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1. INTRODUCTON

Let R be a commutative noetherian ring of dimension d, let 4 denote the
polynomial ring R[ X/, .., X,,], and let P be a finitely generated projective
A-module. H. Bass [B2, Question (XIV),] has asked the following
question.

Question (Bass). Is every projective A-module P of rank >d+ 1 can-
cellative?

R. Swan has shown that when P is stably extended from R then P is can-
cellative [Sw, Theorem 1.1]. B. Plumstead has given an affirmative answer
to the question when n=1 [P, Theorem 1]. Moreover he conjectured the
affirmative answer to the question for arbitrary n. We gave an affirmative
answer to the question (for arbitrary n) when dim R=1 or dim R=2 and
R normal [BR, Corollary 4.9].

In this paper we generalize this result in two directions. First we prove
that when dim R =2 the question has an affirmative answer (Theorem 3.1)
and thus remove the normality assumption when dim R= 2. In Section 4
we assume that R is normal and give an affirmative answer to the question
for arbitrary J (dimension of R) but restrict the number of variables to two
(ie, n=2) (Theorem 4.1).

2. PRELIMINARIES

Throughout this paper all rings will be commutative noetherian and all
modules will be finitely generated.
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In this section we collect some definitions and results for later use; R will
denote a commutative noetherian ring.

(2.1) Given a projective R-module P and an element pe P we define
Op(p)={¥(p)Yy eHomg(P, R)}. We say that p is wunimodular if
Op(p)=R

(22) A projective R-module P is said to be cancellative if PO R~
Q@ R implies P~ Q.

(2.3) Given a projective R-module P of constant rank r we denote
A’(P) by det(P). Let o be an endomorphism of P. Then det(s) will denote
A's. Note that det(s) e End z(det(P)) = R. The group of automorphisms ¢
of P with det(o) =1 will be denoted by SL(P). Given an ideal K of R, the
kernal of the canonical map SL(P)— SL(P/KP) will be denoted by
SL(P, K).

(24) Let P be a projective module over R[ X, ..., X, ]. Let J(R, P) be
the set of those elements a of R such that P, is extended from R,. Then
using ideas in the proof of Theorem 1 of [Q] it can be proved that J(R, P)
is an ideal of R and J(R, P)=./J(R, P). Moreover by the Quillen-Suslin
theorem ht J(R, P) = 1. We refer to J(R, P) as the Quillen ideal of P in R.

(2.5) Given R-modules M and N we write End (M @ N) in the matrix
form as

EndR(MG-)N)=[ End (M) Hom x(M, N)]

Hom 4(N, M) End ,(N)

We conclude this section by quoting a result (only for projective
modules) of Eisenbud and Evans as stated in [P, Sect. 1].

(2.6) EiseNBUD-EvaNS THEOREM. Let P be a projective R-module. Let S
be a subset of Spec(R) and d: S — N be generalized dimension function such
that rank P> 1+d(p) for all pe S. Let (p, a)e P® A be unimodular. Then
there exists g€ P such that Op(p+ aq) is not contained in any member p
of S.

3. CANCELLATION OF PROJECTIVE MODULES
OVER POLYNOMIAL EXTENSIONS OF Two-DIMENSIONAL RINGS
In this section we prove the following theorem.

THEOREM 3.1. Let R be a ring of dimension two. Then every projective
R[X,, .., X, J-module of rank >3 is cancellative.
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For the proof of this theorem we shall need some lemmas and the follow-
ing result which is implicit in the proof of Theorem 4.8 of [BR].

THEOREM 3.2. Let R be a ring of dimension d. Let P and Q be projective
modules of rank =d+ 1 over R[X,, .., X,,] such that PO R[X,, .., X,]~
O®R[X,, .., X,] Assume that the Quillen ideal J(R, P) be such that
dim R/J(R, P)=0. Then P~ Q. Moreover if rank P>max(d+1,3) then
any isomorphism ¢’ : P~ Q can be lifted to an isomorphism o: P> Q, where
the bar means “mod(X,, ..., X,,).”

LEMMA 3.3. Let B be a ring and K be a nilpotent ideal of B. Let P be a
projective B[ X, ..., X,,]-module of constant rank. Assume that P contains a
unimodular element. Then the canonical map SL(P,(X,,..,X,))—
SL(P/KP, (X, ..., X,))) is surjective.

Proof. Let 1’ be an element of SL(P/KP, (X, ..., X,,)). We show that ¢’
can be lifted to an automorphism 7 of P such that =17, mod(X,, .., X,)
and det(z)=1.

Let L=KB[X,, .., X,]n(X,, .., X,). Then we have the Cartesian square
of rings

B[X,, .. X,JJL—/> B[X, .., X, 1J/(X,, ... X,)

| |

B/K[X,, .. X,]— B/K[X,, .. X, V(X\, . X.).

Since all the maps are surjective and t' € SL(P/KP, (X, .., X,)), T’ and
the identity automorphism 7p,y, . x,r can be patched together to get an
element t” of SL(P/LP).

Since L is a nilpotent ideal of B[X|, .., X,,] and P has a unimodular
element, the canonical map SL(P)— SL(P/LP) is surjective. Let 1€ SL(P)
be a preimage of t” in SL(P). Then by the construction of z” it follows that
7 is a lift of " and 1€ SL(P, (X}, .., X,,)).

LeEmMMmA 3.4. Let B be a ring and P be a projective B[ X, ..., X,,]-module
of rank =3. Let K be an ideal of B such that P/KP is a free
B/K[X,, .., X, ]-module of rank r (=3) and let o’ be an automorphism of
P/KP which belongs to E,(B/K[X,, .., X,]), when considered as a matrix
with respect to a basis of P/KP. Assume that ¢' =1, mod (X4, .., X,).
Then o' can be lifted to an automorphism o of P such that
o=Ip,mod(X,, .., X,)

Proof. It is easy to see that ¢’ (as a matrix} is a product of the matrices
of the type B'e, (Yf)p ~', where p’'eE,(B/K), feB/K[X,, .., X,], and
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Y=X, for some X, By [BR, Corollary4.2], p’' and e (Yf) (as
automorphisms of P/KP) can be lifted to automorphisms § and « of P.
Moreover, by looking at the proof of Proposition4.1 of [BR] more
carefully, it follows that a can be chosen that a=17,mod(Y) and hence
a=I,mod(X,, .., X,,). Obviously Baf ' is an automorphism of P such
that (1) paf~" is a lift of f'e,(Yf) '~ " and (2) Pap ' =1, mod(X, .., X,).

Hence ¢’ can be lifted to an automorphism ¢ of P such that
a=1Ip,mod(X,, .., X,).

LEMMA 3.5. Let R R, be a finite extension of reduced rings. Assume
that the canonical map Spec(R,) — Spec(R) is bijective and for every prime
ideal p of R, the inclusion map R/p " Rs R, /p is birational. Let C be the
conductor ideal of R in R,. Then there exists a ring S enjoying the properties

(1) RsSsR,,

(2) (R/C)red = (S/C)red ’
(3) ht C<ht C,, where C, denotes the conductor ideal of S in R,.

Proof. Let K=radical of C in R,. Then by the hypothesis R/Rn K
(=(R/C)ea) s Ry/K (=(R,/C)req) is a finite extension of reduced rings
such that Q(R/Rn K)= Q(R,/K), where for any reduced noetherian ring
B, Q(B) denotes the total quotient ring of B.

If R/ RN K=R,/K then taking S= R, we are through. So assume that
R/Rn K is a proper subring of R,/K. Since R,/K is a finite extension of
R/R n K having the same total quotient ring, we have ht C' > 1, where '
denotes the conductor ideal of R/ RN K in R, /K.

Let S=R+ K. Then obviously R S R,. Now K = the radical ideal of
C in S. Therefore (S/C)a=S/K=R/RNK=(R/C),q- Let C, be the
conductor ideal of S in R,. Then obviously K= C, and C'=C,/K. Since
ht C'>1 we have ht C<ht C,.

LEMMA 3.6. Let Rs S be a finite extension of reduced rings of dimension
2 such that Q(R) = Q(S) and (R/C)eq = (S/C)reqa, where C is the conductor
ideal of R in S. Let A denote R[ X, .., X,). Let P and Q be A-projective
modules of (constant) rank =3 such that PO A~ Q® A. Assume that
ht J(S, S®z P)=2. Let ¢': P~ Q be an isomorphism (where the bar means
“mod(X,, .., X,,)"). Then there exist isomorphisms ¢,:SQ®,P3S® 0,
0,: RIC®r P33 RIC® g Q such that

(1) 6,=15@%0,
(2) d=1pc®¢ c,
3) 1503 ®ric02= 1(5/0)s®s 04
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Proof. Since ht J(S, S® r P)=2 and dim S=2, by Theorem 3.2 there
exists an isomorphism o,: S®; P S®,Q of projective S[X,, .., X, ]-
modules such that 6, =1;®z 0.

Since Q(R)=Q(S) we have htC>=1 and therefore dim R/C<1.
Therefore by Theorem 3.2 and (24) there exists an isomorphism
G,: RIC®g P R/IC® Q of projective R/C[ X, ..., X,,]-modules such that
6,=1pc®r0"

Let  6=(1(50)a®ric 65 N(s0)a®s01)- Then 0=, RrP
mod(X,, ..., X,). Therefore 8 SL((S/C),.a®r P, (X, ..., X,,)).

Since (R/C)eq=(S/C),eq and by [BR, Theorem] P has a unimodular
clement, by Lemma3.3, 6 can be lifted to an element § of
SL(R/C®y P, (X,, .., X,)). Now we are through if we put g,=6,0.

Lemma 3.7. Let B be a reduced ring and let P be a projective
B[ X,, .., X,]-module of (constant) rank r >3 such that det(P) is
extended from B. Let L be an ideal of B such that dim B/L=1. Let s be an
element of B such that P, is free and ht(L+sB)>ht(L). Let
0'e SL(P/LP, (X,, .., X)) be such that 0'=1p,, » mod(\/Z/L). Then 0’ can
be lifted to an element 6 of SL(P, (X,, .., X,))).

Proof. We first note that by [BR, Theorem 3.1], P/LP=det(P/LP)® F,
where F is a free B/L[X,, .., X,]-module. Moreover, since det(P) is
extended from B, det(P/LP) is extended from B/L.

Let T=14sB. If TnL+# ¢ then P, is free implies P/LP is free. There-
fore, since 6'=1,;,p mod(ﬁ/L) and det®' =1, ' E(B/L[X,, ... X,,])
when considered as a matrix with respect to some basis of P/LP. Therefore,
since B is reduced, by Lemma 3.4, 0’ can be lifted to an element 6 of
SL(P, (X4, .., X,)).

Now we assume that TnL=(. Then (B/L); is a semilocal ring
and hence (P/LP); is a free module over (B/L);[X,, .., X,]. Therefore
as before, by Lemma 3.4, 67 can be lifted to an element 6, of
SL{(Pr, (X, ... X,)).

Since P, is free, by Lemma 3.4, 0, can be lifted to an element 8, of
SL(P,, (X, ..., X,,)).

Let 7= (6,"')0,),. Then 7 is an automorphism of free B, [X,, .., X, ]-
module P ; such that (1) =17, mod(X,, .., X,) and (2) t=1,,mod (L,;).
But then by [P, Lemma 2 of Sect. 2], t=(J,){5;!),, where &, (resp. &,)
is an element of SL(P, (X,---X,)nLB/J[X,,.,X,]) (resp.
SL(P,, (X,, ..., X,)nLB[X,, .., X,])). Therefore 6, 6, and 8, §, patch up
together to give an element 6 of SL(P, (X,, .., X)) which is a lift of ¢".

Proof of Theorem 3.1. Let A denote R[ X, .., X, ]. In what follows the
bar will denote “modulo(X, ..., X,).”



CANCELLATION THEOREMS 171

Let P and Q be projective 4-modules of rank >3 such that PO A~
Q@A Then PO A~Q® A. Since A= R and dim R =2, by the Bass can-
cellation theorem [B1, Corollary 3.5, p. 184], P~ Q. Let ¢': P Q be an
isomorphism. We shall show that ¢’ can be lifted to an isomorphism
o PxQ.

Without loss of generality we can assume that R is reduced and P is of
constant rank r (=3). If ht J(R, P) > 2 then we can appeal to Theorem 3.2.
So we assume that ht J(R, P) < 1. Therefore by (2.4), ht J(R, P)=1.

Since P®A~Q®P®A we have det(P)x~det(Q). Therefore the
isomorphism A'¢’: det(P)3det{Q) can be lifted to an isomorphism
Y det(P) 3 det(Q).

Let Q(R) denote the total quotient ring of R. Then there exists a ring R’
such that (1) RgR'c Q(R), (2) R’ is a finite R-module, and (3) the
projective R'[ X, ..., X,,]-module R’ ®  det(P) is extended from R’'.

Let R, be the seminormalization of R in R’. Then since R, is seminormal
in R" and R'®p, (R, ®,det(P)) is extended from R’, by [I, Theorem 9]
the projective R,[ X}, .., X, ]-module R, ®.det(P) is extended from R,.
Therefore by [BR, Theorem 3.1], ht J(R,, R, P) = 2.

From the construction of R, it follows that the canonical map
Spec(R,) — Spec(R) is bijective and for every prime ideal p of R, the
inclusion R/Rnpa R,/p is birational. Let C denote the conductor ideal
of R in R,. Since CnJ(R,Ri®gP)cJ(R, P), ht J(R,P)=1, and
ht J(R, R,®zg P})=22 we have htC=1. Then by Lemma 3.5 there
exists a ring S such that (1) RGSG R,, (2)(R/C)req=(S/C)eq, and
(3)ht C, >ht C=1, where C, is the conductor ideal of S in R,.

Since C,N"J(R,, R,®x P)=J(S, S® P) we have ht J(S, S®; P)=2.
Therefore by Lemma 3.6 there exist isomorphisms

6:S@QrP3S®Q and 0, RIC&rP3RIC®,0

such that (1)6,=14®z0’, (2)6,=1c®r0" and (3) l(5c),RsF=
1is/Cs ®rjc 0. Moreover, since by [BR, Theorem3.1] P has a
unimodular element, &, and o, can be chosen that

A(G)=1s@z ¥ and Ara2=1R/C®R Y.

Now 1, ®s6,: R, ®r P 3 R, ®; Q is an isomorphism such that
1, ®s6, =15, ®r0" and A" (15, ®s6,)=1xr VY.

Let 0'= (1 2,/c®gric 05 )1 pyc ®p (1, ®s61)).

Then it is easy to_see that '€ SL(R,/C®, P, (X, .., X)) such that
0 =Ir,con Pmod(\/E‘/C). Therefore by Lemma 3.7, 6’ can be lifted to an
clement 6 of SL(R,®z P, (X, ..., X,)))-
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Let 0,=(15®56,)0 " Then 1z, ®g 0, =1z c®pc0,. Since the
following square of rings

(R[Xla e Xn:I:)A —— R, ®r A4 (:Rx[Xx, R Xn])

| |

(R/ICLX s s X, ]1=) RIC®r A = R/C®R A (=R,/C[X,, ... X, ])

is Cartesian with vertical maps surjective, g, and o, will patch up together
to give an isomorphism ¢: P~ Q such that 6=¢" and A" ¢ =1.

4. CANCELLATION OF PROJECTIVE MODULES OVER R[ X, Y]
The aim of this section is to prove the following theorem.

THEOREM 4.1. Let R be a reduced normal ring of dimension d. Let P be a
projective R[X, Y]-module of rank >=d+ 1. Let (p, a) be a unimodular
element of P@® A, where A= R[ X, Y]. Then there exists an automorphism ¢
of P@® A such that o(p, a)= (0, 1).

For the proof of this theorem we need some lemmas and propositions.

LEMMA 4.2. Let R be any ring and let A denote R[ X, .., X,,]. Let P be
a projective A-module and let (p, a) be a unimodular element of P@® A such
that (p, a)= (0, 1), where the bar means “mod(X, .., X,).” Let s, and s, be
elements of R such that s,R+s,R=R. Let o, be an automorphism of
P, @A, (for i=1,2) such that a(p,a)=(0,1) and 6,=1p o1, Assume
further that P, is extended from R, ,. Then there exists an automorphism ¢
of P® A such that o(p,a)=(0,1) and 6 =Ipg 5.

Proof. Let 0= (0,),(o7"),,- Then 6 is an automorphism of P, ,® 4,
such that 6(0,1)=(0, 1) and § =1, 3, Therefore

x Y
S
0 1As1s2

where a« is an automorphism of P,,, and ¥ is an element of
HomAw( sizs Asisy) (=P;) such that @=1p and v =0

Since a—IP by [P, Lemma 2 of Sect. 2] oc—(oz2 e e)sy where for
i=1,2,a;is an automorphlsm of P, such that @,=1p p,. Now y(a;t),, is an

element of P} such that y(a 1)52—0 Therefore since 51R+s2R=R,
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Ylar '), = W), — (¥2),, where ¥, is an element of P¥* (for i=1,2) such
that ,=0. Let, for i=1, 2,
= o Y
Lo o1l

It is easy to see that t; is an automorphism of P, @ A, such that
T,=1Ip, o1, and 7,0,1)=(0, 1). Moreover (t,0,),,=(1,0,),. Therefore
7,0, and 7,0, patch up together to give an automorphism ¢ of P@ 4 such
that o(p,a)=(0,1) and 6 =154 ;.

PROPOSITION 4.3. Let R be a ring of dimension d>1 and let
A=R[X,, .., X, ). Let P be a projective A-module of rank >d+ 1. Let s be
an element of R such that P, is free. Let (p, a) be a unimodular element of
P® A such that (p, a)= (0, 1) mod(sX,). Then there exists an automorphism
o of P® A such that o(p, a)=(0,1) and 6 =1, 4 , mod(X,,).

Proof. In what follows the bar will denote “modulo X,” and the tilde
will denote “modulo (sX,).”

Since P, is free, by [Su, Theorem 2.6] there exists an (elementary)
automorphism ¢, of P,@® A, such that o¢,(p, a)= (0, 1). Moreover since
(p,a)=(0, 1), o, can be so chosen that &, =I5, 7. We are going to apply
Lemma 4.2 with s, =s and o, thus chosen. The rest of the proof will be
devoted to defining s, and o,.

For z in P we denote the map A —»'~~ P by i.. By [BR, Theorem 3.1]
there exists p, in P and  in P* (=Hom ,(P, 4)) such that y(p,)= 1.

Now we define automorphisms of PP A4 as

REZERY I, —y

“‘“[A,,. 1,,]’ “2‘[0 1 ]
Then «,a,(p, a)=(p,, a,), where p, = p+ap, and a, = —(p). Since p, is
a unimodular element of P, the element (p,, a,X,,) of P@® A is unimodular.
Therefore by (2.6) there exists an element ¢ in P such that
ht Op(p,+a,X,q)=rank P>d+ 1. Therefore by [BR, Lemma 2.5] we
can find a change of variables X, —» X, =X,+ X% (for 1<i<n—1) and
X,— X, such that Op(p,+a,X,q) contains a monic polynomial f(X,)
with coefficients in B, where B denotes R[ X}, .., X/, _,].

Let T=1+ sB. Then, since pz/-o-\azj(,,qz P (note that =0 and hence
d,=y(p)=0) by [BR, Lemma 2.3], p,+a>X,q is a unimodular element
of P,. Therefore there exists an element ¢ of P#% such that
o(p,+a,X,q)=1. Let y(p,+a,X,q)=c. Then it is obvious that ¢=1.
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lLet 6=(1—c)o+¢,. Then 6 is an element of P¥ such that
6(p2 + aZan) = 1 and 0_: l/;T‘
Consider the automorphisms of P,.® A4,

R ) :[1,,., (1—a2)9]
’ ;“an 1Al' ’ ! 0 1-4'/

Ip, 0
As =] . 1 .
A*(PZ‘FUZXH(I) Ar

Then asaa+(p,, a;)=(0, 1).

Let o =asxg05(0,)7(a;)7. Then o'(p,a)=(0,1). We claim that
6’ =1p,¢ 7,- To see this we first observe that &5 =I5 g 5,- Moreover since
p=0, a,=0, and =y, we have (d,),=a, ' and (&,),=as". Thus our
claim is proved.

Now it is easy to see that there exists an element s, in T and
an automorphism o, of P, @A, such that o,(p,a)=(0,1) and
0'_2 = IP-‘Z@’Z‘Z'

Since s,B+s,B=B and A=B[X,], by Lemma4.2 there exists an
automorphism ¢ of P@ A such that ¢(p,a)=(0,1) and g =1Ipg ;.

COROLLARY 4.4. Let R be an affine algebra of dimension d over a finite
field. Let A= R[X, Y] and (p, a) be a unimodular element of P@® A, where
P is a projective A-module of rank =d+ 1. Then there exists an
automorphism o of P@ A such that o(p, a)= (0, 1).

Proof. Without loss of generality we can assume that R is reduced and
P is of constant rank. Moreover in view of [BR, Corollary 497 we can
assume that 4> 2.

By the Quillen—Suslin theorem there exists a non-zero-divisor s in R such
that P, is free.

In what follows the tilde means “mod(sY).”

Since A is an affine algebra of dimd+1 over a finite field and
rank(P)>d + 1> 3, by a result of [MMR ] there exists an automorphism t
of P®A such that %(p,a)=(0,1). Now we are through due to
Proposition 4.3.

PROPOSITION 4.5. Let R be a ring of dimension d such that ht J(R)
(=Jacobson radical of R)=2. Let A=R[X, Y]. Let P be a projective A-
module of rank =d+ 1 and let (p, a) be a unimodular element of P® A such
that (p,a)=(0,1)mod(X, Y). Then there exists an automorphism ¢ of
P® A such that o(p,a)=(0,1) and 6 =1, 4 , mod(X, Y).



CANCELLATION THEOREMS 175

Proof. Without loss of generality we assume that R is reduced and P is
of constant rank.

By the Quillen—Suslin theorem there exists a non-zero-divisor s such that
P_is free. We can assume that s is in J(R).

In what follows the tilde denotes “mod(sY).”

Note that 4 (=R[Y]/(sY)[X]) has generalized dimension (see [P,
Sect 1] for definition) <d. Therefore by (2.6) there exists ¢ in P such that
(p + ag) is a unimodular element of P. Let i be an element of P* such that
W/(p+dg)=1. Now consider the automorphisms of P@ A4

a:[u, 0] az[l,, (1—a)q oc=[ I, 0]
TlA, L 2710 1, ’ o VU S §

where for z in P, 4. denote the map A —'~ P.

Let t=a50,a;, and let t(p,a)=(p,,a,). Then it is obvious that
(P,;,d,) = (0,1). Moreover since (p,a)=(0,1)mod(X,7Y), 1=
lpg 4 mod(X, T).

Applying Proposition 4.3 to the unimodular (p,, a,) we can find an
automorphism 6 of P@A such that O(p,,a,)=(0,1) and
0=1,4 ,mod(X, Y). Now we are through if we put o =61

Proof of Theorem 4.1. Let the bar denote “modulo (X, Y).” Then since
dim R=d and rank P>d+ 1, by the Bass cancellation theorem [BI,
Theorem 3.4, p. 183] there exists an automorphism 1t of P@® A4 such that
(ﬁl’ dl)=(0, 1)’ Where T(pa a)=(P1,a|)-

Since R is normal, det(P) is extended from R (without loss of generality
we can assume that P is of constant rank). Therefore by [BR,
Theorem 3.1], ht J(R, P) =2, where J(R, P) denotes the Quillen ideal of P.

Applying Proposition 4.5 to the ring R, ;z » and the unimodular
element (p,, a,) we can find an automorphism 8, of (P@® A4), , yx ») such
that 6% p,,a,)=(0,1) and 9’2=I(p®;)wmim. Therefore there exists an
element s, of J(R, P) and an automorphism 8, of P, @ A, such that
0,(p,,a,)=(0,1) and 0_2=Ips2®;\,2, where s,=1+35,.

Since s, is an element of J(R, P), P,, is extended from R, . Therefore,
since (p,,a,)=(0,1) we can find an automorphism 0, of P, ® 4, such
that 0,(p,,a,)=(0, 1) and 8, =Ip o1,

Therefore by Lemma 4.2 there exists an automorphism 6 of P® A4 such
that 8(p,,a,)=(0,1). Put 6 =0t. Obviously ¢ is an automorphism of
P@® A such that a(p, a)=(0, 1).

Note added in proof. The question of Bass stated in the Introduction of our paper has been
answered in the affirmative by R. A. Rao and later by H. Lindel (by different techniques).

481/111/1-12
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