On Finite Groups with a Certain Sylow Normalizer

G. R. ROBINSON*

Mathematical Institute, Oxford University, Oxford, England

AND

A. TURULL†

Department of Mathematics, University of Chicago,
5734 South University Avenue, Chicago, Illinois 60637

Communicated by Walter Feit

Received June 25, 1979

The purpose of this paper is to prove the following

THEOREM A. Let G be a finite group, p an odd prime and P a Sylow p-subgroup of G. Assume

(i) $|N_G(P)/P : C_G(P)| = 2$ and $P = [P, t]$ for any $t \in N_G(P) - P \cdot C_G(P)$;

(ii) P is non-cyclic and of exponent p, and if p is a Fermat prime, then the class of P is at most $p - 3$ if $p > 5$, and at most 2 if $p = 3$.

Then G is p-solvable of p-length one.

By the Hall–Wielandt theorem the second part of condition (i) is equivalent (using condition (ii)) to $O_p(G) = G$. The condition imposed when p is a Fermat prime is necessary since we then can consider an irreducible representation of $SL(2, p - 1)$ of degree $p - 2$ over $GF(p)$: the semidirect product gives a non-p-solvable group fulfilling all the conditions of the theorem except that $\text{Cl}(P) = p - 2$ (here $\text{Cl}(P)$ denotes the nilpotency class of P). The involvement of $SL(2, p - 1)$ is a common feature of all counter-examples of this sort.

We also prove the next theorem which is a key step in the proof of Theorem A.

* This work was completed while the author was receiving financial support from the Science Research Council.

† The author wishes to thank the University of Oxford for its hospitality and the National Science Foundation for their partial support.
Theorem B. Let \(G \) be a finite group, \(p \) an odd prime and \(N \) a C-control subgroup of \(G \). Assume \(N/O_p(N) \simeq H \), where \(H \simeq P \times T \) the semidirect product of a non-cyclic group \(P \) of exponent \(p \) and \(T \) of order 2, such that \([P, T] = P\). Then \(G = O_p(G) \cdot N \), namely, \(G \) is \(p \)-solvable of \(p \)-length one.

We recall that \(N \) is a C-control subgroup of \(G \) if it contains a Sylow \(p \)-subgroup of \(G \) and for any non-trivial \(p \)-subgroup \(Q \subseteq N \) and \(g \in G \) such that \(Qg \subseteq N \) we have \(g = c \cdot n \) for some \(c \in C_p(Q) \), \(n \in N \). We define \(W \)-control subgroups similarly for \(W \) any mapping from non-trivial \(p \)-subgroups of \(G \) into subgroups of \(G \).

Denote by \(J(P) \) the Thompson subgroup generated by all Abelian subgroups of \(P \) of maximal order. By Theorem B and Theorem A of [3] we get the following

Corollary. Let \(P \) be a Sylow \(p \)-subgroup of a finite group \(G \). Set \(N = N_G(Z(J(P))) \) and assume that \(P \) has exponent \(p \) and \(p \geq 5 \), and \(N/O_p(N) \simeq H \) (as in Theorem B). Then \(G = O_p(G) \cdot N \), i.e., \(G \) is \(p \)-solvable of \(p \)-length one.

In Section 1 we state a more general version of these results that covers the Smith–Tyrer Theorem [9, 10]. We give a complete proof of these results without any reference to it.

I

In this section we prove some preliminary lemmas, and give a new more general formulation of the main results of the paper.

Lemma 1.1. Let \(P \) be a finite non-cyclic \(p \)-group of exponent \(p \), \(t \) an automorphism of \(P \) of order 2 such that \([P, t] = P\). Suppose \(a \in C_p(t) \); then \([C_p(a), t] \) is non-cyclic.

Proof. Let \(P \) be a counterexample of minimal order. Then \(P \) is not Abelian and \(t \) acts on \(Z(P) \). Assume that

\[
x \in Z(P)^* \quad \text{and} \quad x^t = x.
\]

We may apply the lemma to \(P/\langle x \rangle \) and we get \(\alpha, \beta \in P \) such that

\[
[\alpha, a], [\beta, a] \in \langle x \rangle, \quad \alpha^t = \alpha^{-1} \quad \text{and} \quad \beta^t = \beta^{-1},
\]

and \(\langle \alpha, \beta \rangle \langle x \rangle/\langle x \rangle \) is non-cyclic.

But \([\alpha, a]^t = [\alpha^{-1}, a] = [\alpha, a]^{-1} \) and \([\beta, a]^t = [\beta^{-1}, a] = [\beta, a]^{-1} \). Hence \([\alpha, a] = [\beta, a] = 1 \) and \(a, \beta \in C_p(a) \), a contradiction.
So we have that \(t \) acts fixed point freely on \(Z(P) \). Let \(x \in Z(P)^t \); then \(x^t = x^{-1} \). As before we get \(\alpha, \beta \in P \) such that
\[
[a, a], [\beta, a] \in \langle x \rangle, \quad \alpha^t = \alpha^{-1} \quad \text{and} \quad \beta^t = \beta^{-1},
\]
and \(\langle a, \beta \rangle \langle x \rangle / \langle x \rangle \) is non-cyclic. Set \(B = \langle a, \beta \rangle \). We have a homomorphism
\[
\phi : B^t \langle x \rangle / B^t \langle x \rangle \rightarrow \langle x \rangle,
\]
\[
\phi(y) = [y, a].
\]
Hence some non-trivial class in \(B^t \langle x \rangle / B^t \langle x \rangle \) is contained in \(C_p(a) \). Since it is inverted by \(t \), we have \(\gamma \in C_p(a) - \langle x \rangle \) such that \(\gamma^t = \gamma^{-1} \). Since \(P \) has exponent \(p \), \(\langle \gamma, x \rangle \) is non-cyclic and the Lemma is proved.

We are now in a position to state a slightly more general version of all three main results in the paper as follows:

In Theorem A we may replace conditions (i) and (ii) by:

(Ri) \(P \) is regular and if we set \(H = N_G(P) / O_p(N_G(P)) \), then \(H \) fulfills

(T) \(H = P \rtimes T \) the semi-direct product of a non-cyclic \(p \)-group and a group \(T \) of order 2, \([P, T] \) is non-cyclic, and for any \(T \)-invariant non-cyclic section \(S \) of \(P \), with \([S, T] = S \), \([C_S(u), T] \) is non-cyclic for any \(u \in C_S(T) \); and

(Rii) If \(p \) is a Fermat prime, \(Cl(P) \leq \max(p - 2, 2) \) and for \(p \geq 5 \) no section \(G_i \) of \(G \) satisfies: \(G_i / O_p(G_i) \simeq \text{SL}(2, p - 1) \), \(O_p(G_i) \) is elementary Abelian of order \(p^{n-2} \) and \(G_i / O_p(G_i) \) acts on \(O_p(G_i) \) irreducibly.

In Theorem B and its Corollary we may use simply condition (T) as the condition on \(H \).

We recall that \(P \) is a regular \(p \)-group if for any \(a, b \in P \) we have \((ab)^p = a^p b^p \cdot S^p \) with \(S \) an appropriate element from the commutator subgroup of the group generated by \(a \) and \(b \). Note that the local condition "\(Cl(P) \leq p - 3 \) when \(p \geq 5 \) is a Fermat prime and \(Cl(P) \leq 2 \) when \(p = 3 \)" implies (Rii).

The next coherence Lemma is due to Lluis Puig. Denote by \(R(H) \) the set of generalized characters of \(H \), by \(R_\chi(H) \) the set of generalized characters that are constant on \(p' \)-elements and by \(X_H \) the set of irreducible characters of \(H \). If \(\overline{H} \) is a homomorphic image of \(H \) we identify \(X_H \) with its corresponding subset of \(X_{\overline{H}} \).

Lemma 1.2 (Puig). Let \(L \) be a lattice endowed with a quadratic form holding an orthonormal basis. Assume \(P \) is a finite non-cyclic \(p \)-group, \(T \) has order 2, \(H = P \times T \) and \(P = [P, T] \). Then any isometry \(\tau : R_\chi(H) \rightarrow L \) extends to an isometry \(\sigma : R(H) \rightarrow L \).
Proof. Set \(X_T = \{ 1_T, \varepsilon \} \). We have

\[(*) \quad \text{for any } \lambda \in R(H), \quad \lambda + (1/2)(\lambda(t) - \lambda(1))\varepsilon \in R_c(H).\]

If \(P \) is Abelian a basis for \(R_c(H) \) is made of \(1_H \) and \(\rho - 1_H - \varepsilon \), where \(\rho \) runs through all irreducible characters of \(X_H - X_T \). Consideration of the scalar product with this basis and the fact that \(|P| \geq 9 \) gives that \(\tau \) can be extended to \(R(H) \) in a unique way.

Hence we may assume that \(P \) is non-Abelian. Let \(Z \) be a \(T \)-stable subgroup of \(Z(P) \cap P' \) of order \(p \), and set \(\overline{H} = H/Z \). We have by \((*)\),

\[R(H) = R(\overline{H}) + R_c(H) \quad \text{and} \quad R_c(\overline{H}) = R(\overline{H}) \cap R_c(H). \]

Let \(\bar{\tau} \) be the restriction of \(\tau \) to \(R_c(\overline{H}) \). By induction \(\bar{\tau} \) extends to \(\bar{\sigma}: R(\overline{H}) \to L \). So there exists a unique \(Z \)-linear map \(\sigma: R(H) \to L \), which extends both \(\bar{\sigma} \) and \(\tau \).

To prove that \(\sigma \) is an isometry, we only need to show

\[(\sigma(\varepsilon), \sigma(\chi))_L = 0 \quad \text{for any } \chi \in X_H - X_H. \]

Let \(\chi \in X_H - X_H \) and set \((\sigma(\varepsilon), \sigma(\chi))_L = x \), and assume \(x \neq 0 \). By \((*)\) we have

\[(\sigma(\chi), \sigma(\chi))_L = 1 + (\chi(1) - \chi(t))x \]

\[(\sigma(\chi), \sigma(\lambda))_L = (1/2)(\lambda(1) - \lambda(t))x \quad \text{for any } \lambda \in X_H. \]

Therefore we have

\[1 + (\chi(1) - \chi(t))x \geq \sum_{\lambda \in X_H} (1/4)(\lambda(1) - \lambda(t))^2 x^2 \]

\[\geq (1/2) (|P| + |C_H(T)|) x^2 \geq (1/2) (|P| + 1) x^2. \]

Since all terms are integers and \(x \neq 0 \) we get

\[(***) \quad \chi(1) + 1 - \chi(t) \geq (|P| + 1)/2 \]

and equality is only possible if \(\sigma(\chi) \in \sigma(R(\overline{H})). \)

If \(\chi(t) \neq 0, \chi|_P \) is irreducible and therefore \(\chi(1)^2 \leq |P| \). Hence by \((***)\) \(\chi(t) > 0 \) implies \(\chi(1)^2 > |P| \), a contradiction.

Assume that \(\chi(t) < 0 \); since \(|\chi(t)| \leq \chi(1) - 2 \), \((***)\) gives \(4 \geq \chi(1) + 3/\chi(1) \), so we have equality and \(\sigma(\chi) \in \sigma(R(\overline{H})). \) \(\varepsilon \chi \) is an irreducible character and \((\varepsilon \chi)(t) > 0 \). Hence \(\sigma(\varepsilon \chi) \) is orthogonal to \(\sigma(\varepsilon) \) and therefore to \(\sigma(R(\overline{H})). \) In consequence \((\sigma(\varepsilon \chi), \sigma(\chi))_L = 0 \) and by \((*)\)

\[(\sigma(\varepsilon \chi), \sigma(\chi))_L = (1/2)(\chi(1) + \chi(t))x, \]

a contradiction.
So we may assume that $\chi(t) = 0$. Then we have $\mu \in X_p - X_p$ such that $\mu' = \chi$ and $\mu' \neq \mu$. From (***) we get

$$1 + 2\mu(1) \geq (|P| + 1)/2,$$

and hence $\mu(1) = 3$ and $|P| = 9$. But now, P is extraspecial of order 27 and since $P = [P, T]$ we have $Z = P' = C_p(T)$. Since μ vanishes on $P - Z$ we have $\mu' = \mu$, which a contradiction and proves the Lemma.

In this section we prove Theorem A assuming Theorem B. In this section we assume that G is a counterexample to Theorem A of minimal order. We set $F = GF(p)$.

Lemma 2.1. (i) $O_p(G) = 1$ and $p \geq 5$.

(ii) $O_p(G) \neq 1$, is elementary Abelian. We set $\bar{G} = G/O_p(G)$. Then \bar{G} acts faithfully and irreducibly on $O_p(G)$.

(iii) \bar{G} is a non-Abelian simple group with cyclic self-centralizing Sylow p-subgroup of order p.

Proof. $O_p(G) = 1$ is clear. If $p = 3$ since $\text{Cl}(P) \leq 2$, $N_G(P)$ is a C-control subgroup of G and by Theorem B we get a contradiction.

By the Corollary to Theorem B, $N_G(Z(J(P)))$ is not p-solvable of p-length one, so by induction we have $Z(J(P)) \triangleleft G$. Hence $O_p(G) \neq 1$. If for a subgroup $1 \neq M \subset O_p(G)$ M is normal in G, then G/M fulfills the hypothesis of the Theorem since $p \mid |\bar{G}|$, and therefore \bar{G} is p-solvable of p-length one, and by the Hall-Higman Theorem [3], since P is regular, G is p-solvable of p-length one. So no such M exists and $O_p(G)$ is elementary Abelian and \bar{G} acts irreducibly on $O_p(G)$.

Since G does not fulfill the hypothesis of the Theorem it has a cyclic Sylow p-subgroup. Suppose $S \supset O_p(G)$ is a proper normal subgroup of G. Since $O^p(G) = G$, set $N = P \cdot S \neq G$. We also have $|N_G(P)/P \cdot C_N(P)| \leq 2$. If $|N_G(P)/P \cdot C_N(P)| = 1$, by the Hall-Wielandt Theorem N and hence S are p-nilpotent. Since $O_p(S) \subseteq O_p(G) = 1$, we get that S is a p-group and $S \subseteq O_p(G)$. So $|N_G(P)/P \cdot C_N(P)| = 2$; take $t \in N_G(P) - P \cdot C_N(P)$, a 2-element. By construction of N, $t \in S$ and we get, since $O^p(G) = G$, $P = [P, t] \subseteq S$. Hence by induction we get $S = O_p(S)$. $N_S(P)$, and since $O_p(S) = 1$, P is characteristic in S and normal in G, a contradiction. Hence \bar{G} is simple.

Since $[P, T] = P$ the normal subgroup of G, $C_G(O_p(G))$ is proper and hence $C_G(O_p(G)) = O_p(G)$. That completes the proof of (ii).

Now suppose $g \in G$ is a p'-element such that $[P, g] \subseteq O_p(G)$. Since
CERTAIN SYLOW NORMALIZERS

\[g \in N_G(P) \text{ and } P \neq O_p(G) \] we get \[g \in C_G(P) \subseteq C_G(O_p(G)) = O_p(G). \] So \(\bar{G} \) has a self-centralizing Sylow \(p \)-subgroup.

Since \(P \) is regular and \(O_p(G) \) has exponent \(p \), every \(p \)-power in \(P \) commutes with \(O_p(G) \). Hence, since \(\bar{G} \) is faithful on \(O_p(G) \), \(|\bar{P}| = p \). That completes the proof of (iii) and of the Lemma.

Lemma 2.2. Set \(M = O_p(G) \). We have \(\dim_p(M) = \text{Cl}(P) \leq p - 1 \).

Proof. Set \(K = \bar{G}, Q = \bar{P} \) and \(N = \overline{N_G(P)} \). Since \(M \) is an irreducible \(FK \)-module, by the theory of vertices and sources (see, for example, [1, p. 339]) we know there exists an indecomposable \(FN \)-module \(L \) such that

\[M \mid L^K \]

\((M \) is a direct summand of the induced module \(L^K \)). Now restricting to \(Q \) and applying Mackey's decomposition formula [1, p. 497] we get

\[M \mid_Q \bigoplus \ L^x \mid_N x \cap Q \mid_Q, \]

where the sum is taken over a complete set of representatives of the double cosets \(N \times Q \) in \(K \). Suppose the minimal polynomial of the action on \(M \) of an element \(x \) in \(Q \) was \((X - 1)^p \). Then there exists \(y \in M \) such that \([y, x; p - 1] \neq 1 \) (where \([y, x; 0] = y \), and \([y, x; n] = [[y, x; n - 1], x] \)) and \((xy)^p = [y, x; p - 1] \neq 1 \) against the regularity of \(P \). So the minimal polynomial of any element of \(Q \) is a divisor of \((X - 1)^{p-1} \). We can suppress from the summation in (*) all terms where \(N^x \cap Q = 1 \). We get

\[M \mid_Q \mid L \mid_Q. \]

By the structure of the indecomposable \(p \)-modules of the dihedral group \(N \) (see, for example, [11]), \(L \mid_Q \) is indecomposable, and hence \(M \mid_Q = L \mid_Q \), and \(\dim_q(L) \) is the degree of the minimal polynomial of a non-trivial element of \(Q \), which is easily seen to be \(\text{Cl}(P) \). We also have seen this to be at most \(p - 1 \), and we have the result.

Lemma 2.3. If Theorem B is true then so is Theorem A.

Proof. By Lemmas 2.1 and 2.2, \(K \) fulfills the hypothesis of a Theorem of Feit, Theorem 5.1 in [2], and we see that \(p > 5 \) is a Fermat prime and \(K \approx SL(2, p - 1) \). But now it follows that, since \(M \) is not of defect zero; \(\dim_q(M) = p - 2 \) (and \(M \) comes from the reduction "modulo p" of an ordinary irreducible representation of \(SL(2, p - 1) \)). This contradicts condition (Rii) and completes the proof of Theorem A.
In this section we prove Theorem B without quoting any of the results of Section 2. For this section let G be a counterexample to Theorem B of minimal order. For any non-trivial p-subgroup A of G we set $W(A) = O_p(C_G(A))$. We identify P with a Sylow p-subgroup of G, and we let $t \in T^*$ be also identified with an element of G.

Lemma 3.1. (i) If $1 \neq A \subseteq B$ are p-subgroups of G we have that $C_G(A)$ is p-solvable of p-length one and $W(B) = W(A) \cap C_G(B)$. N is a W-control subgroup of G.

(ii) Suppose $K \triangleleft G$ and $P \subseteq K$ and $W(A) \subseteq K$ for all non-trivial subgroup $A \in P$. Then $K = G$.

(iii) There exists $N_1 < N$ such that $F = N/N_1$ is a Frobenius group of order $2p^2$ with Frobenius kernel $Q = N_0/N_1$ of order p^2; and a central extension \tilde{G} of G by Z of order p such that \tilde{N} is a C-control subgroup of \tilde{G} and \tilde{N}_1 splits into $Z \times N_1$ (identifying N_1 with a subgroup of G) and $\tilde{N}_1/N_1 = \tilde{Q}$ is an extraspecial group of order p^3 and exponent p. We also set $\tilde{N}/N_1 = \tilde{F}$.

Proof. (i) Take any $a \in P^*$. It is clear that $C_G(a) \neq G$, and that $C_{N}(a)$ is a C-control subgroup of $C_G(a)$. We also have

$$C_{N}(a)/O_{p^*}(C_{N}(a)) \simeq C_H(a).$$

But now $C_H(a)$ is either a p-group or a group fulfilling (T); hence we have either for example by [7, Corollary 2] or by induction $C_G(a)$ p-solvable of p-length one. We have for any $A \neq 1$ a p-subgroup of G,

$$C_G(A) = O_{p}(C_G(A)) \cdot C_N(A). \quad (*)$$

Now by induction we reduce the first equation of (i) to the case $|B : A| = p$, B/A acts on $C_G(A)$ and $O_{p^*}(C_G(B)) = O_{p^*}(C_G(A)) \cap C_G(B)$ since $C_G(A)$ is p-solvable. (see also [6, Chap. VI, Proposition 5]). This proves the first part of (i).

Now since N is a C-control subgroup of G, by $(*)$, $N_G(A) = W(A) \cdot N_N(A)$. Suppose $g \in G$ and $A, A^g \subseteq N$. Then $g = c \cdot n$ for some $c \in C_G(A)$ $n \in N$, since N is a C-control subgroup of G. But now $c = c_1 \cdot n_1$ with $c_1 \in W(A)$ and $n_1 \in N_N(A)$. So $g = c_1 \cdot (n_1 \cdot n)$ with $c_1 \in W(A)$ and $n_1 \cdot n \in N$, i.e., N is a W-control subgroup of G.

(ii) Since $K \triangleleft W(P)$ we have $P \cdot C_G(P) \subseteq K$. So $N \cap K$ is a C-control subgroup of K and hence $N \cap K/O_{p^*}(N \cap K)$ is either a p-group or is isomorphic to H. In both cases if $K \neq G$ K is p-solvable and $G = O_{p^*}(K) \cdot (K \cap N) \cdot N$.

$$O_{p^*}(G) \cdot N.$$
(iii) Since N is a C-control subgroup we have $O_p^c(G) \cap N = O_p^c(N)$ and $O_p^c(N)$ is a C-control subgroup of $O_p^c(G)$; so we have $P = [P, T]$. Then P is non-cyclic and we may take N_1 the antiimage in N of a subgroup P_1 of P such that $P_1 \leq P$, $|P/P_1| = p^2$, and P/P_1 is non-cyclic. T inverts every element of P/P', so acts on P/P_1 in a Frobenius way. So we have that $F = N/N_1$ is a Frobenius group of order $2p^2$.

It is well known that F has a non-split central extension \hat{F} by Z of order p, and then \hat{Q} is an extraspecial group of order p^3 and exponent p. This gives a central extension \hat{N} of N, with $\hat{N}_1 = Z \times N_1$ (identifying N_1 with a subgroup of \hat{N}).

As N is a C-control subgroup of G, it follows from [8, Lemma 1.2] that there exists a central extension \hat{G} of G by Z which induces the extension \hat{N} of N and where \hat{N} is a C-control subgroup.

Given a group K denote by $P(K)$ the Z-module of generalized projective characters.

Lemma 3.2. There exists a Z-module isometry $\sigma : R(H) \rightarrow R(G)$ such that

(i) If $\pi \in P(H)$ then $\sigma(\pi)|_N \in P(N)$.

(ii) If $\chi \in R(H)$ and $x \in G$ is not a p'-element and $x_p \in N$, we have $\sigma(\chi)(x) = \chi(n)$, where $n \in C_N(x_p)$ and $\chi n^{-1} \in W(\langle x_p \rangle)$.

(iii) If $\chi \in R(H)$ and $\lambda \in R_c(H)$ then $\sigma(\chi \lambda) = \sigma(\chi)\sigma(\lambda)$.

Proof. We denote $R(G, W) = \{\chi \in R(G) \mid$ for any $x \in G$ such that $x_p \neq 1 \chi(x) = \chi(x \cdot w)$ for any $w \in W(\langle x_p \rangle)\}$, and $R_0(H)$ the set of elements of $R_c(H)$ which vanish at 1.

In the notation of [7, Théorème 6], since we have $W(A) \cap N = O_p^c(C_N(A)) = O_p^c(N) \cap C_G(A)$ for any $A \neq 1$ a p-subgroup of G, we have

$$e_p = (1/|O_p^c(N)|) \sum_{x \in O_p^c(N)} x$$

and $e_p \cdot R(N) = R(H)$; hence $R(N, V) = R(H) + P(N)$ [7, Théorème 3] and $R_c(N, V) = R_c(H)$. In particular, $P(N)$ is the orthogonal lattice of $R_0(H)$ in $R(N, V)$.

By [7, Théorème 6] there exists an isometry σ from $R_c(H)$ onto $R_c(G, W)$ such that

$$(*) \text{ for any } \lambda \in R_c(H), \sigma(\lambda)|_N = \lambda.$$
ROBINSON AND TURULL

\[(**) \text{ for any } x \in G_p, \text{ and } \chi \in R(H) \]

\[\sigma(\chi)(x) = \frac{\bar{\chi}(1) + \chi(t)}{2} + \frac{\chi(1) - \chi(t)}{2} \sigma(e)(x).\]

In particular, for any \(\lambda \in R_0(H) \), \(\sigma(\lambda) \) vanishes over \(G_p \), and therefore, [7, Théorème 6] and (*) give

\[(\lambda, \sigma(\pi)_N) = (\sigma(\lambda), \sigma(\pi))_G = (\lambda, \pi)_N = 0 \quad \text{for } \pi \in P(H);\]

Hence we have (i).

Let \(x \) be an element of \(G - G_p \), such that \(x_p \in N \). We have \(x = w \cdot n \), where \(w \in W(\langle x_p \rangle) \) and \(n \in N - N_p \); so, for any \(\chi \in R(H) \) \(\sigma(\chi)(x) = \sigma(\chi)(n) \), since \(e_w \cdot R(G) \subseteq R(G, W) \). On the other hand, since \(\text{rang}_z(R(H)) = \text{rang}_z(R_0(H) + P(H)) \), (*) gives \(\sigma(\chi)(n) = \chi(n) \). So we have (ii). Now (ii) and (**) give (iii), which completes the proof of the Lemma.

Lemma 3.3. Let \(\varphi \) be a non-trivial character of \(Z \). There exists an irreducible character \(\zeta \) of \(\hat{F} \) such that \(\zeta|_Z = \varphi \), and \(\zeta(t) = 1 \). Then \(\sigma \) may be extended to a \(Z \)-linear isometry of \(Z\zeta + R(H) \) into \(R(G) \). From this we deduce that \(\sigma(\varepsilon)(1) = 1 \) and get a contradiction. (Recall that \(\varepsilon \) is the non-trivial linear character of \(H \)).

Proof. The first statement is clear.

Let \(R(K, p) = \{ \chi \in R(K) \mid \chi(x) = \chi(x_p) \text{ for all } x \in G \} \). By [7, Théorème 1], there exists \(\alpha \in R(\hat{F}, p) \) such that \(\alpha|_{\hat{F}} = \zeta|_{\hat{F}} \). Set

\[\omega = \frac{p + 1}{2} \varepsilon + \frac{p - 1}{2} \varepsilon \]

and

\[\theta = \frac{p + 1}{2} \varepsilon - \frac{p - 1}{2} \varepsilon - p \varepsilon + \sum_{\lambda \in \hat{F} - \hat{F}} \lambda \]

It is easy to verify that \(p \varepsilon = \alpha \cdot \omega \) and that \(\theta \) vanishes on each element \(\hat{x} \) of \(\hat{F} \) such that \(\hat{x}_p \) and \(\hat{x}_p^{-1} \) are conjugate.

We identify \(R(\hat{F}) \) with its image in \(R(\hat{\mathcal{N}}) \). Since \(R(\hat{F}, p) \subseteq R(\hat{\mathcal{N}}, p) \), there exists \(\alpha' \in R(\hat{G}, p) \) such that \(\alpha'|_{\hat{F}} = \alpha' \) [7, Corollaire 2]. We set \(\zeta' = (1/p) \alpha' \sigma(\omega) \). We first prove that \(\zeta' \) has norm 1. We denote as usual \(\bar{\alpha} \) for the complex conjugate of \(\alpha \). We have

\[(\alpha' \bar{\alpha})|_{\hat{F}} = \alpha \cdot \bar{\alpha}, \quad (\alpha \cdot \bar{\alpha})|_{\hat{F}} = (\zeta \bar{\zeta})|_{\hat{F}} \quad \text{and} \quad \zeta \bar{\zeta} \in R(F).\]
Therefore $\alpha \cdot \bar{a} \in R(F, p) \subseteq R_c(H)$ and by (*) of Lemma 3.2 we get

$$\sigma(\alpha \cdot \bar{a}) = \alpha' \cdot \bar{a}' \text{.}$$

Now by (iii) of Lemma 3.2

$$(\alpha' \cdot \sigma(\omega), \alpha' \cdot \sigma(\omega))_\delta = (\sigma(\omega), \sigma(\alpha \bar{a} \omega))_\delta = (\omega, \alpha \bar{a} \omega)_F$$

$$= p^2(\zeta, \zeta)_F = p^2 \text{.}$$

We next prove that $\zeta'|_E$ is a generalized character for any nilpotent subgroup E of G which will show that ζ' is a simple character of G. We may assume that $Z \subseteq E$. Let $E = E/Z$, $S = O_p(E)$ and $D = O_p(S)$. We may assume $\rho \supseteq S$. If $S \subseteq Z \times N_1$, $S = Z \times R$ with $R \subseteq N_1$, and $\alpha'|_{Z \times D \times R} = p \rho \otimes 1_{D \times R}$

so that $\zeta'|_E$ is a generalized character in this case. So we have $S = S \cdot N_1/N_1$

non-trivial and $C_H(S) \subseteq H$. Hence by the structure of $C_H(S)$ we get $D \subseteq W(S/Z)$. Now Lemmas 3.1(i) and 3.2(ii) give $\sigma(\omega)(x) = \omega(x_p) = p$, for any $x \in E - D$. Therefore there exists $\gamma \in R(D)$ such that

$$\sigma(\omega)|_E = p \cdot 1_E + \gamma.$$

But now

$$\zeta'|_E = \alpha'|_E + (\gamma \otimes \varphi)|_E,$$

where $\gamma \otimes \varphi$ is a character of $D \times Z$. This completes the proof that the isometry σ can be extended.

Now we set $\theta' = \sigma(\theta)$. We claim that θ' vanishes on each element \hat{x} of G

such that \hat{x}_p and \hat{x}_p^{-1} are conjugate. Indeed, let x be the image of \hat{x} in G. If $x_p = 1$, \hat{x} is a p-element and so $\zeta'(\hat{x}) = \sigma(\omega)(x)$, thus using (**) of the previous Lemma we get $\theta'(\hat{x}) = 0$. Therefore we may assume that $1 \neq x_p \in N_1$; since $O_p(C_G(\hat{x}_p))$ maps onto $O_p(C_G(x_p))$ we get using the structure of $C_G(x_p)$, $\hat{x} = \hat{w} \cdot \hat{n}$ with $\hat{w} \in O_p(C_G(\hat{x}_p))$ and $\hat{n} \in N$. Therefore $\hat{x}_p = \hat{n}_p$ and hence $\alpha'(\hat{x}) = \alpha'(\hat{n})$. Also we have $\sigma(\lambda)(\hat{x}) = \lambda(\hat{n})$ for any $\lambda \in R(F)$. Hence we have the claim.

Now let u be an involution of G, θ' vanishes over the set $\{\hat{u}\hat{z}\hat{u}^{-1} | \hat{z}, \hat{u} \in G \}$ and we get

$$\frac{p + 1}{2} - \frac{p - 1}{2} \frac{\sigma(\epsilon)(\hat{u})^2}{\sigma(\epsilon)(1)} - p \frac{\zeta'(\hat{u})^2}{\zeta'(1)} + \sum_{\lambda \epsilon x_{p} - x_{p}} \frac{\sigma(\lambda)(\hat{u})^2}{\sigma(\lambda)(1)} = 0.$$
By (** of Lemma 3.2 we have \(P_a(b) = 0 \). It is not hard to show that in fact \(a \) is a double root of \(P_a(X) \). So

\[
P_a(X) = \left(\frac{X}{a} - 1 \right)^2 P_a(0).
\]

Therefore either \(P_a(0) = 0 \) or \(a = b \). On one hand, a simple computation shows that \(P_a(0) = 0 \) implies \(a = 1 \). On the other hand \(a = b \) implies \(\hat{a} \in K = \text{Ker}(\sigma(\varepsilon)) \), namely, \(K \neq 1 \). Since obviously \(O_p(G) = 1 \), \(K \cap P \) contains a non-trivial element \(x \), and by Lemma 3.2(ii) \(a = \sigma(\varepsilon)(x) = \varepsilon(x) = 1 \). Hence \(\sigma(\varepsilon)(1) = 1 \) in all cases.

But now Lemma 3.2(ii) gives that \(P \leq K = \text{Ker}(\sigma(\varepsilon)) \) and further that \(W(A) \leq K \) for any \(A \leq P \) non-trivial. But by Lemma 3.1(ii) we get a contradiction. This completes the proof of the Lemma and of the Theorem.

ACKNOWLEDGMENTS

The authors wish to thank Professor Glauberman and Dr. Puig for their generous help and encouragement.

REFERENCES