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a b s t r a c t

Since neural networks have universal approximation capabilities, therefore it is possible
to postulate them as solutions for given differential equations that define unsupervised
errors. In this paper, we present a wide survey and classification of different Multilayer
Perceptron (MLP) and Radial Basis Function (RBF) neural network techniques, which are
used for solving differential equations of various kinds. Our main purpose is to provide
a synthesis of the published research works in this area and stimulate further research
interest and effort in the identified topics. Here, we describe the crux of various research
articles published by numerous researchers, mostly within the last 10 years to get a better
knowledge about the present scenario.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A series of problems in many scientific fields can be modeled with the use of differential equations such as problems
in physics [1–3], chemistry [4–6], biology [7,8], economics [9], etc. Due to the importance of differential equations
many methods have been proposed in the relevant literature for their solution such as Runge–Kutta methods [10,11],
Predictor–Corrector methods [12,13], Finite Difference methods [14–16], Finite Element methods [17–19], Splines [20–23]
and other methods [24–41] etc. These methods require the discretization of domain into the number of finite elements
where the functions are approximated locally. Although these methods provide good approximations to the solution, they
require a discretization of domain via meshing, which may be challenging in two or higher dimension problems. Also, the
approximate solution derivatives are discontinuous and can seriously impact on the stability of the solution. Furthermore,
in order to obtain satisfactory solution accuracy, it may be necessary to deal with finite meshes that significantly increase
the computational cost.

In spite of the above methods, approximate particular solutions can also be achieved by using multilayer perceptrons,
radial basis functions, models based on genetic programming, hybrid approaches based on neural networks, etc. Advantages
of these methods are that they involve a single independent variable regardless of the dimension of the problem, and the
solution obtained from the neural network methods are differentiable and in closed analytic form. During the last few years
much progress has been done in this area. In this article, a wide survey of solution of differential equations using multilayer
perceptrons (MLP) and radial basis functions (RBF) along with our own comparative remarks have been presented. We will
omit the details of techniques used to solve thesemodels due to length constraints. Interested readers can see the references
cited (along with these methods) for more details.

The rest of this article is organized as follows: in Section 2, we present a summary of Multilayer perceptron (MLP) neural
network techniques for solving differential equations from various research articles. A brief description of articles published
on the Radial Basis function neural network (RBFN) technique for solving differential equations is presented in Section 3. In
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Section 4, a comparison of MLP and RBF techniques for solving differential equations are given. Finally, Section 5 presents
major conclusions and further developments.

2. Multilayer perceptron (MLP) neural network techniques to solve differential equations

In this section, we will give a brief description of multilayer perceptron (MLP) neural network techniques for solving
differential equations of various kinds. Various research articles considered here are in the ascending order of their years of
publication.

In [42], Meadre and Fernandez concentrated on developing a general, numerically efficient, non-iterative method in
which the feed forward artificial neural network architecture can be used to model the solution of algebraic and differential
equations accurately, using only the equation of interest and the boundary or initial conditions. A feed forward artificial
neural network (FFANN) constructed by this non-iterative method is indistinguishable from those methods which are
trained using conventional techniques. They borrowed a technique from applied mathematics, known as the method of
weighted residuals (MWR), and showed how it can be made to operate directly on the network architecture. The method of
weighted residuals is a generalizedmethod for approximating functions, usually from given differential equations. A simple
feed forward network using a single input and output neuronwith a single hidden layer of processing elements utilizing the
hard limit transfer function is constructed to approximate accurately the solution of a first and second order linear ordinary
differential equation. They also predicted and controlled the error constructed by feed forward artificial neural networks.
The non-iterative approach outlined in the article has allowed suitable algorithms to be devised for the synthesis of FFANNs
that approximate non-linear ordinary differential equations. Also the non-iterative algorithm has allowed work to progress
in the construction of FFANNs, sigma-Pi, and recurrent networks, to approximate linear and non-linear partial differential
equations.

Remark 1. It can be concluded from the above article that it is possible to construct directly and non-iteratively a feed
forward neural network to approximate arbitrary linear ordinary differential equations. The methods used are all linear in
storage and processing time. The L2—norm of the network approximation error decreases quadratically with the increasing
number of hidden neurons. The result obtained through the output of network demonstrates the accuracy of approximation.

In the research article [43], Issac Ellias Lagaris and Aristidis Likas presented a newmethod for solving initial and boundary
value problems using artificial neural network. To illustrate their method they took the following general differential
equation:

G(x⃗, ψ(x⃗),∇ψ(x⃗),∇2ψ(x⃗)) = 0, x⃗ ∈ D (1)

subject to the certain boundary conditions which are either Dirichlet or Neumann boundary conditions. Also x⃗ =

(x1, x2, . . . , xn) ∈ Rn denotes the definition domain andψ(x⃗) is the solution to be computed. Collocationmethod is adopted,
to obtain a solution of the above differential equation (1), which assumes the discretization of the domainD and S into D̂ and
Ŝ. Solve the above differential equation. They choose the form of trial function ψt(x⃗) such that by construction it satisfies
the given boundary conditions. This is obtained by writing the trial function as a sum of two parts

ψt(x⃗) = A(x⃗)+ F(x⃗,N(x⃗, p⃗)) (2)

where N(x⃗, p⃗) is a single output feed forward neural network with parameters p⃗ and n input units fed with the input vector
x⃗. Term A(x⃗) contains no adjustable parameters and satisfies the boundary conditions. The second term F employs a neural
network whose weights are adjusted to deal with the minimization problem and it is constructed so as not to contribute
with boundary conditions. Then the network is trained to satisfy the differential equation. The authors illustrated present
method by solving a variety of model problems. The solution such obtained is compared with the solution obtained using
the Galerkin finite elementmethod for several cases of partial differential equations and it is found that themethod exhibits
excellent generalization performance since the deviation at the test points was ‘in no case’ greater than the maximum
deviation at the training points.

Remark 2. Method presented by the authors in [43] is general and can be applied to ordinary differential equations, the
system of coupled ordinary differential equations and also to partial differential equations. It is also stressed out that the
presentmethod described in [43] can easily be used for dealingwith the domains of higher dimensions. Themethod becomes
particularly interesting with the help of neuroprocessor due to expected essential gains in the execution speed.

In article [44], the authors presented a method to solve a class of first order partial differential equation as input to state
linearizable or approximate linearizable system. They proposed an extended backpropagation algorithm for training the
derivative of a feed forward neural network and further, an approximate solution for a class of partial differential equation
is obtained. A feedback control law has been designed to control a class of non-linear systems, based on the approximate
solution. Simulation technique is used to demonstrate the effectiveness of the proposed algorithm and it is shown that the
method can be very useful for practical applications in the following cases:
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I. When a non-linear system satisfies the conditions for input-to-state linearization but the non-trivial solution of the given
equation

∂λ(x)
∂x


g(x) ad1f g(x) . . . ad

n−2
f g(x)


= 0 (3)

is hard to find by training the derivative of a neural network. We can seek the approximate solution by the method given
in [44]. Since there is no restrictive condition for choosing the basis vector to train the neural network, therefore a simple
transformation to construct the basis is recommended.

II. When a non-trivial solution does not exist for the above given equation, we still obtain an approximate solution. If
the approximate solution is considered an exact solution for a linearizable feedback system, then the system should
approximate the given non-linear system as closely as possible.

Remark 3. It is pointed out that the method presented in [44] can benefit the design of the class of non-linear control
systems, when the non-trivial solution of partial differential equations is difficult to find. Simulation examples presented
in the article exhibit the advantages and effectiveness of the method. For applications where a large region of operation is
required, the control design based on this method cannot result in a satisfactory performance.

Lagaris et al. in [45] studied partial differential equation with the case of complex boundary geometry. They examined
the partial differential equations of the form

LΨ = f (4)

where L is a differential operator and Ψ = Ψ (x⃗)(x⃗ ∈ D ⊂ R(n)) with Dirichlet or Neumann boundary conditions. The
boundary B = ∂D can be any arbitrary complex geometrical in shape and is defined as a set of points that are chosen so as to
represent its shape with reasonable accuracy. Collocation method is adopted and the problem is then transformed into the
unconstrained optimization problem. A model based on the synergy of two feed forward neural networks of two different
types are developed, which can be written as

ΨM(x⃗, p) = N(x⃗, p)+

M−
l=1

ql e−λ|x⃗−αr⃗l+h⃗|2 (5)

where |·| denotes the Euclidean normandN(x⃗, p) is amultilayer perceptronwith p denoting the set of itsweights and biases.
The sum in the above equation represents an RBF networkwithMhidden units that all share a common exponential factor λ.
For a given set p ofMLPparameters, the coefficients ql are uniquely determined by requiring that the boundary conditions are
satisfied. The authors demonstrated that themodel based on theMLP-RBF synergy satisfies exactly the boundary conditions
but are computationally expensive since at every evaluation of the model one needs to solve a linear system which may
be quite large. Moreover, since many efficient optimization methods need the gradient of the objective function, one has
to solve an additional linear system of the same order for each gradient component. On the other hand, penalty method is
very efficient but does not satisfy the boundary conditions. Hence they used the combination of these two methods which
is profitable and results are quite encouraging. They presented three examples to illustrate their method, the first example
is a two dimensional linear Dirichlet problem on a irregular body. The second example is a highly non-linear problem with
Dirichlet boundary problem considering star shaped domain, and the third example treats the same PDE with Neumann
boundary conditions inside a cardioid family.

Remark 4. Solutions obtained by the given approach show that the method is equally effective, and retains its advantage
over the Galerkin Finite element method. It also provides accurate solutions in a closed analytic form that satisfy the
boundary conditions at the selected points. The method is quite general and can be used for a wide class of linear and
non-linear partial differential equations.

In article [46], the authors described a method to solve partial differential equation and its boundary or initial conditions
by using neural networks. They used the fact that multiple input, single output and single hidden layer feed forward
networks with a linear output layer with no bias are capable of arbitrarily well approximating arbitrary functions and its
derivatives. To clarify the working of their method, they apply the following differential equation with two of its initial
conditions:

d2y
dt2

+ y = 0, t ∈ [0, 1] (6)

dy
dt

= 1, y(0) = 0. (7)

Then, they obtain networks of which some are specifically structured. To find the solution of the partial differential equation
and its boundary and initial conditions they trained all obtained networks simultaneously as a consequence of their
interrelationship. For this they implemented evolutionary algorithm to train the networks. They noticed that good results
can be obtained if they restrict the values of the variables to the interval [−5, 5].
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Remark 5. The authors presented the knowledge about the partial differential equations and its boundary and/or initial
conditions to incorporate into the structures and the training sets of several neural networks and found that the results for
one and two dimensional problem are very good in respect of efficiency, accuracy, convergence and stability.

Alli et al. in [47] solved a mathematical model of vibration control of flexible mechanical systems, using multilayer
perceptron technique. Because of non-linearity and complex boundary conditions, their numerical solutions always have
somedrawbacks such as numerical instability. That iswhy, they proposed an alternativemethod using feed forward artificial
neural networks. Initially a general formula for the numerical solutions of nth order initial value problem is developed using
ANN. Then the method is applied to many controlled and non-controlled vibration problems of flexible structures whose
dynamics are represented by ODE’s and PDE’s, for e.g., they considered mass-damper-spring system, whose mathematical
model is given by:

m
d2ψ
dt2

+ c
dψ
dt

+ kψ = 0 (8)

where the initial conditions of the systems are: ψ(0) = 1 and dψ(0)
dt = 0 with t ∈ [0, 2]. The authors also considered

the second and fourth order PDEs that are the mathematical models of the control of longitudinal vibrations of rods and
lateral vibration of beams. To test their method, they also obtain the solutions of the same problems by using analytical and
Runge–Kutta method. The obtained figures show that the results are very closed to the Runge–Kutta and analytical method.

Remark 6. It has been pointed out that the method presented in [47] can be used for a wide class of linear and non-linear
PDEswith complex boundary conditions and the results obtained are very good. It has been also observed that the presented
method also success outside the training points when the neuron numbers in the hidden layer are increased.

Smaoui et al. in [48] analyzed the dynamics of two non-linear partial differential equations known as the
Kuramato–Sivashinsky (K–S) equation and the two dimensional Naiver–Stokes (N–S) equation using the combination of
Karhunen–Loeve (K–L) decomposition and artificial neural networks. K–S equation is solved using pseudo spectral Galerkin
method at bifurcation parameters α = 17.75. K–L decomposition was thus applied on the numerical simulation data to
extract coherent structures of the dynamical behavior represented by heteroclinic connection. The author then used the
artificial neural network to model and predict P times steps into the future dynamical behavior at α = 17.75 for different
values of P . They found that the neural network model is able to capture the dynamics, and observed that as P increases,
the model behavior degrades. And for the two dimensional N–S equation, a quasiperiodic behavior represented in phase
space by a torus is analyzed at Re = 14 : 0. Applying the symmetry observed in the two-dimensional N–S equations on the
quasiperiodic behavior, eight different tori were obtained. They showed that by exploiting the symmetries of the equation
and using K–L decomposition in conjunction with neural networks, a smart neural model can be obtained.

Remark 7. In [48], the authors presented a hybrid method which is the combination of K–L decomposition and artificial
neural network, to solve the partial differential equations. They established a foundation for modeling the two dimensional
N–S equation using neural network for all values of Reynolds numbers and for different values of wave numbers.

In [49] Malek et al. investigated a novel hybrid method based on optimization techniques and neural network methods
for the solution of high order ordinary differential equations. The authors considered the general initial/boundary value
problem of the form:

D
[
x, y(x),

dy
dx
,
d2y
dx2

, . . . ,
dny
dxn

]
= 0 x ∈ [a, b]

C
[
x, y(x),

dy
dx
,
d2y
dx2

, . . . ,
dny
dxn

]
= 0 x = a and/or b

(9)

where D is a differential operator of degree n, C is an initial/boundary operator, x is an independent variable belonging
to [a, b] and y is an unknown dependent variable to be calculated. For problem formulation, they assume that a general
approximation solution to Eq. (9) is of the form yT (x, P)where yT is a dependent variable to x and P , where P is an adjustable
parameter involving weights and biases in the structure of three layer feed forward neural networks and satisfies the
following optimization problem:

Min
P

∫ b

a

D [
x, yT (x, P),

dyT (x, P)
dx

, . . . ,
dnyT (x, P)

dxn

]2

dx

C
[
x, yT ,

dyT (x, P)
dx

, . . . ,
dnyT (x, P)

dxn

]
= 0, x = a and/or b.

(10)

In order to deal with Eq. (10) it is simpler to deal the following constrained optimization problem of the form yT (x, P) =

α(x)+ β[x,N(x, P)], where first term involve adjustable parameters and satisfy initial or boundary conditions and second
term is feed forward three layer perceptron.Minimization in Eq. (10) has been donewhich is considered as a training process
for the proposed neural network. The error E(x) corresponding to every entry x has to be minimized. The authors described,
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Fig. 1. Neural Network based on cosine based model.

the general formulation of initial or boundary value problems by taking differential equations of various order. They
developed programs with MATLAB 6.5.1 to demonstrate behavior and properties of the proposed method and concluded
that the proposed novel solution act as a good interpolation technique as well as a good extrapolation method for the close
enough point outside the boundary points of the interval.

Remark 8. The main contribution of this article [49] is the potential of the hybrid technique to deal with differential
equation of higher orders as well as low order. This hybrid technique is applicable for partial differential equation as well
as ordinary differential equation and numerical simulation indicates that the proposed novel model solution is stable and
computes the approximate solution in few numbers of iterations. Moreover, it acts as a good extrapolation technique for a
good range of points outside the interval [−1, 1].

An algorithm for the selection of both input variables and a sparse connectivity of the lower layer of connections in
feed forward neural network of multilayer perceptron with one layer of hidden non-linear single linear output node is
presented by Saxen et al. in [50]. Initially random weights in the lower layer of connections are used as a starting point and
the complexity of this part of the network is gradually decreased. At every step of the algorithm, least significant connection
is eliminated by a procedure, where the lower layerweights are zeroed, in turn, and the network corresponding tominimum
approximation error is selected. In carrying out the comparison between the networks, the upper layer connection weights
are determined by linear least squares, this feature made the method efficient and robust. The results of the algorithm are
saved in a book-keeping matrix that can be interpreted in retrospect to suggest a suitable set of inputs and connectivity of
the lower part of the network. Various test examples are presented by the authors to illustrate that the proposed algorithm
is a valuable tool for the users in extracting relevant inputs from a set of potential ones.

Remark 9. This method is a systematic method that can guide the selection of both input variables and sparse connectivity
of the lower layer of connections in feed forward neural networks of multi-layer perceptron type with one layer of hidden
non-linear units and a single linear output node and the algorithm developed for the method is efficient, rapid and robust.

In article [51], the authors emphasized on solving the first order initial value problem in ordinary differential equations.
They used the cosine function as the transfer function of neural network and supposed the error function is e(x) =

f (x, ŷ(x))− ŷ′(x); and made e(x) → 0 by training neural network. Thus, the ŷ(x) approximate to y(x). The model of neural
network based on the cosine basis function is shown in Fig. 1.

Here, wn is weight vector, cn(x) =
∑N−1

n=0 cos(nx) is transfer function of the hidden layer neuron, x ∈ [0, π], weight
matrix vector is W = [w0, w1, . . . , wn−1]

T and transfer function matrix as c(x) = (c0(x), c1(x), . . . , cn−1(x))T ,N is the
number of hidden layer neurons and Neural network output is given as ;

ŷ(x) =

N−1−
n=0

ωn cos nx. (11)

They developed a neural network algorithm, by considering the initial value problems in ordinary differential equations, for
which weight is adjusted as;

wn(k + 1) = wn(k) = −µe(k)[n sin nxk + fy(x, ŷ (xk) cos nxk)]n = 0, 1, . . . ,N − 1 (12)

where µ is learning rate and 0 < µ < 1.They also described convergence criteria for neural network algorithm in terms of
the following theorem:

Theorem. Suppose that µ is the learning rate, N is the number of hidden layer neurons, L is the upper limit of ∂ f (x,y)
∂y . Then ∂ f (x,y)∂y

 ≤ L. If learning rate satisfies 0 < µ < 12
N(2N2+6L2−3N+1)

, then the algorithm is convergent.
Then, the author tested the validity of the algorithm on a plenty of examples and compare the results with the other existing

methods. They found that the algorithm is more precise, it provides a new approach on numerical computation, also it can give
results at an arbitrary x between two adjacent nodes.
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Remark 10. As per the results given in the article [51], it has been observed that the proposed algorithm is more precise
than the Euler Method, Modified Euler Method and Heun’s Method. However, compared to Runge–Kutta method of order
four, the results of calculation are less precise but method is more flexible than any other difference methods.

In [52] the authors presented the numerical solution of non-linear Schrodinger equation by feed forward neural network.
They considered the following time independent Schrodinger equation of the motion of a quantum particle in a one
dimensional system:

Ĥψ(x) ≡


−

h2

2m
∂2

∂x2
+ V (x)


ψ(x) = Eψ(x) (13)

where m and V (x) are the mass of a particle and the potential function, respectively. Ĥ, ψ(x), and E denote the system
Hamiltonian, Eigen function and the Eigen value, respectively. The identity of quantummechanical state can be represented
by the wave function ψ(x) = A(x). S(x) in the coordinate system. The authors represented the wave function by the feed
forward artificial neural network, in which the coordinate value is regarded as an input while the networks output are
assigned to two separate parts. They obtained energy function of the artificial neural network from the Schrodinger equation
and its boundary conditions and used unsupervised trainingmethod for training the network. The presentmethod is applied
to the quantum infinite squarewell and one dimensional quantumharmonic oscillator systems and the result proves itswide
applicability. The authors compared the accuracy of theirmethod by comparing the results to the results that are analytically
known and also by the Runge Kutta method of order four.

Remark 11. It has been pointed out that the method presented in [52] can solve the Schrodinger equation effectively
with small number of unknown parameters in comparison with the other conventional methods e.g. Runge Kutta, Finite
difference etc. The method can be used for dealing with the higher dimensions also.

In [53], the author proposed a hybrid method based on artificial neural networks, minimization techniques and
collocation method to determine a related approximate solution in a closed analytic form of the time independent partial
differential equations containing several arbitrary and boundary conditions of the form:

∀i1 = 1, . . . , p1 : Di1

[
t, x, . . . ,

∂α0+α1+···+αn

∂tα0∂xα11 · · · ∂xαnn
yi(t, x), . . .

]
= 0, t ∈ [t0, tmax], x ∈ Ω

∀i2 = 1, . . . , p2 : Ii2

[
t0, x, . . . ,

∂α0+α1+···+αn

∂tα0∂xα11 . . . ∂xαnn
yi(t0, x), . . .

]
= 0, x ∈ Ω, 1 ≤ i ≤ m

∀i3 = 1, . . . , p3 : Bi3

[
t, x, . . . ,

∂α0+α1+···+αn

∂tα0∂xα11 . . . ∂xαnn
yi(t, x), . . .

]
= 0, t ∈ [t0, tmax], x ∈ Ω

(14)

where the real valuedmultivariable functionsDi1 , Ii2 and Bi3 represents the known and non-linear time dependent system of
partial differential equations, initial and boundary conditions, respectively, t is the time variable, x is the real valued spatial
variable,Ω ⊆ Rn is a bounded domain, (α0, α1, . . . , αn) ∈ Nn+1

0 (N0 = N ∪{0}) is multi index variable. They establish a trial
approximate solution yT (t, x, P) = [yT1(t, x, P1), . . . , yTm(t, x, Pm)] according to Kolmogorov and Cybenko theorems [54,55]
that includes m three layered feed forward neural networks and contains adjustable parameters for the solution. The
authors also proposed a specific trial solution for the bi-harmonic problem in order to simplify the corresponding energy
function that must be minimized; they obtained mixed partial derivatives for the output of neural networks using multi
index representation. The method is illustrated on various examples that involve a direct technique of the Nelder–Meed
method [56] for optimization and the approximate solution obtained is in closed analytic form which works well for the
points inside and outside the problem domain near boundary points.

Remark 12. The method proposed by the authors in the article [53] provides the approximate solution in a closed analytic
form. Some advantages of this approach are that, it can solve the time dependent systems of partial differential equations,
the method is generalized for solving the higher order and non-linear problems, it deals with a few number of parameters,
solution is fast evaluated, themethod can be applied to initial and twopoint boundary value problem for ordinary differential
equations, and it uses parallel processing. Unlike the other methods, there is no ill conditioning of the concluded linear
system in the expansion methods or the necessity of making a special relation among the step size for different axis in the
finite difference method.

In [57], the author implemented multilayer perceptron and radial basis function neural networks methods to solve non-
linear Schrodinger equation inHydrogen atom and triangle shaped quantumwell. They considered the following differential
equation for illustrating the method:

Hψ(r) = f (r), in D
ψ(r) = 0, on ∂D (15)

where H is a differential operator, f (r) is a unknown function, D ⊂ R3 and ∂D is a boundary of Multilayer perceptron neural
network method with gradient descent backpropagation algorithm was employed to solve the above differential equation.
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The wave function was represented by the multilayer perceptron and radial basis function neural networks, in which the
coordinate values are regarded as inputs while the network output is assigned to the Eigen value function and the energy
function of the network is obtained from the differential equation and its boundary conditions with unsupervised training
method for training the network. Eigen values and function are obtained by training the network. The results obtained
by the given approach are compared with the Runge–Kutta method. This comparison shows the efficiency of the artificial
neural network method for solving the differential equation. The present method is applied to the Hydrogen atom and two
dimensional triangle shaped quantum well. The results proved wide applicability of the method and it is also shown that
the present method can solve the differential equation with smaller number of unknown parameters with the conventional
methods.

Remark 13. The proposed method provides more accurate results as compared to analytical solutions and two well known
numerical methods Runge–Kutta and Finite Element Method. Also this method can be applied to solve the differential
equations with smaller number of unknown parameters, whereas conventional methods require large number of unknown
parameters.

In article [58], Tsoulos et al. used a hybrid method utilizing constructed feed-forward neural networks by grammatical
evolution and a local optimization procedure, in order to solve ordinary differential equations, systemof ordinary differential
equations and partial differential equations. The construction of neural networkwith grammatical evolutionwas introduced
by Tsoulos et al. [59]. They utilized the well established grammatical evolution technique [60] to evolve the neural network
topology along with the network parameters. The authors applied the constructed neural network methodology on a series
of differential equation while preserving the initial or boundary conditions using penalization. Considering the differential
equation problem, a series of experiments in 19 well known problems was conducted, which shows that the proposed
method can solve all the problems. The proposed method does not require the user to enter any information regarding
the topology of the network and the advantage of using an evolutionary algorithm is that the penalty function can be
incorporated easily into the training process.

Remark 14. The main advantage of the proposed method is that it has very less execution time and does not require a
user to enter any parameter. This method can be easily parallelized, since it is based on the genetic algorithms and can
be extended by using different BNF grammars for the constructed neural networks with different topologies or different
activation functions.

Filici, in [61], presented a method of error estimation for the neural approximation of the solution of an ordinary
differential equation. The author adopted the ideas presented by Zadunaisky [62,63] in order to provide a method that can
estimate the errors in the solution of an ordinary differential equation by means of a neural network approximation. Firstly
neural approximation to the ordinary differential equation problem is computed, and then neural neighboring problem is
solved and the true error ē is estimated. A bound on the difference between the errors e and their estimations ē is derived,
which is used to provide an heuristic criterion for the validity of the error estimation under some assumptions. A set of
examples are presented by the author to show that the method can provide reasonable estimation of true errors. These
examples also show that the criterion of validity works well in assessing the performance of the method.

Remark 15. In article [61], the author presented a novel method, by which the order of magnitude of the error can be
correctly estimated in the neural approximation of solution of ordinary differential equation.

In [64], the authors attempted to present a novel method for solving fuzzy differential equations. Initially they replaced
the fuzzy differential equation with the system of ordinary differential equations and obtained a trial solution of the system
of ordinary differential equation using multilayer perceptron neural network technique. Initial condition is satisfied by the
construction of trial solution and the network is trained to satisfy the differential equations. The author compared their
result with the other existing numerical methods and showed that the use of neural network provides solution with very
good generalization and high accuracy. They illustrated their method with the help of several examples.

Remark 16. It has been pointed out that the approximated solution obtained by proposed method in [64] is very close to
the real solutions and has small errors. After solving a problem with the given approach, the solution of fuzzy differential
equation is available for each arbitrary point in the training interval.

In article [65], the authors considered optimal control problems of discrete non-linear systems. They considered an
invariant system; that is function f is independent from the time k.Moreover, the cost increment function r is also considered
as independent of the time k. Taking horizon N as infinite, they deduced a equation:

∂r
∂u

+


∂ f
∂u

T

.
∂ I
∂x

[f (x, u)] = 0. (16)

Eq. (16) is difficult to solve and analytical solutions are not usually possible to obtain, due to the non-linearity of the problem.
Thus, the author used neural networks to solve the problem. They proposed to use two coupled neural networks to solve the
Hamilton–Jacobi–Bellman equation in order to approximate nonlinear feedback optimal control solutions. Neural network
weights have been updated using a modified version of the supervised backpropagation algorithm. In order to test the
robustness of the proposed method, they consider two kinds of perturbations. The first type is obtained by variations on
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the parameters of the system and in the second type of perturbation, they considered random noises caused by the sensor
imperfections which affect the measured state variables. Simulation results are obtained, which show the performance and
robustness of the proposed approach.

Remark 17. In article [65], the authors presented a new method to use two coupled neural networks for solving optimal
control problems, whose analytical solution is not easy to obtain. The results obtained by the proposed method are highly
acceptable and is robust towards parametric variations and measurement noises.

Dua, in [66], proposed a new method for parameter estimation of ordinary differential equations, which is based upon
decomposing the problem into two sub problems. The first sub problem generates an artificial neural network model from
the given data and then the second sub problem uses the artificial neural network model to obtain an estimate of the
parameters of the original ordinary differential equationmodel. The analytical derivatives from the artificial neural network
model obtained from the first sub problem are used for obtaining the differential terms in the formulation of the second sub
problem. The author considered a problem P1 as:

ε1 = min
θ,z(t)

−
i∈I

−
j∈J

(ẑj(ti)− zj(ti))
2

(17)

subject to:

dzj(t)
dt

= fj(z(t), θ, t)j ∈ J, zj(t = 0) = zoj ∈ J, t ∈ [to, tf ]

and constructed the sub problems P2 and P3 of P1. Problem P3 involves only algebraic variable, θ , and therefore it can be
solved to global optimalitymore efficiently than the original problem P1 involving differential as well as algebraic variables,
z and θ . The author recognized that a simpler sub problem P3 is obtained by solving the first sub problem, to obtain the
artificial neural network model. The proposed approach is tested on the various example problems and encouraging results
have been obtained.

Remark 18. The author presented a very novel approach in [66] for parameter estimation using artificial neural networks.
The main advantage of the proposed method is that requirement of high computational resources is avoided for computing
the solution of a high optimization problem and instead of that two sub problems are solved. This approach is particularly
useful for large and noisy data sets and nonlinear models where artificial neural networks are known to perform well.

3. Radial Basis Function (RBF) neural network techniques to solve differential equations

In the present section, a brief description of the research articles published recently for the solution of differential
equations using radial basis functionneural networks is given. Research articles presentedhere are arranged in the ascending
order of their years of publication.

Mai-Duy and Tran-Cong [67] presented a mesh free procedure for solving linear differential equations based on
multiquadric radial basis function networks (RBFNs). They developed direct and indirect radial basis function network
procedures for solving differential equations by considering 2D Poisson equation over the domainΩ

∇
2u = p(x), x ∈ Ω (18)

where ∇
2 is the Laplacian operator, x is the spatial position, p is a known function of x and u is the unknown function of x to

be found subject to Dirichlet or Neumann boundary conditions over the boundary Γ .

u = p1(x), x ∈ Γ1

n.∇u = p2(x), x ∈ Γ2 (19)

where n is the outward unit normal vector; ∇ is the gradient operator; Γ1 and Γ2 are the boundaries of the domain such as
Γ1∪Γ2 = Γ andΓ1∩Γ2 = φ, p1 and p2 are known functions of x. They proposed that the solution u and its derivative can be
approximated in terms of basis functions. In the present method [67], the width of the RBFs is the only adjustable parameter
according to a(i) = βd(i), where d(i) is the distance from the ith center to the nearest center. This approach is demonstrated
on various numerical examples and solution obtained shows that the indirect radial basis function network (IRBFN)method
produces results of several order magnitude than those associated with the direct radial basis function network (DRBFN)
method. They compared the DRBFN method with the IRBFN and concluded that IRBFN methods are more accurate than the
DRBFN over a wide range of β and hence the choice of RBF width is less critical. Different combination of RBF centers and
collocation points are tested on both regularly and irregularly shaped domains.

Remark 19. Unlike the feed forward neural network (FFNN) method, the present procedure in [67] is non-iterative and
hence it is more efficient. The IRBFN method with the optimal β value made the method very attractive in comparison
to conventional methods such as FDM, FEM, FVM and BEM. Both regularly shaped and irregularly shaped domains can be
handled by the method.



3804 M. Kumar, N. Yadav / Computers and Mathematics with Applications 62 (2011) 3796–3811

In [68], Jianyu et al. presented a multiquadric radial basis function network for solving linear ordinary differential
equations (ODEs). The proposed method to solve differential equation relies on the whole domain and the whole boundary
instead of the data set. Initially, the authors presented a method for approximation of the function and its derivatives. The
RBFN procedure is described by the authors by considering the 2D Poisson equation as given in Eq. (17). It is proposed in the
method that the solution u and its derivatives can be approximated in terms of basis function, and the design of network
is based on the information provided by the given differential equation and its boundary conditions. Here the model u
being decomposed intom basis functions in a given family and unknown parameters, are obtained by minimizing the error
term. They considered linear and nonlinear examples of ordinary differential equations to illustrate their method. All the
parameters can be determined at the same time without a learning process.

Remark 20. The advantage of the given technique in [68] is that, it does not need sufficient data and based on the domain
and the boundary only. The result obtained through this method is more attractive than the previous method given in [68].
ODEs as well as the PDEs can be solved by the proposed method and the boundaries are not necessarily strict.

In [69], the authors presented a combination of new mesh free radial basis function network (RBFN) methods and
a domain decomposition (DD) technique for approximating functions and solving Poisson’s equation. Since the IRBFN
procedure achieves greater accuracy than DRBFN over awide range of RBFwidths for function approximation [70], therefore
the IRBFNmethod is considered in conjunction with a domain decomposition technique for approximation of functions and
solving partial differential equations particularly Poisson’s equation. They developed a new feature of the IRBFNmethod for
the approximation, so that the difficulties related to solving bigmatrices can be overcome by using a subregioning technique.
Each sub region is approximated by a separate RBFN and the network is trained independently and, if desired in parallel.
Subregioning of the domain provides an effective means of keeping the size of the system matrices down while improving
accuracy with increasing data density. Authors developed the boundary integral equations based domain decomposition
method for the estimation of boundary conditions at interfaces in solving given Poisson’s equation of potential problem.

∇
2u = b, x ∈ Ω (20)

u = ū, x ∈ δΩu (21)

q =
∂u
∂n

= q̄, x ∈ ∂Ωq (22)

where u is potential, q is the flux across the surface with unit normal, n, ū and q̄ are the known boundary conditions, b
is a known function of position and ∂Ω = ∂Ωu + ∂Ωq is the boundary of the domain Ω . In their method, the interface
boundary conditions are first estimated by using boundary integral equations (BIEs) at each iteration and sub domain
problems are then solved by using the RBFNmethod. Also the volume integrals in standard integral equation representation
(IE), which usually require volume discretization, are completely eliminated in order to present themesh free RBFNmethod.
The convergence rate of the approach can be affected by the element type used to compute BIEs.

Remark 21. The numerical examples show that the RBFN methods in conjunction with domain decomposition technique
not only achieve a reduction of memory requirement but also a high accuracy of the solution. The results obtained by the
method [69] are excellent on both rectangular and non rectangular domains. The boundary integral equation based domain
decompositionmethod is very suitable for coarse-grained parallel processing and can be extended to those problemswhose
governing equation can be expressed in terms of integral equations such as viscous flow problems.

Mai-Duy and Tran-Cong in [70] presented a numerical approach, based on radial basis function of one, two and three
variables and its derivatives. They considered the problem that a set of data points whose elements consist of paired values
of the independent variables (a vector x) and the dependent variable (a scalar y), denoted by {x(i), y(i)}ni=1,where n is the
number of input points and x = [x1, x2, . . . , xp]T , where p is the number of dimension and the superscript T denotes the
transpose operation. For which we have to find a closed form approximate function f of the dependent variable y and its
closed form approximate derivative functions. The direct radial basis function network (DRBFN) as well as indirect radial
basis function network (IRBFN) method is proposed to approximate the function and its derivative. Following are some
common type of RBFNs that are of particular interest in the study, e.g.

Multiquadrics-Φ(i)(r) = Φ(i)(||x − c(i)||) =


r2 + a(i)2 (23)

Inverse Multiquadrics-Φ(i)(r) = Φ(i)(||x − c(i)||) =
1

r2 + a(i)2
, (24)

Gaussians-Φ(i)(r) = Φ(i)(||x − c(i)||) = exp


−r2

a(i)2


, (25)

for some a(i) > 0, where a(i) is usually referred to as the width of the ith basis function and r = ||x − c(i)|| =
(x − c(i)).(x − c(i)). In the DRBFN method, the closed form approximating function is first obtained from a set of training

points and the derivative functions are then calculated directly by differentiating such closed form RBFNs. In the case
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of IRBFN, the formulation of the problem starts with the decomposition of the derivative of the function into RBF’s. The
derivative expression is then integrated to yield an expression for the original function, which is then solved via the general
least squares principlewhich gives an appropriate set of discrete points. Both the DRBFN and IRBFNmethods are able to offer
better results in comparisonwith the conventional methods using linear shape functions. The presented RBFNmethods also
eliminate the need for FE-type discretization of the domain of analysis, since the input data consist of a set of unstructured
discrete data points. The authors found that among the RBF’s considered, MQRBF offers the best performance in accuracy in
the case of both the DRBFN and IRBFN method. The results obtained are compared with the feed forward neural network
and it was found that the method is appropriate.

Remark 22. TheDRBFN aswell as the IRBFNmethod are presented by the author in [70]. The results obtained by themethod
show that IRBFN methods achieve greater accuracy than DRBFN in the approximation of both functions and its derivatives
and this superior accuracy is maintained over a wide range of RBF widths (0.2 < β > 9).

Jianyu et al. [71] in 2003 defined a neural network for solving PDE inwhich the activation function of the hidden nodes are
the RBF, whose parameters are determined by the two stage gradient descent strategy. They described differentmethods for
approximation of the function and its derivatives. The authors illustrated theirmethod by considering a 2D Poisson equation

1u = P(x), x ∈ Ω (26)

where∆ is Laplace operator, x is the spatial function, P is known function of x and u is the unknown function of x to be found
subject to the Dirichlet and Neumann boundary conditions over boundary

u = P1(x), x ∈ δΩ
n × ∇u = P2(x), x ∈ δΩ2

(27)

n is the outward unit normal, ∇ is gradient operator, δΩ1, δΩ2 is the boundary of domain such that δΩ1 ∪ δΩ2 =

δΩ and δΩ1 ∩ δΩ2 = φ and P1, P2 are known functions of x. They introduced a new incremental algorithm for growing
RBF networks and a two-stage learning strategy for training the network parameters. The novelty of the algorithm has
different aspects. First of all, all learning procedures are accomplished by a two-stage gradient method which not only
optimizes the weights of the network, but also optimizes the centers and widths of the neurons. The learning strategy is
able to save computational time and memory space because of the selective growing of nodes whose activation functions
consist of different radial basis functions. Moreover, the activation function of the added neuron can be a different radial
basis function. The results proved that the strategy is better than the algorithm whose neurons are the same RBF type.

Remark 23. In this article [71], the authors focused on how to choose the activation function and how to increase the
number of nodes as little as possible. The network here allows us to obtain fast and accurate solutions of differential
equations starting from the randomly sampled data sets. The incremental architecture allows us to achieve good
approximation results without wasting memory space and computational time.

Kansa et al. [72] proposed a finite volume analog of the meshless RBF method for the solution of system of nonlinear
time dependent partial differential equations. They employed physical domain decomposition over piecewise continuous
sub domains that are bounded by shocks, contact surfaces, or rarefaction fans. The authors converted the set of nonlinear
multidimensional partial differential equations into a set of ordinary differential equations, by a series of rotational and
translational transformations. They introduced an additional local transformation that maps these ordinary differential
equations into compatibility or eigen vector ordinary differential equations that propagate at ‘characteristic’ velocities,
thereby decoupling the compatibility ordinary differential equations. By writing the compatibility variables as a series
expansion of RBF’s with time dependent expansion coefficients, the time advanced problem is converted into a method
of lines problem. The volume integration of the RBF’s is performed in parallel by integrating over each sub domain Ωi
separately, andnormalizing the results. They tracked strong shocks, captureweak shocks using artificial viscositymethods to
dampen them and used Riemann solvers and shock polar method for shockwave interactions.When pairs of knots coincide,
they introduced a discontinuous surface at the coincidence loci.

Remark 24. In [72], the authors presented a volumetric integral RBF formulation for the time dependent partial differential
equations. Since volumetric integral formulation of time dependent conservation equations increases the convergence rates
of radial basis function approximates, therefore fewer number of knots are required to discretize the domain.

Zou et al. [73] in 2005 presented a new kind of RBF neural network method based on Fourier progression, by adopting
the trigonometric function as basis function. They used ŴB(x) to approximate a unknown function f (x)where,

Ŵ =

ŵ1, ŵ2, . . . , ŵn, ŵn+1, . . . , ŵ2n, ŵ2n+1


B(x) = [Sin x, . . . , Sin nx, Cos x, . . . , Cos nx, c]

(28)

with the Fourier progression theory that every continuous function f (x) can be expressed as follows, f (x) = c +∑
∞

n=1 an sin nx +
∑

∞

n=1 bn cos nx, and constructed a neural network which is dense for continuous function space. They
constructed a optimal weight matrix by assuming that, a function vector h : Ω → RP , for any σ > 0, there always exist a
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function array B : Rm
→ Rl and an optimal weight matrix W ∗ such that ‖h(x) − W ∗TB(x)‖ ≤ σ , ∀x ∈ Ω , where Ω is a

tight set of Rm and h(x)− W ∗TB(x) = 1h(x), W̃ = Ŵ − W ∗, where Ŵ ∈ Rl×3 is used to estimate value ofW ∗. To apply the
neural network to a practical system, a class of nonlinear systems was considered by the authors. Then it is used in a class of
high order system with all unknown control function matrices. The adaptive robust neural controller is designed by using
back stepping method and effectiveness of the method is presented by simulation study.

Remark 25. It has been pointed out that by adopting the trigonometric function as the basis function, the input need not
be force between −1 and 1, and there is no need to choose the center of basis function. Use of differential reconstruction in
the above article [73] made the selection of simulation of parameter easier, which increased the damp of the system.

In article [74], the author presented ameshlessmethod based on the radial basis function networks for solving high order
ordinary differential equations directly. Two unsymmetric RBF collocation schemes, named the usual direct approach based
on a differentiation process and the proposed indirect approach based on an integration process, are developed to solve
high order ordinary differential equations. They considered the following initial value problem governed by the following
pth order ordinary differential equation

y|p|
= F(x, y, y′, . . . , y|p−1|) (29)

with initial conditions y(a) = α1, y′(a) = α2, . . . , y|p−1|(a) = αp, where a ≤ x ≤ b, y(i)(x) =
diy(x)
dxi
, F is a known function

and {αi}
p
i=1 is a set of prescribed conditions. Like other meshless numerical methods, the direct RBF collocation approach

is based on the differential process to represent the solution. In the proposed RBF collocation approach, the closed forms
representing the dependent variable and its derivatives are obtained through the integration process. In the case of solving
high order ODEs, difficulties to deal with multiple boundary conditions are naturally overcome with integrating constants.
Analytical and numerical techniques for obtaining new basis functions from RBF’s are discussed. Among RBFs, multiquadrics
are preferred for practical use. Numerical results show that the proposed indirect approach performs much better than the
usual direct approach.

Remark 26. High convergence rates and good accuracy are obtained with the proposed method using a relatively low
number of data points. The proposed unsymmetric IRBF collocation method can be extended to the solution of high order
PDEs.

In [75], the authors presented a new indirect radial basis function collocationmethod for numerically solving bi-harmonic
boundary value problem. They considered the bi-harmonic equation:

∂4v

∂x41
+ 2

∂4v

∂x21∂x
2
2

+
∂4v

∂x42
= F (30)

in the rectangular domainΩ with F being a known function of x1 and x2, which can be reduced to a system of two coupled
Poisson’s equations

∂2v

∂x21
+
∂2v

∂x22
= u, x ∈ Ω,

∂2u
∂x21

+
∂2u
∂x22

= F , x ∈ Ω (31)

since, in the case when boundary data are {v = r(x), ∂2v/∂n2
= s(x), x ∈ ∂Ω} the use of two Poisson equations is

preferred as each equation has its own boundary condition. In this research article [75], the authors described the indirect
radial basis function networks and proposed a new technique of treating the integrating constant for bi-harmonic problems,
by eliminating integration constant point wise subject to the prescribed boundary conditions. It overcomes the problem of
increasing size of conversion matrices caused by scattered points and provides an effective way to impose the multiple
boundary conditions. Two types of boundary conditions


v, ∂

2v
∂n2
/u


and


v, ∂v

∂n


are considered. The integration constant is

excluded from the networks and employed directly to represent given boundary conditions. For each interior point, one can
form a square set of k linear equations with k being the order of PDE’s, from which the prescribed boundary conditions are
incorporated into the system via integration constants. This is advancement in the indirect radial basis function collocation
method for the case of discretizing the governing equation in a set of scattered data points.

Remark 27. The proposed new point wise treatment in article [75] overcomes the problem of increasing size of conversion
matrices, and provides an effective way to implement the multiple boundary conditions without the need to use fictitious
points inside or outside the domains or to employ first order derivatives at grid points as unknowns. This method is truly
a meshless method, which is relatively easy to implement as expression for integration constants are given explicitly and
this represents a further advancement in the case of IRBFN for the case of discretizing the governing equations on a set of
scattered data points. Numerical results presented in this article show that the method achieves a high degree of accuracy
and high rate of convergence.
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Golbabai et al. in [76] implemented the RBF neural networkmethod for solving linear integro-differential equations. They
proposed the approach by considering the following equation:

Dy(x)− λ

∫
Γ

k(x, t)y(t)dt = g(x), Γ = [a, b] (32)

with the supplementary conditions as follows:
Dy(x) = y′(x)+ A1(x)y(x),
y(α1) = γ1,

(33)
Dy(x) = y′′(x)+ A1(x)y′(x)+ A2(x)y(x),
y(α1) = γ1, y′(α2) = γ2

(34)

where D is the differential operator, λ, γ1, and γ2 are constants, α1, α2 ∈ Γ , A1, A2, g and k are known functions and y is the
unknown function to be determined. For illustrating the method they rewrite Eq. (34) in the following operator form

Dy − λKy = g, (35)

where, (Ky)(x) =

Γ
k(x, t)y(t)dt , and used the collocation method which assumes discretization of the domain into a set

of collocation data. They assumed an approximate solution yp(x) such that it satisfies the supplementary conditions and
the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is used for training the RBF network. The authors
also described an algorithm which is used in their experiment. The main attraction of their algorithm is that it starts with
a single training data and with a single hidden layer neuron, then continues the training patterns one by one and allows
the network to go. Various numerical examples are considered to demonstrate the proposed idea and method. Golbabai
et al. also described the radial basis function neural network method for solving the system of non linear integral equations
in [77].

Remark 28. The result obtained by this approach [76] proves that the RBF neural network with quasi-Newton BFGS
technique as a learning algorithm provides a high accuracy of the solution. Also the approach is quite general and appears
to be the best among approximation methods used in the literature. This method is recommended by the author for use in
solving a wide class of integral equations because of its ease of implementation and high accuracy. Moreover, the reported
accuracy can be improved further by increasing the number of training data and the number of hidden units in the RBF
network to some extent.

In [78], the authors presented a new Cartesian-grid collocation method based on radial basis function networks (RBFNs)
for numerically solving elliptic partial differential equations (PDEs) in irregular domains. The proposed method combines
the efficiency of a Cartesian-grid method and the property of high-order convergence of a 1D-integrated RBF interpolation
scheme. Poisson equations with Dirichlet boundary conditions, biharmonic equations with Dirichlet boundary conditions
and Poisson equations with Dirichlet and Neumann boundary conditions are investigated by the authors. One-dimensional
integrated RBFNs are employed to represent the variable along each line of the grid, resulting in a significant improvement of
computational efficiency. It does not require complicated interpolation techniques for the treatment of Dirichlet boundary
conditions in order to achieve a high level of accuracy.

Remark 29. The proposedmethod requiresmuch less computation effort than the 2D-IRBFNmethod. Numerical tests show
that themethod yields fast convergence, i.e. third and fifth-order accuracywith respect to grid size for the solution of second
and fourth order PDE’s.

The research article [79] introduced a variant of direct and indirect radial basis function networks for the numerical
solution of Poisson’s equation. In this method they initially described the DRBFN and IRBFN procedure described by Mai
Duy and Tran Cong in [69] for the approximation of both functions and their first and higher order derivatives. The authors
illustrated the method by considering a numerical example of a two-dimensional Poisson equation:

∇
2u = sin(πx1) sin(πx2) (36)

where, 0 ≤ x1 ≤ 1, and 0 ≤ x2 ≤ 1 with u = 0 on whole boundary points. They consider 20 points, 11 of those were
boundary points and 9 were interior points, and used multiquadric radial basis function method which Mai Duy and Tran
Cong in [67] had used. Then they computed the approximate solution by converting the Cartesian coordinate into polar:

∇
2u =

∂2u
∂r2

+
1
r
∂u
∂r

+
1
r2
∂2u
∂θ2

. (37)

They found that the approximated solution of this newmethod is better than bothDRBFNand IRBFNmethod on the Cartesian
ones. Further, they applied this method to the two-dimensional Poisson equation in the elliptical region and achieved better
accuracy in the terms of root mean square error.
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Remark 30. In the above approach [79], it has been shown that transformation of Poisson’s equation into polar coordinates
can achieve a better accuracy than the DRBFN and IRBFN methods on the Cartesian ones. Also, the accuracy of the IRBFN
method is influenced by the width parameter of the radial basis functions such that this parameter must be in the special
range and as it increases the condition number increases too, but in thismethod, variations of thewidth parameter of a basis
function do not influence the accuracy of the numerical solution. Hence the condition number is small and the obtained
system is stable.

Chen et al. in [80] proposed a method that develops a mesh free numerical method for approximating and solving PDEs,
based on the integrated radial basis function networks (IRBFNs) with adaptive residual sub sampling training scheme. An
integrated radial basis function network for approximating and solving PDEs is described initially. In this article, the authors
adopted the residual sub sampling scheme suggested in [81] to train the IRBF network. In the training process, neurons
are added and removed based on the residuals evaluated at a finer point set, and the shape parameter adjusting scheme
is modified to suit the IRBF neuron behavior which is different from the DRBF network. They simply considered the shape
parameters by multiplying the distances between two neighboring neurons with a fixed coefficient and the multiquadric
function is taken as the transfer function of the neurons. The adaptive process for determining the locations of neurons
in integrated radial basis function networks for approximating a one-dimensional function is described by the training
procedure. During the training procedure, two neuronswhose centers are end pointswhich are always kept fixed. Numerical
examples are conducted to show the effectiveness of the method.

Remark 31. Since IRBFNs are capable of smoothing the derivative errors for solving PDEs, therefore with the proposed
adaptive procedure, IRBFNs require less neurons to attain accuracy than DRBFN. Approximation based on smooth IRBFNs
is highly effective in approximating smooth functions, even if the neuron sets are relatively coarse. The adaptive method
applied for training in this article is an effective technique for dealingwith the steep and corner feature of the PDE solutions;
and the IRBF networks contribute to improve the accuracy of solving PDEs. Hence a combination of IRBF and adaptive
algorithm is a promising approach for mesh free solutions of PDEs. This method can easily be applied for solving higher
dimension problems and time dependent nonlinear equations.

4. Comparison of MLP and RBF techniques for solving differential equations

In this section, we will discuss some research articles in which comparison of MLP and RBF techniques for solving
differential equations have been presented.

Choi and Lee in [82] presented an article to give a comparison on solving differential equation using backpropagation
and radial basis function neural networks. An already developed approach for solving differential equation using neural
networks described in [43,45] is used by the authors to illustrate the Backpropagation algorithm for solving the differential
equations. They considered an example of an ordinary differential equation given in [83] and solved it using MLP and RBF
neural networks.

dψ
dx

+
1
5
ψ = e−x/5 cos(x). (38)

In order to compare the performance of reformulated RBFN and Backpropagation specified for solving the differential
equation problem, they performed some experiments using a network with a 1-2-1 and 1-5-1 structure. Each experiment
was performed 20 times and averaged with randomly selected initial parameters, weight vectors or centers with values
ranged from−1 to 1, learning from 0.01 to 0.001 andmomentum from 0.1 to 0.9. They summarized and compared the result
using four types of networks: backpropagation with sigmoid activation function, backpropagation with tangent hyperbolic
activation function, the general RBFN with exponential RBF and the reformulated RBFN with the simplified cosine RBF.

Remark 32. The authors finally concluded that the reformulated RBFN with adaptation to the gradient descent algorithm
have more generalized accuracy and alleviation of the local minima problem than the backpropagation algorithm.

In [84], the authors presented a comparative study of RBF and MLP neural networks for predicting critical heat flux.
Critical heat flux (CHF) is an important parameter for the design of nuclear reactors and much experimental and theoretical
research has been performed but there is not a single correlation to predict CHF because it is influenced bymany parameters.
Experimental data generally have a limited range of system parameters such as pressure, mass flux, etc., and also there are
more than 500 correlations available for water flow inside tubes but each correlation has a limited range of application and
accuracy over a range of databases. Hence they imposed the RBF and ANN technique to evaluate CHF using experimental
databases. The overall procedure for the CHF prediction is given in four steps: (i) prepare the input data, (ii) normalize
inputs, (iii) train the network and (iv) predict the CHF. They predicted the CHF with MLP and RBF in fixed inlet and outlet
conditions and compared the parametric trends. In the case of inlet conditions: (a) The CHF increase with increasing mass
flux, but in the constant pressure it is stronger at lower L/D. (b) The CHF decreases with increasing L/D, so RBF has a better
performance for this parameter. (c) The pressure effect is more complex than other parameters. Overall, the CHF increases
with pressure at low pressure, passes through a maximum, and then decreases at higher pressures. Whereas, in the case of
outlet conditions: (a) CHF increases with increasing mass flux (b) CHF decreases with increasing L/D (c) The CHF increases
with pressure at low pressure, passes through a maximum, and then decreases at higher pressures. They found that the
results on fixed outlet conditions with MLP shows some complexity but RBF results have a better performance.
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Remark 33. Finally they concluded from the overall study that ANN is much faster and easy to make predictions with high
accuracy and can be applied successfully to predict CHF. RBF networks give better results against the other ANN structures
likeMLP and can be used for other parameters like CHF. They also used a newmethod for input data normalization and found
that RBF predicts CHF with root mean square (RMS) errors of 0.24%, 7.9%, 0.16% and MLP predicts CHF with RMS errors of
1.29%, 8.31% and 2.71%, in fixed inlet conditions, local conditions and fixed outlet conditions, respectively. The results show
that neural networks with RBF structure have superior performance in CHF data prediction over MLP neural networks.

Theworkpresented in [85] is an attempt to resolve the crucial issueswhich arise during the solution the inverse kinematic
(IK) problems in the 6R serial robot, by proposing a fusion approach thatmakes use of RBF–ANN for prediction of joint angles
and forward kinematics relations to determine the deviation of the pose of end-effector obtained frompredicted joint angles
from the desired pose. The data required for training of ANN is proposed to be derived from the forward kinematics relations
instead of deriving a set of complex inverse kinematics equations. The scope of the author’s work is limited to computation
of inverse kinematics solutions at the various poses of the path obtained in Cartesian coordinates from the high-end path
planner. The proposed fusion approachwhichmakes use of RBF–ANN for prediction of IK solutions is implemented to obtain
the IK solutions for five poses of the path. They obtained the inverse kinematic solutions with RBF andMLP–ANN techniques
and concluded that the IK solution obtainedwith the RBF–ANN fusion process is superior to the solutions obtainedwith other
approaches. They also calculated the IK solution for RBF and MLP techniques separately and compared them.

Remark 34. In this article, the authors noticed that a large error occurs withMLP networks to the premature termination of
the network training process (approximately after training for 26 h). However, RBF network training is continued until the
convergence condition is reached. On the contrary, MLP shows a better performance when used with the proposed fusion
process. We refer to Refs. [86–90] for a detailed comparison between the MLP and RBF techniques for solving differential
equations arising in real life problems.

5. Conclusion and direction for further development

In the present paper, the computational methods based on artificial neural networks for solving differential equations
are briefly discussed and a huge amount of literature related to problems of differential equations of different types from
various fields was analyzed. This paper is devoted to the crux of various research articles published in refereed journals to
get a better view of the subject. This survey article may be an excellent reference for researchers to offer a state-of-the-art
of the most active recent developments of methods for solving differential equations with their applications and remaining
challenges in artificial neural networks.

Finally, we conclude that a large amount of work has been done in the respective field. It is well known that many
phenomena in biology, chemistry, engineering and physics can be described by various types of differential equations or
systems. When we associate an artificial neural network (ANN) technique to the phenomenon, it adds many attractive
features to the solution that is the solution obtained via ANN is differentiable, in a closed analytic form and can be used in any
subsequent calculation. Moreover, the employment of neural networks provides a solution with very good generalization
properties compared to FEM. By comparing two techniques of ANN that is MLP and RBFNN, it can also be concluded that the
RBFNN technique provides more accurate solutions to the MLP neural network and provides excellent generalization.

We are particularly interested to motivate the researchers to solve differential equations of various types arising in
science and engineering, on which a significant amount of work is currently being done in the literature dedicated to
multilayer perceptron (MLP) neural networks and radial basis function neural networks (RBFNN).
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