Clinical effect of ambrisentan in pulmonary hypertension
Toshinori Minamishima, Toru Satoh, Masaharu Kataoka, Hideaki Yoshino

Cardiology Division, Department of Medicine, Kyorin University School of Medicine, Japan
E-mail address: tsatoh2008@mne.com (T. Satoh)

Background: A development of the drugs used in pulmonary hypertension (PH) contributes a lot to its clinical improvement. An advent of new endothelin receptor blocker, ambrisentan, has further diversified selection of PH drugs. Purpose: The purpose of this study was to evaluate the efficacy and safety of ambrisentan on PH. Method: Ambrisentan was administered to 26 (50 ± 19 years old, 7 men, 19 women) patients with PH including 11 patients with chronic thromboembolic PH (CTEPH), 5 with Eisenmenger syndrome, 5 with connective tissue disease (CTD) PH and 3 with idiopathic pulmonary arterial hypertension. Ambrisentan was added to the other PH drugs in all the patients. The patients underwent right-side heart catheterization before and after the administration of ambrisentan with measurement of cardiac output (CO), mean right atrial pressure (mRA), mean pulmonary arterial pressure (mPA), pulmonary vascular resistance (PVR). Brain natriuretic peptide (BNP) was also determined. Results: After administration of ambrisentan (the average follow-up period was 168 ± 97 days), mPA (36 ± 9 vs 22 ± 6: p = 0.01) and PVR (11 ± 6 vs. 7 ± 4: p = 0.01) and CO (4.0 ± 1.5 vs. 4.8 ± 1.8: p < 0.05; p = 0.05) improved significantly, but BNP, mRA nor heart rate did not. The most frequent adverse reactions were edema with 6 patients, 3 of which abandoned ambrisentan. Conclusions: Ambrisentan is useful for pulmonary hypertension even if added to other PH drugs.


Analysis of ET-1 system in mild and severe pulmonary arterial hypertension in mice
Hung Van Tran*, Noriaki Emoto*, Nicolas Vignon-Zellweger†, Kazuhiro Nakayama*, Keiko Yagi*, Yoko Suzuki*, Ken-ichi Hirata†

Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
E-mail address: hung244@gmail.com (H. Van Tran)

Background: A recently developed mouse model for PAH combines hypoxia with a VEGF receptor blocker. Herein we aim to describe in detail this model. The TGF-β/Smad3 pathway is a pivotal factor regulating the transcription of the endothelin (ET-1) gene. Besides, interleukin-1β (IL-1β) increases expression of ET-1, and ETA receptor and reduces expression of ETB receptor. Methods and results: We placed 3-week old male SV129 mice under hypoxia (O2 = 10% ) and treated them with a vascular endothelial growth factor receptor blocker (SU5416) (SU mice) or L-NAME (CTRL: 22.5 ± 1 mmHg), right ventricular hypertrophy (Fulton index: SU: 0.55 ± 0.042; CTRL: 0.4 ± 0.04, CTRL-0.31 ± 0.026) and muscleization of precapillary vessels together with proliferation of endothelial cells of small arterioles (PCNA positive on endothelial layer/arterial section = SU: 2.9 ± 0.25; H: 1 ± 0.13; CTRL: 0.7 ± 0.08), which lead to completely occluded arterioles by von Willebrand factor expressing cells. Increased ET-1 mRNA, ETA receptor mRNA, protein expression and immunostaining signals and reduced ETB receptor mRNA expression were observed in SU mice only. This was associated with an increased abundance of phosphorylated Smad3 and a 9-fold increase of IL-1β expression. TGF-β1 mRNA in H and SU mice was similar. Conclusion: In severe PAH, Smad3 by potentiating TGF-β and IL-1β might disturb the expression of the ET system and may represent therefore potential therapeutic targets.