The Symmetry of the Modular Burnside Ring

Markus Deiml

Mathematisches Institut, Friedrich-Schiller-Universität, 07740 Jena, Germany

Communicated by Walter Feit

Received March 17, 1998

Let $b(G)$ be the Burnside ring of a finite group G and let k be a field of prime characteristic. It is the purpose of this paper to give a characterization of whether a block of $k \otimes_k b(G)$ is a symmetric k-algebra. This proves a blockwise version of a corresponding result about $k \otimes_k b(G)$ by W. Gustafson (1977, Comm. Algebra 5, 1–15).

1. INTRODUCTION

Let G be a finite group and let $b(G)$ be the Burnside ring of G, i.e., the Grothendieck ring of the category of finite G-sets where addition and multiplication are given by direct sums and cartesian products (see [1, Sect. 80] for an introduction to Burnside rings). For any commutative ring k we set $B_k(G) := k \otimes_k b(G)$. If k is a field of characteristic 0 then $B_k(G)$ is a semi-simple split k-algebra and therefore isomorphic to a direct product of copies of k which was first proved by Solomon [5]. This is no longer true in general for a field k of characteristic $p \neq 0$. In this case it follows from results of Dress [3] that $B_k(G)$ has a block decomposition which is parametrized by the conjugacy classes of p-perfect subgroups of G (see Section 2 for an exact description of this).

For any p-perfect subgroup H of G let B_H denote the corresponding block of $B_k(G)$. We look at the question of whether B_H is a symmetric k-algebra. In general a k-algebra A is called symmetric if there exists a k-linear map $\lambda: A \rightarrow k$ with the following properties:

(i) $\lambda(ab) = \lambda(ba)$ for any $a, b \in A$.

(ii) $I \not\subseteq \text{Ker} \lambda$ for any nontrivial ideal I in A.

397

0021-8693/00 $35.00

Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.
Theorem 1. Let G be a finite group, let k be a field of characteristic p, and let H be a p-perfect subgroup of G. Then the block B_H of $B_k(G)$ corresponding to H is a symmetric k-algebra if and only if $|N_G(H) : H|$ is not divisible by p^2.

As an immediate consequence we have

Corollary 2 (Gustafson [4]). For any finite group G and any field k of characteristic p the k-algebra $B_k(G)$ is symmetric if and only if $|G|$ is not divisible by p^2.

2. THE MODULAR BURNSIDE RING

For any subgroup H of G let G/H be the set of left cosets of G with respect to H which becomes a G-set by left multiplication. We use the symbols \sim and \leq for conjugation and subconjugation in G. Let us choose a transversal \mathcal{S} of the conjugacy classes of subgroups of G. Then $b(G)$ is free as a \mathbb{Z}-module with basis $[G/H] (H \in \mathcal{S})$ where $[X]$ denotes the isomorphism class of a G-set X. The species of $b(G)$, i.e., the nontrivial ring homomorphisms $b(G) \to \mathbb{Z}$, play an important role within the treatment of Burnside rings. Any species of $b(G)$ is of the form $\phi_H': b(G) \to \mathbb{Z}, [X] \to |X^H|$ for a subgroup H of G; here X^H denotes the set of H-fixed points of X. These maps are called mark homomorphisms and for subgroups H, I of G we have $\phi_H = \phi_I$ if and only if $H \sim I$. Moreover, the product

$$\phi := \prod_{H \in \mathcal{S}} \phi_H: b(G) \to \mathbb{Z}^{[\mathcal{S}]}$$

is known to be a ring monomorphism.

Let \mathcal{O} be a Dedekind ring with quotient field K of characteristic 0, let p be a prime, let \mathfrak{p} be a maximal ideal in \mathcal{O} with $p \in \mathfrak{p}$, and let $k := \mathcal{O}/\mathfrak{p}$ be the corresponding residue field of characteristic p. Any species of ϕ_H of $b(G)$ clearly induces maps $B_{\mathcal{O}}(G) \to \mathcal{O}$ and $B_k(G) \to K$, which we also denote by ϕ_H. The above product map then becomes an isomorphism $\phi: B_k(G) \to K^{[\mathcal{S}]}$ of K-algebras. As a consequence we get the primitive idempotents e_H ($H \in \mathcal{S}$) of $B_k(G)$ as the preimages of the canonical primitive idempotents of $K^{[\mathcal{S}]}$; i.e., e_H is characterized by $\phi_H(e_H) = \delta_H$ for for $I \in \mathcal{S}$ where δ_H is the Kronecker delta.

The species of $B_k(G)$ are obtained as reductions $\bar{\phi}_H$ of the maps $\phi_H: B_{\mathcal{O}}(G) \to \mathcal{O}$ modulo \mathfrak{p}. Similarly we write \bar{x} for the reduction of an element $x \in B_{\mathcal{O}}(G)$ modulo \mathfrak{p}. For any subgroup H of G let $O^\mathfrak{p}(H)$
denote the (unique) smallest normal subgroup N of H such that H/N is a p-group. We call H p-perfect if $O^p(H) = H$. Let \mathcal{P} be a transversal of the conjugacy classes of p-perfect subgroups of G. For each $H \in \mathcal{P}$ we set $\mathcal{H}_H = \{I \in \mathcal{P} : O^p(I) \sim H\}$. We choose a preimage S_H of a Sylow p-subgroup of $N_G(H)/H$ which is unique up to conjugation in G, and we assume $S_H \in \mathcal{H}_H$. Indeed S_H is the greatest element in \mathcal{H}_H with respect to subconjugation.

Lemma 3 (Dress [3], Yoshida [6]). (i) For subgroups H, I of G we have $
abla = \Delta$ iff $O^p(H) \sim O^p(I)$.

(ii) For any $H \in \mathcal{P}$ let $f_H := \sum_{I \in \mathcal{H}_H} e_I$. Then the primitive idempotents of $B_k(G)$ are given by f_H ($H \in \mathcal{P}$); in particular we have $\dim_k B_H = |\mathcal{H}_H|$.

Of course any primitive idempotent of $B_k(G)$ is a block idempotent since $B_k(G)$ is commutative. Thus the sum $1 = \sum_{H \in \mathcal{P}} f_H$ gives rise to the block decomposition $B_k(G) = \bigoplus_{H \in \mathcal{P}} B_H$ where B_H denotes the block $B_k(G)_{/H}$ for $H \in \mathcal{P}$.

Every G-set X can be considered as an H-set for any subgroup H of G by restriction of the operation. This induces a restriction map $\text{Res}^G_H : b(G) \rightarrow b(H)$, which clearly is a ring homomorphism.

In the following lemma we state some elementary properties of idempotents without proof:

Lemma 4. Suppose $H \in \mathcal{P}$ and $I \leq G$.

(i) For $x \in B_k(G)$ we have $x \cdot e_I = \phi_H(x) e_H$.

(ii) If $[G/I] e_I \neq 0$ then $H \leq I$.

(iii) If $H \leq I$ then

$$\text{Res}^G_H (\overline{f_H}) = \sum_{L \in \mathcal{P}(I)} \overline{f_{L/L}},$$

where $\mathcal{P}(I)$ is a transversal of p-perfect subgroups of I and $\overline{f_{L/L}}$ denotes the primitive idempotent of $B_k(I)$ corresponding to L.

For the rest of this section fix a p-perfect subgroup H of G. Since the multiplication in $b(G)$ is explicitly given by

$$[G/I] \cdot [G/L] = \sum_{g \in L \cap G/L} [G/I \cap gLg^{-1}].$$

for $I, L \leq G$ it is not difficult to see that

$$b'(G, H) := \bigoplus_{I \in \mathcal{P}} \mathbb{Z}[G/I]$$

for $H \leq I$.
is an ideal in \(b(G) \). We also define
\[B'_K(G, H) := K \otimes_{\mathbb{Z}} b'(G, H) \]
and
\[B'_K(G, H) := k \otimes_{\mathbb{Z}} b'(G, H). \]

Lemma 5.
(i) For \(I \in \mathcal{I}_H \) we have \([G/I] \equiv [G/I]_{\mathcal{F}_H}^{\mathcal{F}_H} (mod B'_K(G, H)). \)
(ii) The elements \([G/I]_{\mathcal{F}_H}^{\mathcal{F}_H} (I \in \mathcal{I}_H) \) form a \(k \)-basis of \(B_H \).
(iii) Suppose \(H := O^p(G) \). Then the \(k \)-linear map \(\alpha: B'_K(G/H) \to B'_K(G/H)_H \) defined by \([(G/H)/(I/H)] \to [G/I]_{\mathcal{F}_H}^{\mathcal{F}_H} \) is an isomorphism of \(k \)-algebras.

Proof.
(i) For \(I \in \mathcal{I}_H \) we have
\[
[G/I] = [G/I] \cdot 1 = [G/I] \sum_{H' \in \mathcal{I}_H} \bar{f}_{H'} = \sum_{H' \in \mathcal{I}_H} [G/I]_{\mathcal{F}_H}^{\mathcal{F}_H}.
\]
In the case \(H' \not\leq I \) we have \(L \not\leq I \) for any \(L \in \mathcal{I}_H \) and therefore by Lemma 4(ii)
\[
[G/I]_{\mathcal{F}_H}^{\mathcal{F}_H} = \sum_{L \in \mathcal{I}_H} [G/I]_{\mathcal{F}_H}^{\mathcal{F}_H} \cdot e_L = 0.
\]
It follows that \([G/I]_{\mathcal{F}_H}^{\mathcal{F}_H} = 0 \) and
\[
[G/I] = \sum_{H' \in \mathcal{I}_H} [G/I]_{\mathcal{F}_H}^{\mathcal{F}_H},
\]
Now let \(H' \in \mathcal{I} \setminus \{H\} \) and \(H' \not\leq I \). Then \(H' = O^p(H') \not\leq O^p(I) \sim H \), so for any \(L \in \mathcal{I}_H \) we have \(H \not\leq L \) since otherwise we would have \(H' \leq H = O^p(H) \not\leq O^p(L) = H' \) and \(H' \sim H \). Hence
\[
[G/I]_{\mathcal{F}_H}^{\mathcal{F}_H} = \sum_{L \in \mathcal{I}_H} [G/I]_{\mathcal{F}_H}^{\mathcal{F}_H} \cdot e_L = \sum_{L \in \mathcal{I}_H} \phi_L([G/I])_{\mathcal{F}_H}^{\mathcal{F}_H}
\]
\[\in \sum_{L \in \mathcal{I}_H} \left(\sum_{L' \leq L} K[G/L'] \right) \subseteq B'_K(G, H) \]
and \([G/I]_{\mathcal{F}_H}^{\mathcal{F}_H} \subseteq B'_K(G, H) \). Finally we have
\[
[G/I] = [G/I]_{\mathcal{F}_H}^{\mathcal{F}_H} \quad (mod B'_K(G, H)).
\]
(ii) By (i) the elements \([G/I]_{\mathcal{F}_H}^{\mathcal{F}_H} + B'_K(G, H) (I \in \mathcal{I}_H) \) are linearly independent in \(B'_K(G/H) \). Thus \([G/I]_{\mathcal{F}_H}^{\mathcal{F}_H} (I \in \mathcal{I}_H) \) are linearly independent in \(B_H \) and a \(k \)-basis in \(B_H \) since \(|\mathcal{I}_H| = \dim_k B_H \).
(iii) Clearly \(\alpha \) is a homomorphism of \(k \)-algebras. By (ii) \(\alpha \) is surjective and thus an isomorphism since \(\dim_k B'_K(G/H) = |\mathcal{I}_H| = \dim_k B_H \).
Proposition 6. The Jacobson radical of B_H is

$$JB_H = \bigoplus_{I \in \mathcal{I}_H \setminus \{S_H\}} k[G/I]_{H}.$$

Proof. For any $I \in \mathcal{I}_H \setminus \{S_H\}$ and $L \leq G$ we have

$$[G/I]_{H} \cdot [G/L]_{H} = \sum_{l \in L \cap G/L} [G/I \cap gLg^{-1}]_{H},$$

In the case $H \leq I \cap gLg^{-1}$ we have $[G/I \cap gLg^{-1}]_{H} = 0$ as in the proof of Lemma 5(i). Hence

$$[G/I]_{H} \cdot [G/L]_{H} \in \bigoplus_{M \in \mathcal{I}_H \setminus \{S_H\}} \bigoplus_{M \leq l} k[G/M]_{H}$$

showing that $J := \bigoplus_{I \in \mathcal{I}_H \setminus \{S_H\}} k[G/I]_{H}$ is an ideal in B_H. Since the elements $[G/I]_{H} (I \in \mathcal{I}_H)$ are linearly independent J has codimension 1 and thus is the Jacobson radical of the local k-algebra B_H.

Finally let us consider G-stable elements. Suppose S is a subgroup of G and $g \in G$. An element $x \in B_k(S)$ is called g-stable if

$$\text{Res}^S_{S \cap gS^{-1}}(x) = \text{Res}^S_{S \cap gS^{-1}}(gx),$$

where gx is defined by $^g[S/I] = [gSg^{-1}/gIg^{-1}]$ for $I \leq S$. The element x is called G-stable if x is g-stable for any $g \in G$. By $B_k(S)^G$ we denote the set of G-stable elements of $B_k(S)$. Now we can formulate the following transfer theorem:

Proposition 7 (Yoshida). (i) The map

$$B_k(G)_{H} \rightarrow B_k(S_H)^{G}_{S_H,H}, \quad x \mapsto \text{Res}^G_{S_H}(x)$$

is an isomorphism of k-algebras.

(ii) $B_k(S_H)^{G}_{S_H,H} = B_k(S_H)^{N_G(H)}_{S_H,H}$.

Proof. See [7, Lemma 4.1, Corollary 4.2].

3. **Socle Elements**

By Soc A we denote the socle of an algebra A.

Lemma 8. (i) $[G/H]_{H} \in \text{Soc} B_H$.

(ii) Let S be a p-group and $V < U < S$. Then the number of subgroups I of S with $UI = S$ and $U \cap I = V$ is divisible by p.

(iii) Let S be a p-group of order p' and let $i \in \{1, \ldots, r - 1\}$. Assume that all subgroups of order p' are normal in S. Then

$$s_i := \sum_{I \leq S} [S/I] \in \text{Soc } B_k(S).$$

Proof. (i) For $I \in \mathcal{S}_H$ the following holds:

$$[G/H]_{I_H} \cdot [G/I]_{I_H} = \sum_{Hg \in H \setminus G/I} [G/H \cap gl^{-1}]_{I_H}.$$

In the case $H \leq gl^{-1}$ we have $[G/H \cap gl^{-1}]_{I_H} = [G/H]_{I_H}$; otherwise we have $H \cap gl^{-1} < H$ and $[G/H \cap gl^{-1}]_{I_H} = 0$ by Lemma 4(ii). This implies that $k[G/H]_{I_H}$ is a one-dimensional ideal in B_H and therefore $k[G/H]_{I_H} \subseteq \text{Soc } B_H$.

(ii) This is an easy exercise. A proof which is based on a generalization of Sylow’s theorem can be found in [2].

(iii) It suffices to show that $J B_k(S)$ is annihilated by s_i. By Proposition 6 we have $J B_k(S) = \sum_{L \leq S} k[L]$. Let $L \leq S$ and let I be a subgroup of S of order p'. Because I is normal in S the following holds:

$$[S/L] \cdot [S/I] = \sum_{Ls \in L \setminus S/I} [S/L \cap sIs^{-1}] = \sum_{Li \in L \setminus S} [S/L \cap I]$$

$$= |S:LI|[S/L \cap I] = \begin{cases} [S/L \cap I], & \text{if } LI = S, \\ 0, & \text{if } LI < S. \end{cases}$$

Thus we have

$$[S/L] \cdot s_i = \sum_{I \leq S, |I| = p'} [S/L \cap I] = 0$$

by (ii) and therefore $J B_k(S) \cdot s_i = 0$. \(\square\)

The proof of Theorem 1 is based on the following easy lemma:

Lemma 9. Suppose A is a finite-dimensional commutative k-algebra and $\dim_k A/IA = 1$. Then A is symmetric iff the socle $\text{Soc } A$ of A is one-dimensional.

Proof. If A is symmetric we have $A/IA \cong \text{Soc } A$ (for example, see [1, Proposition 9.12]).

On the other hand let $\dim_k \text{Soc } A = 1$. We choose a k-basis b_1, \ldots, b_n of A such that $\text{Soc } A = k \cdot b_1$, and we define the linear map

$$\lambda: A \rightarrow k, \quad \sum_{i=1}^n \alpha_i b_i \mapsto \alpha_1.$$
Since any nontrivial ideal \(I \) in \(A \) contains a simple \(A \)-module \(S \) and \(\text{Soc} \ A \) is one-dimensional we have \(S = \text{Soc} \ A \not\subseteq \text{Ker} \lambda \) and therefore \(I \not\subseteq \text{Ker} \lambda \), so \(A \) together with \(\lambda \) is a symmetric \(k \)-algebra.

4. PROOF OF THEOREM 1

We are now ready to prove our main result.

Proof of Theorem 1. In the case \(p^2 \nmid |S_H : H| \) we have \(\mathcal{S}_H = \{ H \} \) or \(\mathcal{S}_H = \{ S_H, H \} \); hence \(\dim_k B_H \leq 2 \). Thus \(B_H \) is either semi-simple and therefore symmetric or \(\dim_k \text{Soc} \ B_H = 1 \) and by Lemma 9 \(B_H \) is symmetric, too.

Now let \(p^2 | |S_H : H| \). We consider the block \(B_{S_H, H} := B_H(S_H) \) of \(B_{S_H, H} \). By Proposition 7(i) \(B_H \) is isomorphic to the set \(B_{S_H, H}^G \) of \(G \)-stable elements of \(B_{S_H, H} \) as a \(k \)-algebra. By Lemma 9 it suffices to show that \(\dim_k \text{Soc} \ B_{S_H, H}^G \geq 2 \).

By Lemma 8(i) we have an element \(x := [S_H/H] \) of \(\text{Soc} \ B_{S_H, H} \). Here we describe how we get another socle element of \(B_{S_H, H} \): By Lemma 5(ii) there is an isomorphism \(B_{S_H, H}^G \to B_{S_H, H}^G \) given by \([S_H/H] \to [S_H/H] \). Applying Lemma 8(ii) to the \(p \)-group \(S_H \) we get an element

\[
\sum_{H \leq I \leq S_H \atop |S_H : I| = p} [(S_H/H)/(1/H)] \in \text{Soc} B_h(S/H)
\]

and therefore an element

\[
y := \sum_{H \leq I \leq S_H \atop |S_H : I| = p} [S_H/I] \in \text{Soc} B_{S_H, H}.
\]

By Lemma 5(ii) \(x \) and \(y \) are linear independent, so it remains to show that both elements are \(G \)-stable, in which case we would have

\[
x, y \in (\text{Soc} B_{S_H, H}) \cap B_{S_H, H}^G \subseteq \text{Soc} B_{S_H, H}^G
\]

and \(\dim_k \text{Soc} B_{S_H, H}^G \geq 2 \).

By Proposition 7(ii) it is enough to show that \(x \) and \(y \) are \(g \)-stable for \(g \in N_G(H) \). We fix \(g \in N_G(H) \) and set \(D := S_H \cap gS_Hg^{-1} \). By Lemma 5(iii) we have

\[
\text{Res}_H^G(\overline{f_{S_H, H}}) = \sum_{L \in \mathcal{P}(D) \atop L \sim_s S_H} \overline{f_{D, L}} = \overline{f_{D, H}}
\]
and similarly
\[\text{Res}_{D}^{g_{H}g^{-1}}(\overline{f_{S_{H},H}}) = \overline{f_{D,H}}. \]
Therefore
\[
\text{Res}_{D}^{g_{H}g^{-1}}(x) = \text{Res}_{D}^{g_{H}g^{-1}}([S_{H}/H]) \cdot \text{Res}_{D}^{g_{H}g^{-1}}(\overline{f_{S_{H},H}})
= \sum_{D \subseteq H \subseteq S_{H}} [D/D \cap sHs^{-1}]\overline{f_{D,H}}
= \sum_{D \subseteq H \subseteq S_{H}} [D/D \cap H]\overline{f_{D,H}}
= |S_{H} : D|[D/H]\overline{f_{D,H}}
\]
and
\[
\text{Res}_{D}^{g_{H}g^{-1}}(x) = |S_{H} : D|[D/H]\overline{f_{D,H}}
\]
Since
\[
p \nmid |S_{H} : D| \iff D = S_{H} \iff S_{H} = gS_{H}g^{-1} \iff D = gS_{H}g^{-1} \iff p \nmid |gS_{H}g^{-1} : D|,
\]
in this case we get
\[
\text{Res}_{D}^{g_{H}g^{-1}}(x) = [D/H]\overline{f_{D,H}} = \text{Res}_{D}^{g_{H}g^{-1}}(\overline{x}),
\]
and otherwise
\[
\text{Res}_{D}^{g_{H}g^{-1}}(x) = 0 = \text{Res}_{D}^{g_{H}g^{-1}}(\overline{x}).
\]
Thus we have proved that \(x \) is \(g \)-stable.

As for \(y \) we have
\[
\text{Res}_{D}^{g_{H}g^{-1}}(y) = \sum_{H \leq I \leq S_{H}} \sum_{|S_{H} : I| = p} \text{Res}_{D}^{g_{H}g^{-1}}([S_{H}/I])\overline{f_{D,H}}
= \sum_{H \leq I \leq S_{H}} \sum_{D \subseteq I \subseteq S_{H} : |S_{H} : I| = p} [D/D \cap sIs^{-1}]\overline{f_{D,H}}
= \sum_{H \leq I \leq S_{H}} |S_{H} : D|[D/D \cap I]\overline{f_{D,H}}
= \sum_{H \leq I \leq S_{H}} [D/D \cap I]\overline{f_{D,H}}
\]
since any maximal subgroup I of S_H is normal and

$$p \nmid |S_H : DI| \iff DI = S_H \iff D \leq I.$$

Now Lemma 8(ii) shows that $\text{Res}^{S_H}_H(y) = 0$ and by an analogous argument we also have $\text{Res}^{S_H}_{H_g}((y)) = 0$, so y is a g-stable element.

Acknowledgments

The results presented in this paper are part of my Ph.D. thesis accepted by the Friedrich-Schiller-Universität, Jena, Germany. I am indebted to B. Kulshammer, who was my teacher for many years and who introduced me to the representation theory of finite groups.

References