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Abstract

It has been proposed that a quantum group structure underlies de Sitter/conformal field theory duality. These ideas are used
to give a microscopic operator counting interpretation for the entropy of two-dimensional dilaton de Sitter space. This agrees
with the Bekenstein—Hawking entropy up to a factor of order unity.

0 2005 Published by Elsevier B.\@pen access under CC BY license.

1. Introduction However it seems clear that we are still missing
some key ideas. In the present Letter, we will be
mainly concerned with developing the idea that non-

String perturbation theory is defined using the no- commutative geometry and quantum groups should
tion of a finite number of string loops moving in  play a much more prominent role than it has to date.

a fixed background spacetime. This modest starting This idea has already been extensively studied for both

point yields a finite perturbative expansion for scat- closed (se¢l] for a review) and open strings in com-

tering amplitudes. It has had remarkable success inpact backgrounds (see for examfi#). It has long
elucidating many nonperturbative phenomena, such aspeen known that WZNW models based on the com-
strong/weak coupling duality symmetries, the exis- pact groupg have an underlying quantum-deformed
tence of new solitonic objects, D-branes, as well as symmetryU, (¢) where the deformation parametgr
the microscopic interpretation of black hole entropy in is a root of unity, determined by the level number of
certain cases. Moreover these new ideas have led tothe CFT. There are a finite number of unitary irre-
the first conjectures for complete (though background ducible representations of the quantum group which
dependent) nonperturbative formulations of string the- correspond to integrable representations of the current
ory, such as matrix theory and AdS/CFT. algebra. The tensor product structure of the quantum
group determines CFT operator product coefficients. If
one then attempts to reconstruct the target space geom-
E-mail address. lowe@brown.edyD.A. Lowe). etry by Fourier transforming this finite set of represen-
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tations, one winds up with a noncommutative space [21,22] This spacetime has a nontrivial Bekenstein—
on which the quantum group symmetry acts. For the Hawking entropy and temperature. The entropy of this
case of D-branes on group manifolds, the noncommu- spacetime is accounted for by counting operators in a
tative geometry that emerges makes contact with ideasdual¢-CFT.
of Conned3].

The hope is that quantum group structure may build
in from the beginning analogs of spacetime uncer- 2. Two-dimensional dilaton de Sitter space
tainty principles (se¢4] for a review), and thus pro-
vide a formulation of string theory applicable to the As described ij21] two-dimensional dilaton grav-
strong gravity regime where it no longer makes sense ity
to think of single strings moving in smooth space- 1 2
time background. In order to make these ideas more S = > / V=g d*x ®(R - E_Z)
precise, it is interesting then to further consider the
examples of AJS/CFT and dS/CH5] and look for ~ admits solutions of de Sitter form

quantum group symmetry underlying these dualities.  , 1 2 92 9oy 5

This was first studied if6] for the case of AAS/CFT ds®=— 2 _azdt + (t —at )d9 ’

where it was found that the quantum group symme- t‘fz

try of WZNW models gives a natural explanation ¢ :qboz, Q)

of the stringy exclusion principl€7] for the case of
AdS; x S3. Related ideas appear j&-14]. From the wherea is a dimensionless constant parameterizing a
spacetime viewpoint, this bound is explained by giant Mass deformationpo is a dimensionless constant pa-
gravitons[15], whose maximum size is cutoff by the rameterizing the strength of the gravitational constant,
radius of the sphere. ¢ is a length scale that sets the radius of curvature. We
It was proposed ifi16] that similar ideas could be taked € (0, 2r) to parametrize a spacelike circle and
extended to dS/CFT by seeking an underlying quan- € (=0, 0). The Penrose diagram for this solution is
tum group symmetry as g-deformation of the isom- shown inFig. 1L The(z, 6) coordinates only cover the
etry group of de Sitter/conformal group of the CFT. lower quadrant of the diagram.
An important new feature of this construction is the ~ This spacetime has an asymptotic symmetry group
appearance of noncompact groups. It was shown thatWith a Virasoro algebra that adigl1,22] As described
cyclic unitary representations of the quantum group ?n [18], states 01_‘ matter fieldfs in this background fall
U, (SL(2)) become unitary principal series representa- into representations of this Virasoro algebra.
tions in a classical limit. These are precisely the repre-
sentations corresponding to massive particle states in
a two-dimensional de Sitter background. o non- AN .
trivial root of unity the quantum group representations AN L
are finite dimensional, so the spectrum of the theory AN L
becomes discrete. Thus the quantum group structure N
introduces both an ultraviolet and an infrared cutoff in e
an interesting way. These are prerequisites for a mi- L N
croscopic interpretation of the finite horizon entropy L N
of de Sitter. Generalization to three-dimensional de L N
Sitter was discussed ifL7] and a formula for the ‘ .
de Sitter entropy was proposed. This was further de- T
scribed from the classical dS/CFT viewpoint[ikB].

Related ideas and further developments may be found Fig. 1. Penrose diagram for de Sitter-like solution of two-dimen-
in [19 20} sional dilaton gravity. There is a singularity at one point on the

. . spatial circle where the dilatofh = 0 and the gravitational coupling
In the present Letter these ideas are applied 1O giverges. This is analogous to the conical singularity of three-dimen-
the case of two-dimensional dilaton de Sitter space sional Schwarzschild de Sitter.
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There exists definition of magd utilizing a space-
like Killing vector onZ~ [21]. The mass defined in
this way can be positive or negative. On the solu-
tion (1)

2

a
M| = — o. 2
M| AL 2

In the limit « — 0 the singularity becomes null, and
the geometry is that of a big crunch or big bang. The
a =1 limit describes a pure de Sitter geometry. We
expect the region & a < 1 to correspond to sensible
semi-classical spacetimes. This can be argued by lift-

ing to three dimensions where these geometries corre-

spond to a positive deficit angle. On the other hand, the
a > 1 geometries will correspond to negative deficit
angle. Since this would arise from a negative energy
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3. g-deformed CFT

The proposal for describing two-dimensioras,
using ag-deformed version of the dS/CFT correspon-
dence has been studied[it6]. The interpretation of
horizon entropy in this framework has been elaborated
in[17,18]

Based on those results we postulategbdeformed
CFT is built out of N representations of the-
deformed isometry groufL(2, R) characterized by
the parameters = —1 and complex numbér as de-
scribed in detail inAppendix A We setg = 27/

a root of unity. Theg-deformed representations are
analogs of the complementary series representations
for massless particles in de Sitter space (strictly speak-

localized source, we do not expect these geometriesing mass— 0, and recall the relation = —1/2 —

to be stable once interactions are included. It is cu-
rious the allowed geometries hay#| less than the
de Sitter value. Howeve¥ measures the energy of the
complete spacetime, and addition of positive energy

sources causes the cosmological horizon to shrink, re-

ducing the overall contribution ti\/|.
Demanding absence of a singularity on the Euclid-
ean section leads to a Hawking temperature

a
= ©)

Because the dilaton varies, the relation of Bekenstein—
Hawking entropy to area is a bit more subtle than the

standard case. The entropy may be derived by comput-

ing the Lorentzian action of the solution with appro-
priate boundary terms included. However the simplest
way to obtain the entropy is to take T = 9S/9M
which leads to

S =21 Pqa, (4)

where the constant of integration is fixed §o= 0

whenT = 0. This prescription agrees with results ob-

tained via the semi-classical Lorentzian path integral.
We can try to infer something about the spectrum of

microscopic excitations by asking at what temperature

do we expect the thermodynamic limit to break down.

This happens whefi ~ O(1) soa ~ 1/®q. Therefore

an estimate of the mass gap above the 0 solution

is

1
AM ~ ——

bol’ ®)

V1/4 — (m€)2 whenmt < 1/2).

We have in mind that the full interacting CFT will
be based on a theory witBU(N) gauge symmetry,
or something similar, but we will presume there ex-
ists a free-field limit where one is left witly fields.

On this branch we will assume the gauge symmetry is
broken down to the permutation groSg with the N
fields transforming in the defining representation. This
is reminiscent of the structure of the CFT's relevant for
the D-brane black holes §23].

The results of[17] carry over for the spectrum
of these representations. The generdtgris associ-
ated with the Killing vector used to define the no-
tion of mass(2) (here we follow the conventions of
[16,17] which differ from[18,21]). This is related to
the generators defined ippendix A by the relation
Lo= (X4 + X-)/2. In particular, for one of thesk¥-
dimensional cyclic representations withreal, Lo has
imaginary eigenvalues that are roughly equally spaced
ranging from—i(N —1)/2¢,...,i(N — 1)/2¢. In this
way we see the-deformation introduces a ultravio-
let and an infrared cutoff versus the continuous un-
bounded spectrum of the= 1 principal series repre-
sentation. Note also the spacing of thgeigenvalues
does not approach a continuum in the> 1 limit.

Related issues arise in the fat-black hole limit when
one considers black holes with D-brane chai2#].

In that case the mass gap one would infer by hawng
distinct D-strings wrapping a one-cycle is much larger
than the lowest inverse length scale in the system.
There the resolution is that th& distinct D-strings
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coalesce into a single multiply wrapped string. This factor of order unity. In the limitv > 1, replacing the

picture produces the expected mass gap. Bose—Einstein distribution by Fermi—Dirac changes
An analogous phenomena can happen for the cyclic the overall coefficient by a constant factor of order

representations. We assume the dynamics is such thaunity.

instead of allV representations having the same value

for b that they differ by a phase?*/N wherek =

1,..., N with k labeling theN different cyclic rep- 4. Discussion

resentations. This possibility was explored 7] for

the case of the principal series. These results also carry  In this Letter we have provided a statistical com-

over to the complementary series described here. Theputation of entropy in a de Sitter-like spacetime.

end result is one obtains a reducible representation We computed the microscopic entropy of a two-

with a spectrum forLg ranging from approximately  dimensional version of de Sitter space that depends on

—i(N —1)/2¢,...,i(N — 1)/2¢ with a typical level two nontrivial parameters: a gravitational constant and

spacing of order AN¢. Therefore we match the ex- a mass parameter. In the usual semi-classical picture,

pected spacingb) provided we identifyN with the this entropy diverges, but by-deforming the space-

strength of the gravitational coupling time this entropy is rendered finite and can be given a
dual interpretation as an operator counting problem in

N~ ®o. (6) ag-deformed CFT.

This gives the expected continuous spectrunifpas Clearly much remains to be done in further devel-

N — oo. oping the correspondence betweedeformed CFT'’s

Now we are ready to compute the de Sitter entropy and quantum de Sitter spacetimes. Thus far it has been
arising from this microscopic description, following €stablished that unitary CFT’s of this type exist, and
[17,18] A comoving observer in de Sitter sees a ther- that these appear to account for the entropy of de Sit-
mal density matrix due to a trace over modes outside ter space in a straightforward way. It would be very
their horizon. I17,18]this notion was carried overto  interesting to find versions of string theory that live in
the CFT description. In particular, the partition func- these backgrounds and higher-dimensional generaliza-
tion becomes a sum over a operators in the CFT with tions, and to give a complete specification of the dual
Boltzmann weights. The operators that appear in the boundary CFT’s.
sum are those corresponding to the one-particle modes To conclude, let us offer the following speculation.
with positive imaginaryLq eigenvalue, together with ~ Suppose a CFT of the type outlined in the present work
their tensor products. We begin by assuming Bose can be shown to be a complete self-consistent theory
statistics for these modes. The expectation value of dual to a gravitational theory in asymptotic de Sitter
the mass then collapses to a sum over single particle space in four spacetime dimensions. This presumably
modes with the Bose—Einstein distribution function Will belong to a family of different theories, labeled

appearing by the relevant gauge symmetry (let us S&y(N)).
From the bulk point of view, this will correspond to
(N=1)/2 . . : L
Lo Lo a family of disconnected string vacua. While its pos-
M=) ST 1 = NE / dLo—rm— sible we started out in some special state in the past
0 (for example special states with much larger effective
~ INT? cosmological constants leading to inflation), as time

evolves we expect to evolve into the most likely type
for N>>1,T¢> 1/N, and where we have identified  of microstate accessible to us. Therefore if we rule out
T with the Hawking temperature. the unstable spacetimes analogous todthel back-

Plugging in to get the entropy we find grounds considered here, the CFT description predicts

this will be the macrostate with the largest available
S~ENT. S . . .

entropy, which is de Sitter with a small positive cos-
Therefore, recalling Eq$3), (4) and (6we find agree- mological constant determined hy. This matches
ment with the Bekenstein—Hawking entropy up to a well with current observations and leads to the pre-
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diction that dark energy density will asymptote to a
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The ¢g-deformed version of the algebra takes the

constant determined by the fundamental constants of form

the theory.
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Appendix A. Complementary series

In [16] ag-deformed version of the principal series
representations diL (2, R) was found. Here we gen-

eralize those results to the case of the complementary
series. Let us begin by reviewing the complementary

series for the casg= 1. We can realize this represen-
tation on the basig) = ¢ =% with k an integer. The
action of the generators takes the form

He*ik@ — Zkefike
X+e—ik0 — (k _ r)g_i(k+1)0’
X—e—ik9 — —(k + .L,)e—i(k—l)Q,

where for the complementary seried < 7 < 0. As
described iff25] there is an equivalence of represen-
tations under — —1 — 7. We will also be interested

KK 1=k1lk=1

_ k-k!
X XTI =" (A2)

where the classical limit is obtained by settikg=

g and taking the limit; — 1. We will be interested

in the case wherg = ¢2"//N with N odd. The basic
structure of the representations of interest can be car-
ried over from the results ¢1.6],

Klm) =q~2"|m),
m _q—m )qu—m _)L—lqm—l>
q—q7t

X+|m)=(bc+q —
q9—49
X |m — 1),
X7 m) =|m+1),
withm=0,...,N—1,A=¢%,1 = (N —1)/2 andb,
¢ complex numbers that satisfy

be=t’+7—-1>—1. (A.3)

These transformations are supplemented by the cyclic
operations
X4|0) =b|N — 1), X_|N — 1) =¢|0).

To check unitarity, we need to check positivity of the

in the discrete series representation corresponding tonorm (A.1). The eigenvalues off are real, since is
T = —1. For our purposes, this may be considered a an integer. It remains to examine

continuation of the complementary series.

C=e ; +o iyt
The complementary series is unitary with respect to (X m|X™"m)

the norm
o0
Ft—n+1 -

= — “a,b,, Al
x1v) n;w — (A.1)
where
y= Y awe . x= ) b

n=—0oo n=—oo

The coefficients appearing in the norA.1) arise
when the Klein—Gordon norm is computed for a field
in de Sitter with mass & m < (d — 1)/2, as shown in
Appendix B

=—(m| X~ X" |m)
m_ g—m y 1-m _ Kfl m—1

- —<bc +1L -4 - )(m|m)
q9—q q9—q

(A.4)

if we use the notion of conjugation defined by the *-
structureX’ = — X+, K* = K. Substituting in for
bc, we need to check whether

v:lz—l—l—r(r—i—l)
B <qm _qu )\qlfm _ quml>
q—q71 q—q7t

> 0.
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This can be expressed as Then dependent factor in this expression reproduces
k) i 201K the nontrivialn dependent factor that appear in the
vl —(r+1)— SIN(= ) SIN51 ) norms of the complementary serigs1).
- ; 27
sin(527)
Sing(2U=h))
=P +l—T(r+ )+ — 2 References
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