set representing the initial
state are considered false.

Goal Predicates. A security protocol is intended to enjoy specific secu-
rity properties. In our example this property is the ability of authenticating
the responder with the initiator and vice versa. A security property can be
specified by providing goal predicates representing a set of “bad” states. For
instance, it is immediate to see that any state in which b believes to have
completed a session with a, while a has not started this session with him,
represents a violation of the expected authentication property between b and
a. This set of bad states can be easily represented by the goal predicate
w(1, a, b, [b, a, kb, kb−1, ka], s(2)) ∧ w(0, a, a, [a, b, ka, ka−1, kb], 2). 10

8 To improve readability we use the “�” operator as set constructor. For instance, we write
“x � y � z” to denote the set {x, y, z}.
9 Notice that with ka−1 we indicate the inverse of the public key ka.
10 Notice that with s(C) we indicate the next execution of session C.

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108 95

Labeled Rewrite Rules. As mentioned above, labeled rewrite rules over
sets of facts are used to specify how the transition system evolves. In partic-
ular, we distinguish between rules modeling the behavior of honest agents (so
called protocol rules) and rules representing the Dolev-Yao intruder (so called
intruder rules). These rules will be described in the next sections. Concerning
the notation used, let M1 and M2 be messages, then the terms {M1}M2 and
〈M1, M2〉 represent the asymmetric encryption of M1 using M2 as asymmet-
ric key and the pairing of the M1 and M2, 11 respectively.

2.1 Modeling the behavior of Honest Participants

Honest participants strictly behave according to the protocol. The following
rewrite rule models the activity of sending the first message of the NSPK
protocol:

fresh(nc(n1, S)) � w(0, A, A, [A, B, Ka, Ka−1, Kb], S)
step0(A,B,Ka,Kb,S)
−−−−−−−−−−−→

w(2, B, A, [nc(n1, S), A, B, Ka, Ka−1, Kb], S)

� m(1, A, B, {A, nc(n1, S)}Kb)

Notice that, the nonce nc(n1, S) is added to the knowledge of A for subsequent
use. The receipt of the message and the reply of the responder is modeled by:

fresh(nc(n2, S)) � m(1, A, B, {A, Na}Kb)

� w(1, A, B, [B, A, Kb, Kb−1, Ka], S)
step1(A,B,Ka,Kb,Na,S)
−−−−−−−−−−−−−−→

w(3, A, B, [Na, nc(n2, S), B, A, Kb, Kb−1, Ka], S)

� m(2, B, A, {Na, nc(n2, S)}Ka)

The state of the responder is updated by increasing the protocol step and by
extending the knowledge with the acquired informations namely the nonce
sent by the initiator and the nonce freshly generated by the responder itself.
The third step of the protocol is modeled by:

m(2, B, A, {Na, Nb}Ka)

� w(2, B, A, [Na, A, B, Ka, Ka−1, Kb], S)
step2(A,B,Ka,Kb,Na,Nb,S)
−−−−−−−−−−−−−−−−→

w(0, A, A, [A, B, Ka, Ka−1, Kb], s(S))

� m(3, A, B, {Nb}Kb)

11 To improve readability we write M1, M2 in place of 〈M1, M2〉 where the pairing message
can be easily evinced from the context.

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–10896

Notice that, after the application of this rule, A completes her part in the
session S and she is eventually ready to start an other session s(S) of the
protocol with B. The final step of the protocol is modeled by:

m(3, A, B, {Na}Kb)

� w(3, A, B, [Na, Nb, B, A, Kb, Kb−1, Ka], S)
step3(A,B,Ka,Kb,Na,Nb,S)
−−−−−−−−−−−−−−−−→

w(1, A, B, [B, A, Kb, Kb−1, Ka], s(S))

After the application of this rule also B finishes his part in the session S and
he is eventually ready to communicate with A in an other session s(S).

2.2 Modeling the behavior of the Intruder

Contrary to honest agents that execute faithfully each statement specified by
the protocol, the Dolev-Yao intruder has many degrees of freedom. By ob-
serving all the traffic in the network, it extends its knowledge and from such
a knowledge it can compose and send fraudulent messages to honest partici-
pants. However, many of these messages can be of no interest for the analysis
of the protocol. In fact, as previously mentioned, we focus on reachability
problems with a finite number of parallel sessions in which honest agents only
react to a message if, and only if, this message has the type and the pattern
expected by the receiver. The set of such “interesting” messages is finite. For
instance, the following partially instantiated rule modeling the ability of the
Dolev-Yao intruder of pairing messages

ik(a) � ik(M)
pairing(a,M)
−−−−−−−→ ik(a) � ik(M) � ik(〈a, M〉))

can be applied in the initial state of the NSPK by substituting M with a

and in every successor state extending the knowledge of the intruder with
messages of the form 〈a, 〈a, 〈a, . . .〉〉〉. However, such messages are not “inter-
esting” for the analysis of our example and, therefore, also the rules applied
for composing them are useless. As a matter of fact, diverting, impersonating

and decomposing rules are sufficient to model the Dolev-Yao intruder and it is
easy to see that this optimization is correct as it preserves the existing attacks
and does not introduce new ones.

Diverting Rules. The following rule models the ability of the intruder of
diverting the information exchanged by the honest participants:

m(I, A, B, M)
divert(A,B,I,M)
−−−−−−−−−→ ik(M)

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108 97

It states that, if a message has been sent on the communication channel, then
the intruder can read its content and remove it from the channel.

Impersonating Rules. The observation that most of the messages generated
by a strictly compliant Dolev-Yao intruder are rejected by the receiver as non-
expected or ill-formed suggests to restrict these rules so that the intruder
sends only messages matching the patterns expected by the receiver. For each
protocol rule of the form

. . . � m(I, A, B, M) � w(I, A, B, Knw, S)
stepI (...)
−−−−−→ . . .

and for each possible set of messages {M1,k, . . . , Mjk,k} (let m be the number
of such sets, then k = 1, . . . , m and jk > 0) from which the Dolev-Yao intruder
would be able to build a message M ′ that matches (and complies with the type
of) M , we add a new rule of the form

. . . � w(I, A, B, Knw, S) � i(A) � i(B) � i(M1,k) � . . . � i(Mjk ,k)
impersonateI,k(...)
−−−−−−−−−−→ . . . � m(I, A, B, M ′) � w(I, A, B, Knw, S)

� i(A) � i(B) � i(M1,k) � . . . � i(Mjk,k) � i(M ′)

This rule states that if agent B is waiting for a message M from A and the
intruder is able to compose a message M ′ matching (and complying with the
type of) M , then the intruder can impersonate A and send M ′. This opti-
mization, first introduced in [15], often reduces the number of rule instances
in a dramatic way (for more details see [1]).

It is worth pointing out that, by applying the step compression optimization
proposed in [5], it is possible to merge the above intruder rules with protocol
rules reducing dramatically the dimension of the search space to be explored.
See [1] for more details on the implementation of this optimization in our
setting.

Decomposing Rules. In order to be able to apply either the impersonating
rules or the step compressed rules, the intruder must be provided with the
smallest set of rules modeling its ability of decomposing every sub-message of

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–10898

messages exchanged in the parallel sessions of the protocol. For instance, the
rules useful to decompose the first message of the NSPK are the following:

ik({M}K) � ik(K−1)
decrypt(K,M)
−−−−−−−−→ ik({M}K) � ik(K−1) � ik(M)

ik(〈M1, M2〉)
decompose(M1,M2)
−−−−−−−−−−−→ ik(M1) � ik(M2)

The first rule states that if the intruder knows both a message encrypted with
the key K and the decryption key K−1, then the transition system can move
in a state where the knowledge of the intruder is extended with the content
M of the message. Similarly, the second rule states that if the intruder knows
the pairing message 〈M1, M2〉, then the rule can be applied to reach a state
in which the knowledge of the intruder is extended with the messages M1 and
M2.

Especially for industrial-scale security protocols in which messages can
have a complex structure, the number of decomposing rule instances to be
applied in order to find out an attack can be significant. As we will see in Sec-
tion 4, the size—in terms of atoms and clauses—of the generated propositional
formulae increases linearly with the length of the attack. Since the complex-
ity of the SAT problem grows exponentially according to the increasing of the
atoms number, it is critical to reduce such a length. The optimization pro-
posed in this paper is based on the concept of axiom. An axiom is a formula
that states a relation between the facts of the transition system and that holds
in each state of the transition system. 12 It turns out that axioms are par-
ticularly suited to represent relations between intruder knowledge facts. For
instance, the axiom

ik({M}K) ∧ ik(K−1) ⊃ ik(M)

states that, every time the intruder knows both a message encrypted with the
key K and the decryption key K−1, then it knows instantaneously also the
content M of the message. The main difference between an axiom and a rule
is in the fact that the former must hold in every state of the transition sys-
tem, while the latter is not forced to be executed even if all its preconditions
are satisfied and it spends a transition for being executed. As a consequence
by replacing decomposing rules with appropriate decomposing axioms we ob-
tain a twofold benefit: the size of the propositional formulae generated can
decrease as well as the number of transition steps to be applied for finding
attacks. Notice that, given the set of intruder decomposing rules DR ⊂ R, it

12 Notice that, if an axiom contains variables, then they are intended universally quantified.

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108 99

is straightforward to build the set of decomposing axioms DA:

DA = {p1 ∧ · · · ∧ pj ⊃ c | (p1 � . . . � pj
�
−→ C) ∈ DR, c ∈ C}

It can be proved both that this optimization is correct as it preserves the
existing attacks and does not introduce new ones, and that it leads to equal
or shorter attacks.

3 Protocol Insecurity Problems with Axioms

The concepts presented in Section 2 can be recast into the concept of protocol
insecurity problem with axioms. A protocol insecurity problem with axioms

is a tuple Ξ = 〈F ,L,R,A, I,G〉 where F is a set of atomic formulae of a
sorted first-order language called facts, L is a set of function symbols called
rule labels, A is a set of axioms of the form p1 ∧ . . . ∧ pj ⊃ c, where p1, . . . , pj , c

are in F , and R is a set of rewrite rules of the form L
�
−→ R, where L and

R are finite subsets of F such that the variables occurring in R occur also in
L, and � is an expression of the form l(x) where l ∈ L and x is the vector
of variables obtained by ordering lexicographically the variables occurring in
L. The components I and G of a protocol insecurity problem with axioms
are the initial states and a boolean formula representing the bad states of the
protocol, respectively. In this setting, a state is represented by the set of facts
S ⊆ F that are true in it. As a consequence, all the facts that are not in S are
considered false (close world assumption). Moreover, all the states of Ξ must
satisfy the set of axioms A. Formally, states(Ξ) = {S | S ⊆ F , S |= A}. 13

Let S be a state and (L
�
−→ R) ∈ R, if σ is a substitution such that Lσ ⊆ S

and S ′ = (S \ Lσ) ∪ Rσ is such that S ′ |= A, then one possible next state

of S is S ′ and we indicate this with S
�σ
� S ′. We assume the rewrite rules

are deterministic i.e. if S
�σ
� S ′ and S

�σ
� S ′′, then S ′ = S ′′. A solution to a

protocol insecurity problem with axioms Ξ, called attack, is a sequence of rules

�1σ1, . . . , �nσn such that Si
�iσi
� Si+1 for i = 1, . . . , n with S1 ⊆ I and Sn |= G.

The length of an attack is the number of rules occurring in it.

It is convenient to relax the definition of the transition relation associated
to a protocol insecurity problem with axioms by allowing parallel execution of
rules, though preserving the interleaving semantic of the model. This means
that every trace in which some rules are executed simultaneously can be lin-
earized into a longer trace in which all the rules are executed sequentially. In

13 Notice that, S |= A iff for each substitution σ and (p1 ∧ · · · ∧ pk ⊃ c) in A, it holds that
S |= (p1σ ∧ · · · ∧ pkσ) ⊃ cσ.

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108100

order to guarantee the interleaving semantic of the model we define ⊕ to be the
(commutative) relation of mutual exclusion (mutex for short) between rules.
With the introduction of axioms in the concept of protocol insecurity problem,
the mutex relation requires the construction of a directed graph GA = 〈F , E〉
representing the dependencies between facts wrt the set of axioms. The basic
idea is that for each substitution σ and (p1 ∧ · · · ∧ pj ⊃ c) ∈ A, the pairs
〈cσ, p1σ〉, . . . , 〈cσ, pjσ〉 are in the set of edges E. A fact c is dependent from
a fact p, denoted with c ↪→A p, iff there is in GA a path from the node c

to the node p. Let depA(c) = {p | c ↪→A p} ∪ {c} be the set of facts from
which c depends wrt A and, similarly, let depA(C) =

⋃
c∈C depA(c) be the

set of facts from which the facts in C depend wrt A. The mutex relation ⊕

is thus defined as follow: for each L1
�1−→ R1, L2

�2−→ R2 in R and for each
pair of substitutions σ1 and σ2 such that �1σ1 �= �2σ2, then �1σ1 ⊕ �2σ2 iff
L1σ1 ∩ depA((L2σ2 \ R2σ2)) �= ∅ or L2σ2 ∩ depA((L1σ1 \ R1σ1)) �= ∅. If �1 ⊕ �2

we say that �1 and �2 are conflicting rule instances. The parallel execution of
rules is thus allowed by the following relaxed definition of transition. Let S

be a state, if there exist a set of rules {L1
�1−→ R1, . . . , Lm

�m−→ Rm} ⊆ R and a
set of substitutions {σ1, . . . , σm} such that, by defining L = (

⋃m

i=1 Liσi) and
R = (

⋃m

i=1 Riσi), (i) for each i, j = 1, . . . , m with i �= j, then �iσi ⊕ �jσj does
not hold (non-conflicting rule instances), (ii) L ∩ R = ∅, (iii) L ⊆ S, and (iv)
((S \ L) ∪ R) |= A, then one possible next state of S is S ′ = ((S \ L) ∪ R).

We indicate this with S
Λ
�
P

S ′ where Λ = {�1σ1, . . . , �mσm}. Similarly, the

definition of solution to a protocol insecurity problem can be recast into the
concept of partial-order attack. A partial-order attack to a protocol insecu-
rity problem Ξ is a sequence of sets of rewrite rule instances Λ1, . . . , Λn such

that Si
Λi
�
P

Si+1 for i = 1, . . . , n with S1 ⊆ I and Sn |= G. The length of

a partial-order attack corresponds to the number of sets in the sequence. It
can be proved that a partial-order attack to Ξ corresponds to a set of attacks
to Ξ. Moreover, let reach(S, �) and reach(S, �

P

) the set of states that can

be reached from the state S by means of the transition relations � and �
P

,

respectively. It can be proved that reach(S, �) = reach(S, �
P

).

4 Automatic SAT-Compilation of Protocol Insecurity

Problems with Axioms

Let Ξ = 〈F ,L,R,A, I,G〉 be a protocol insecurity problem with axioms such
that (i) the sets of facts, axioms, and rules are finite, (ii) the set of axioms
A does not entail any propositional equivalence between facts (i.e. for all the

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108 101

facts p1, . . . , pj, c in F , it holds that �|=A (p1 ∧ · · · ∧ pj) ≡ c), and let k be a
positive integer, then it is possible to build a propositional formula Φk

Ξ such
that any model of Φk

Ξ corresponds to a partial-order attack of length k solution
of Ξ. It is worth pointing out that the axioms modelling the ability of the
intruder of decomposing messages satisfy the above requirements (i) and (ii).

In previous work we described how a protocol insecurity problems without
axioms is compiled into a set of SAT formulae using two encoding techniques:
the first belongs to the family of so-called linear encodings [1,2], the second is
the more sophisticated graphplan-based encoding [3]. Let us see how to extend
our approach to be able to deal with the axioms described in Sections 2 and 3.
The basic idea does not change and consists into adding an additional time-
index to the rules and facts to indicate the state at which the rule begins or
the fact holds. Facts are thus indexed by 0 through k and rules by 0 through
k−1. If p is a fact or an rule and i is an index in the appropriate range, then pi

is the corresponding time-indexed propositional variable. However, with the
introduction of the axioms into the concept of protocol insecurity problem,
significant alterations must to be done in the encodings schemes. In the rest
of this section we will formally describe how to compile a protocol insecurity
problem with axioms into SAT by using the linear encoding technique. Sim-
ilar concepts apply also to the graphplan-based encoding technique. Notice
also that the encoding technique we are going to present can be applied also
to compile protocol insecurity problems without axioms into SAT simply by
setting A = ∅.

Similarly to the classic bounded model-checking approach [6], the propo-
sitional formula Φk

Ξ is defined by

Φk
Ξ = I(f 0) ∧

k−1∧
i=0

Ti(f
i, �i, f i+1) ∧ G(fk)

where f and � are vectors of facts and rules respectively 14 and

• I(f 0) is a formula encoding the initial states I;

• G(fk) is an k-indexed formula encoding the goal states represented by G;

• Ti(f
i, �i, f i+1) is a formula encoding the transition relation between states

reachable in i steps and states reachable in i + 1 steps.

The main difference between our encoding techniques and those employed in
other bounded model-checkers (e.g. NuSMV [8]) is in the way the formula that

14 Let p be a vector of facts or rules and i be an index in the appropriate range, then pi is
the corresponding time-indexed vector of propositional variable.

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108102

encodes the transition relation, i.e. Ti(f
i, �i, f i+1), is generated.

By using the linear encoding technique, each component of Φk
Ξ is defined

as follow:

• I(f 0) is a conjunction of the formulae f 0 if f ∈ I and ¬f 0 if f �∈ I;

• G(fn) is obtained from G by replacing each fact f with fn;

• Ti(f
i, �i, f i+1) is equivalent to T (f i, �i, f i+1) (i.e. the formula encoding the

transition relation is independent from the time step) and is a conjunction of
the Universal Formulae, Explanatory Frame Formulae, Axioms Formulae,
and Conflict Exclusion Formulae.

In order to improve readability, let us define R̃ and Ã to be the sets of rule

instances and axiom instances, respectively. Clearly, R̃ = {Lσ
�σ
−→ Rσ | L

�
−→

R ∈ R, σ is a substitution} and Ã = {p1σ ∧ · · · ∧ pjσ ⊃ cσ | p1 ∧ · · · ∧ pj ⊃
c ∈ A, σ is a substitution}.

Universal Formulae. They express how the transition relation evolves and
they are defined as the conjunction of the following:

�i ⊃
∧
{f i | f ∈ L}

�i ⊃
∧
{f i+1 | f ∈ (R \ L)}

�i ⊃
∧
{¬f i+1 | f ∈ (L \ R)}

for each L
�
−→ R ∈ R̃.

Explanatory Frame Formulae. They express the inertia of the transition
system. By introducing the axioms, the definition of such formulae require to
define the set Â of the contraposed axioms of A. For instance, ¬b ⊃ ¬a is
the contraposed axiom of a ⊃ b. Given the set of axiom instances Ã, the set
of contraposed axiom instances Â is {¬c ∧ p1 ∧ · · · ∧ ph−1 ∧ ph+1 ∧ · · · ∧ pj ⊃
¬ph | (p1 ∧ · · · ∧ pj ⊃ c) ∈ Ã, h = 1, . . . , j}. The explanatory frame formulae

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108 103

are thus defined as the conjunction of the following:

(f i ∧ ¬f i+1) ⊃

(∨{
�i | (L

�
−→ R) ∈ R̃, f ∈ (L \ R)

}
∨

∨
{¬pi+1

1 ∧ pi+1
2 ∧ · · · ∧ pi+1

j |

(¬p1 ∧ p2 ∧ · · · ∧ pj ⊃ ¬f) ∈ Â}

)

(¬f i ∧ f i+1) ⊃

(∨{
�i | (L

�
−→ R) ∈ R̃, f ∈ (R \ L)

}
∨

∨{
pi+1

1 ∧ · · · ∧ pi+1
j | (p1 ∧ · · · ∧ pj ⊃ f) ∈ Ã

})

for all facts f ∈ F . In order to translate the above formulae into CNF without
incurring in a combinatorial explosion in the number of clauses it suffices to
replace each conjunction p1 ∧ · · · ∧ pj with a new variable v and to add the
formula vi ≡ (pi

1 ∧ · · · ∧ pi
j). It is immediate to see that in the worst case the

number of these new variables is in O(|Ã|).

Axioms Formulae. They express properties between the facts of the tran-
sition system. They are defined as the conjunction of (pi

1 ∧ · · · ∧ pi
j) ⊃ ci for

each (p1 ∧ · · · ∧ pj ⊃ c) ∈ Ã.

Conflict Exclusion Formulae. They state what pair of rule instances can-
not be executed in parallel for guaranteeing the interleaving semantic of the
model. They are defined as the conjunction of ¬(�i

1 ∧ �i
2) for all �1 �= �2 such

that �1 ⊕ �2.

It is immediate to see that the number of atoms in Φk
Ξ is in O(k|F| + k|R̃| +

k|Ã|). Moreover the number of clauses generated by the Universal Formulae
is in O(kP0|R̃|) where P0 is the maximal number of facts mentioned in an rule
instance (usually a small number); the number of clauses generated by the
Explanatory Frame Formulae is in O(k|F|+kR0|Ã|) where R0 is the maximal
number of facts mentioned in a precondition of an axiom instance (usually
a small number); finally, the number of clauses generated by the Conflict
Exclusion Formulae is in O(k|R̃|2).

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108104

5 Implementation and Experimental Results

We have implemented the above ideas in SATMC, a SAT-based Model-Checker
for security protocol analysis. Given a protocol insecurity problem with ax-
ioms Ξ, SATMC compiles it into a SAT formula Φk

Ξ using one of its encoding
techniques for increasing values of k and the propositional formula generated
at each step is fed to a state-of-the-art SAT solver (Chaff, SIM, and SATO
are currently supported). As soon as a satisfiable formula is found, the corre-
sponding model is translated back into a partial order attack which is reported
to the user. Two encoding techniques are currently implemented in SATMC
and both have been extended for supporting axioms: the first belongs to
the family of so-called linear encodings, the second is the more sophisticated
graphplan-based encoding.

We have run our tool against a selection of (flawed) security protocols
drawn from the Clark/Jacob library [9]. For each protocol we have automati-
cally generated, by means of a translator from IF [4] into the SATMC internal
language, two corresponding protocol insecurity problems modeling a scenario
with a bounded number of sessions in which the involved principals exchange
messages on a channel controlled, respectively, by the Dolev-Yao intruder and
by the optimized Dolev-Yao intruder. As explained in Section 2 the opti-
mization consists in modeling the intruder ability of decomposing messages
by means of axioms instead of rules.

Table 1
Experimental data using the linear encoding

DY Optimized DY

Protocol K Atoms Clauses K Atoms Clauses

KaoChow 2 9 530,726 1,804,005 7 414,536 1,489,121

KaoChow 3 9 995,323 5,736,662 7 776,805 4,590,268

NSCK 9 114,530 334,086 8 88,343 298,491

NSPK 7 6,612 33,326 4 3,714 19,242

NSPK-server 8 9,157 53,741 5 5,600 33,835

Woo-Lam M 6 481,394 2,498,382 5 409,114 2,133,265

Tables 1 and 2 report the results of our experiments obtained by applying
the linear encoding and the graphplan-based encoding, respectively, on the
protocol insecurity problem without the optimized intruder (DY) and with it
(Optimized DY). Experiments have been carried out on a PC with a 1.4 GHz
CPU and 1 GB of RAM. For each protocol and for each protocol insecurity
problem with and without the optimized intruder we give the smallest value of

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108 105

Table 2
Experimental data using the Graphplan-based encoding

DY Optimized DY

Protocol K Atoms Clauses K Atoms Clauses

KaoChow 2 9 726 3,065 7 458 1,784

KaoChow 3 9 990 5,019 7 587 2,606

NSCK 9 435 1,392 8 348 1,105

NSPK 7 411 1,249 4 199 549

NSPK-server 8 847 2,688 5 380 1,177

Woo-Lam M 6 481 1,518 5 358 1,137

k at which the attack is found (K), and the number of propositional variables
(Atoms) and clauses (Clauses) in the SAT formula. 15 It is immediate to see
that for both the applied encoding techniques, SATMC is able to find out up to
40% shorter attacks 16 by generating up to 50% smaller propositional formulae.
These results confirm the effectiveness of the proposed optimized intruder
model for the SAT-based model-checking approach and pave the way to the
application of SATMC to protocols of industrial complexity where attacks
can eventually require a considerable number of intruder knowledge inference
steps.

6 Conclusions and Perspectives

We have proposed an optimized intruder model for SAT-based model-checking
of security protocols. We have shown that this optimization, based on the
idea of modeling the decomposition of the intruder knowledge by means of
axioms instead of rules, leads to the discovering of shorter attacks by gen-
erating smaller propositional formulae. We have enhanced our SAT-based
model-checker (SATMC) to be able to analyse protocol insecurity problems
extended with a set of axioms (without equivalence cycles). Experimental
results obtained by running SATMC against a selection of security protocols
drawn from the Clark-Jacob’s library confirm the effectiveness of the pro-
posed optimized intruder model and pave the way to its application to large

15 Notice that, if the length of the attack on the protocol insecurity problems with and
without the optimized intruder is the same, the results obtained are so comparable that we
avoid to show them.
16 Notice that for each security protocol analyzed, the attacks found on the corresponding
protocol insecurity problem with and without the optimized intruder are identical except
for the fact that in the case of the former we save all those rules executed for decomposing
the knowledge of the intruder.

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108106

protocols which arise in practical applications. As a matter of fact, messages
exchanged in industrial-scale security protocols can have a complex structure
and, therefore, attacks on such protocols can require a considerable number
of intruder knowledge manipulations. Since the proposed optimization allows
for decomposing the whole intruder knowledge instantaneously, we conjecture
that it will be particularly successful on such protocols and experiments will
be done in this direction.

Another interesting and challenging future direction that we would like to
investigate concerns the extension of our SAT-reduction techniques for sup-
porting the encoding of generic set of axioms also specifying equivalences be-
tween facts. This would be particularly useful to express algebraic equations
that specify, for instance, special properties of cryptographic operators such
as exponentiation in the Diffie-Hellman protocol [10]. It is worth pointing out
that on such a protocol we have already obtained some preliminary results in
our current setting. In fact, by partially specifying exponentiation by means
of a set of axioms, we have been able to discover the well-known attack on the
Diffie-Hellman protocol.

Acknowledgments

We are grateful to Cristina Frà for her contribution to the implementation
of the encodings for supporting such an optimized intruder. Moreover we
wish to thank the anonymous reviewers for their useful comments. This work
was partially funded by EU Calculemus Training Network (HPRN-CT-2000-
00102) and by FET Open EC Project “AVISPA: Automated Validation of
Internet Security Protocols and Applications” (IST-2001-39252).

References

[1] A. Armando and L. Compagna. Automatic SAT-Compilation of Protocol Insecurity Problems
via Reduction to Planning. In Proceedings of FORTE 2002, LNCS 2529, pages 210–225.
Springer-Verlag, 2002.

[2] A. Armando and L. Compagna. Abstraction-driven SAT-based Analysis of Security
Protocols. In Proceedings of SAT 2003, LNCS 2919. Springer-Verlag, 2003. Available at
http://www.avispa-project.org .

[3] A. Armando, L. Compagna, and P. Ganty. SAT-based Model-Checking of Security Protocols
using Planning Graph Analysis. In Proceedings of FME’2003, LNCS 2805. Springer-Verlag,
2003.

[4] Alessandro Armando, David Basin, Mehdi Bouallagui, Yannick Chevalier, Luca Compagna,
Sebastian Mödersheim, Micha”el Rusinowitch, Mathieu Turuani, Luca Viganò, and Laurent
Vigneron. The AVISS Security Protocol Analysis Tool. In Proceedings of CAV’02, LNCS 2404,
pages 349–354. Springer-Verlag, 2002.

[5] D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-Checker for Security
Protocol Analysis. In Einar Snekkenes and Dieter Gollmann, editors, Proceedings

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108 107

http://www.avispa-project.org

of ESORICS’03, LNCS 2808, pages 253–270. Springer-Verlag, 2003. Available at
http://www.avispa-project.org .

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without BDDs. In
W. R. Cleaveland, editor, Proceedings of TACAS’99, LNCS 1579, pages 193–207, Berlin, 1999.
Springer-Verlag.

[7] Iliano Cervesato, N. A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre Scedrov. A
meta-notation for protocol analysis. In CSFW, pages 55–69, 1999.

[8] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A New Symbolic Model Verifier.
LNCS 1633, 1999.

[9] J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0,
17 November 1997. Available at http://www.cs.york.ac.uk/~jac/papers/drareview.ps.gz.

[10] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, 1976.

[11] D. Dolev and A. Yao. On the Security of Public-Key Protocols. IEEE Transactions on
Information Theory, 2(29), 1983.

[12] N. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. Undecidability of Bounded Security
Protocols. In Proceedings of the FLOC’99 Workshop on Formal Methods and Security Protocols
(FMSP’99), 1999.

[13] Shimon Even and Oded Goldreich. On the security of multi-party ping pong protocols. In
Proceedings of 24th IEEE Symposium on Foundations of Computer Science. IEEE Computer
Society, 1983.

[14] James Heather, Gavin Lowe, and Steve Schneider. How to prevent type flaw attacks on security
protocols. In Proceedings of The 13th Computer Security Foundations Workshop (CSFW’00).
IEEE Computer Society Press, 2000.

[15] F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and Verifying Security Protocols.
In M. Parigot and A. Voronkov, editors, Proceedings of LPAR 2000, LNCS 1955, pages 131–160.
Springer-Verlag, 2000.

[16] R. M. Needham and M. D. Schroeder. Using Encryption for Authentication in Large Networks
of Computers. Technical Report CSL-78-4, Xerox Palo Alto Research Center, Palo Alto, CA,
USA, 1978. Reprinted June 1982.

A. Armando, L. Compagna / Electronic Notes in Theoretical Computer Science 125 (2005) 91–108108

http://www.avispa-project.org
http://www.cs.york.ac.uk/~jac/papers/drareview.ps.gz

	Introduction
	Modeling Security Protocols
	Modeling the behavior of Honest Participants
	Modeling the behavior of the Intruder

	Protocol Insecurity Problems with Axioms
	Automatic SAT-Compilation of Protocol Insecurity Problems with Axioms
	Implementation and Experimental Results
	Conclusions and Perspectives
	References

