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Abstract

It has been proposed that a quantum group structure underlies de Sitter/conformal field theory duality. These idea
to give a microscopic operator counting interpretation for the entropy of two-dimensional dilaton de Sitter space. Thi
with the Bekenstein–Hawking entropy up to a factor of order unity.
 2005 Published by Elsevier B.V.Open access under CC BY license.
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1. Introduction

String perturbation theory is defined using the n
tion of a finite number of string loops moving
a fixed background spacetime. This modest star
point yields a finite perturbative expansion for sc
tering amplitudes. It has had remarkable succes
elucidating many nonperturbative phenomena, suc
strong/weak coupling duality symmetries, the ex
tence of new solitonic objects, D-branes, as well
the microscopic interpretation of black hole entropy
certain cases. Moreover these new ideas have le
the first conjectures for complete (though backgrou
dependent) nonperturbative formulations of string t
ory, such as matrix theory and AdS/CFT.
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However it seems clear that we are still miss
some key ideas. In the present Letter, we will
mainly concerned with developing the idea that n
commutative geometry and quantum groups sho
play a much more prominent role than it has to da
This idea has already been extensively studied for b
closed (see[1] for a review) and open strings in com
pact backgrounds (see for example[2]). It has long
been known that WZNW models based on the co
pact groupg have an underlying quantum-deform
symmetryU (g)q where the deformation parameterq

is a root of unity, determined by the level number
the CFT. There are a finite number of unitary ir
ducible representations of the quantum group wh
correspond to integrable representations of the cur
algebra. The tensor product structure of the quan
group determines CFT operator product coefficient
one then attempts to reconstruct the target space g
etry by Fourier transforming this finite set of represe
ense.
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tations, one winds up with a noncommutative sp
on which the quantum group symmetry acts. For
case of D-branes on group manifolds, the noncom
tative geometry that emerges makes contact with id
of Connes[3].

The hope is that quantum group structure may b
in from the beginning analogs of spacetime unc
tainty principles (see[4] for a review), and thus pro
vide a formulation of string theory applicable to t
strong gravity regime where it no longer makes se
to think of single strings moving in smooth spac
time background. In order to make these ideas m
precise, it is interesting then to further consider
examples of AdS/CFT and dS/CFT[5] and look for
quantum group symmetry underlying these dualit
This was first studied in[6] for the case of AdS/CFT
where it was found that the quantum group symm
try of WZNW models gives a natural explanatio
of the stringy exclusion principle[7] for the case of
AdS3 × S3. Related ideas appear in[8–14]. From the
spacetime viewpoint, this bound is explained by gi
gravitons[15], whose maximum size is cutoff by th
radius of the sphere.

It was proposed in[16] that similar ideas could b
extended to dS/CFT by seeking an underlying qu
tum group symmetry as aq-deformation of the isom
etry group of de Sitter/conformal group of the CF
An important new feature of this construction is t
appearance of noncompact groups. It was shown
cyclic unitary representations of the quantum gro
Uq(SL(2)) become unitary principal series represen
tions in a classical limit. These are precisely the rep
sentations corresponding to massive particle state
a two-dimensional de Sitter background. Forq a non-
trivial root of unity the quantum group representatio
are finite dimensional, so the spectrum of the the
becomes discrete. Thus the quantum group struc
introduces both an ultraviolet and an infrared cutof
an interesting way. These are prerequisites for a
croscopic interpretation of the finite horizon entro
of de Sitter. Generalization to three-dimensional
Sitter was discussed in[17] and a formula for the
de Sitter entropy was proposed. This was further
scribed from the classical dS/CFT viewpoint in[18].
Related ideas and further developments may be fo
in [19,20].

In the present Letter these ideas are applied
the case of two-dimensional dilaton de Sitter sp
[21,22]. This spacetime has a nontrivial Bekenste
Hawking entropy and temperature. The entropy of t
spacetime is accounted for by counting operators
dualq-CFT.

2. Two-dimensional dilaton de Sitter space

As described in[21] two-dimensional dilaton grav
ity

S = 1

2

∫ √−g d2x Φ

(
R − 2

�2

)

admits solutions of de Sitter form

ds2 = − 1
t2

�2 − a2
dt2 + (

t2 − a2�2)dθ2,

(1)Φ = Φ0
t

�
,

wherea is a dimensionless constant parameterizin
mass deformation,Φ0 is a dimensionless constant p
rameterizing the strength of the gravitational const
� is a length scale that sets the radius of curvature.
takeθ ∈ (0,2π) to parametrize a spacelike circle a
t ∈ (−∞,0). The Penrose diagram for this solution
shown inFig. 1. The(t, θ) coordinates only cover th
lower quadrant of the diagram.

This spacetime has an asymptotic symmetry gr
with a Virasoro algebra that acts[21,22]. As described
in [18], states of matter fields in this background f
into representations of this Virasoro algebra.

Fig. 1. Penrose diagram for de Sitter-like solution of two-dim
sional dilaton gravity. There is a singularity at one point on
spatial circle where the dilatonΦ = 0 and the gravitational couplin
diverges. This is analogous to the conical singularity of three-dim
sional Schwarzschild de Sitter.
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There exists definition of massM utilizing a space-
like Killing vector on I− [21]. The mass defined i
this way can be positive or negative. On the so
tion (1)

(2)|M| = a2

2�
Φ0.

In the limit a → 0 the singularity becomes null, an
the geometry is that of a big crunch or big bang. T
a = 1 limit describes a pure de Sitter geometry. W
expect the region 0� a � 1 to correspond to sensib
semi-classical spacetimes. This can be argued by
ing to three dimensions where these geometries co
spond to a positive deficit angle. On the other hand,
a > 1 geometries will correspond to negative defi
angle. Since this would arise from a negative ene
localized source, we do not expect these geome
to be stable once interactions are included. It is
rious the allowed geometries have|M| less than the
de Sitter value. HoweverM measures the energy of th
complete spacetime, and addition of positive ene
sources causes the cosmological horizon to shrink
ducing the overall contribution to|M|.

Demanding absence of a singularity on the Euc
ean section leads to a Hawking temperature

(3)T = a

2π�
.

Because the dilaton varies, the relation of Bekenste
Hawking entropy to area is a bit more subtle than
standard case. The entropy may be derived by com
ing the Lorentzian action of the solution with appr
priate boundary terms included. However the simp
way to obtain the entropy is to take 1/T = ∂S/∂M

which leads to

(4)S = 2πΦ0a,

where the constant of integration is fixed soS = 0
whenT = 0. This prescription agrees with results o
tained via the semi-classical Lorentzian path integr

We can try to infer something about the spectrum
microscopic excitations by asking at what temperat
do we expect the thermodynamic limit to break dow
This happens whenS ∼ O(1) soa ∼ 1/Φ0. Therefore
an estimate of the mass gap above theT = 0 solution
is

(5)�M ∼ 1

Φ0�
.

3. q-deformed CFT

The proposal for describing two-dimensionaldS2
using aq-deformed version of the dS/CFT correspo
dence has been studied in[16]. The interpretation o
horizon entropy in this framework has been elabora
in [17,18].

Based on those results we postulate theq-deformed
CFT is built out of N representations of theq-
deformed isometry groupSL(2,R) characterized by
the parametersτ = −1 and complex numberb as de-
scribed in detail inAppendix A. We setq = e2πi/N

a root of unity. Theq-deformed representations a
analogs of the complementary series representa
for massless particles in de Sitter space (strictly spe
ing mass→ 0+, and recall the relationτ = −1/2 −√

1/4− (m�)2 whenm� < 1/2).
We have in mind that the full interacting CFT w

be based on a theory withSU(N) gauge symmetry
or something similar, but we will presume there e
ists a free-field limit where one is left withN fields.
On this branch we will assume the gauge symmetr
broken down to the permutation groupSN with theN

fields transforming in the defining representation. T
is reminiscent of the structure of the CFT’s relevant
the D-brane black holes of[23].

The results of[17] carry over for the spectrum
of these representations. The generatorL0 is associ-
ated with the Killing vector used to define the n
tion of mass(2) (here we follow the conventions o
[16,17], which differ from[18,21]). This is related to
the generators defined inAppendix A by the relation
L0 = (X+ + X−)/2. In particular, for one of theseN -
dimensional cyclic representations withb real,L0 has
imaginary eigenvalues that are roughly equally spa
ranging from−i(N − 1)/2�, . . . , i(N − 1)/2�. In this
way we see theq-deformation introduces a ultravio
let and an infrared cutoff versus the continuous
bounded spectrum of theq = 1 principal series repre
sentation. Note also the spacing of theL0 eigenvalues
does not approach a continuum in theq → 1 limit.

Related issues arise in the fat-black hole limit wh
one considers black holes with D-brane charge[24].
In that case the mass gap one would infer by havinN

distinct D-strings wrapping a one-cycle is much larg
than the lowest inverse length scale in the syst
There the resolution is that theN distinct D-strings
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coalesce into a single multiply wrapped string. T
picture produces the expected mass gap.

An analogous phenomena can happen for the cy
representations. We assume the dynamics is such
instead of allN representations having the same va
for b that they differ by a phasee2πik/N wherek =
1, . . . ,N with k labeling theN different cyclic rep-
resentations. This possibility was explored in[17] for
the case of the principal series. These results also c
over to the complementary series described here.
end result is one obtains a reducible representa
with a spectrum forL0 ranging from approximately
−i(N − 1)/2�, . . . , i(N − 1)/2� with a typical level
spacing of order 1/N�. Therefore we match the ex
pected spacing(5) provided we identifyN with the
strength of the gravitational coupling

(6)N ∼ Φ0.

This gives the expected continuous spectrum forL0 as
N → ∞.

Now we are ready to compute the de Sitter entro
arising from this microscopic description, followin
[17,18]. A comoving observer in de Sitter sees a th
mal density matrix due to a trace over modes outs
their horizon. In[17,18]this notion was carried over t
the CFT description. In particular, the partition fun
tion becomes a sum over a operators in the CFT w
Boltzmann weights. The operators that appear in
sum are those corresponding to the one-particle mo
with positive imaginaryL0 eigenvalue, together wit
their tensor products. We begin by assuming B
statistics for these modes. The expectation value
the mass then collapses to a sum over single par
modes with the Bose–Einstein distribution functi
appearing

M =
∑ L0

eL0/T − 1
≈ N�

(N−1)/2∫
0

dL0
L0

eL0/T − 1

∼ �NT 2

for N � 1, T � � 1/N , and where we have identifie
T with the Hawking temperature.

Plugging in to get the entropy we find

S ∼ �NT .

Therefore, recalling Eqs.(3), (4) and (6)we find agree-
ment with the Bekenstein–Hawking entropy up to
t

factor of order unity. In the limitN � 1, replacing the
Bose–Einstein distribution by Fermi–Dirac chang
the overall coefficient by a constant factor of ord
unity.

4. Discussion

In this Letter we have provided a statistical co
putation of entropy in a de Sitter-like spacetim
We computed the microscopic entropy of a tw
dimensional version of de Sitter space that depend
two nontrivial parameters: a gravitational constant a
a mass parameter. In the usual semi-classical pic
this entropy diverges, but byq-deforming the space
time this entropy is rendered finite and can be give
dual interpretation as an operator counting problem
aq-deformed CFT.

Clearly much remains to be done in further dev
oping the correspondence betweenq-deformed CFT’s
and quantum de Sitter spacetimes. Thus far it has b
established that unitary CFT’s of this type exist, a
that these appear to account for the entropy of de
ter space in a straightforward way. It would be ve
interesting to find versions of string theory that live
these backgrounds and higher-dimensional genera
tions, and to give a complete specification of the d
boundary CFT’s.

To conclude, let us offer the following speculatio
Suppose a CFT of the type outlined in the present w
can be shown to be a complete self-consistent the
dual to a gravitational theory in asymptotic de Sit
space in four spacetime dimensions. This presum
will belong to a family of different theories, labele
by the relevant gauge symmetry (let us saySU(N)).
From the bulk point of view, this will correspond t
a family of disconnected string vacua. While its po
sible we started out in some special state in the
(for example special states with much larger effec
cosmological constants leading to inflation), as ti
evolves we expect to evolve into the most likely ty
of microstate accessible to us. Therefore if we rule
the unstable spacetimes analogous to thea > 1 back-
grounds considered here, the CFT description pred
this will be the macrostate with the largest availa
entropy, which is de Sitter with a small positive co
mological constant determined byN . This matches
well with current observations and leads to the p
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diction that dark energy density will asymptote to
constant determined by the fundamental constant
the theory.
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Appendix A. Complementary series

In [16] aq-deformed version of the principal seri
representations ofSL(2,R) was found. Here we gen
eralize those results to the case of the complemen
series. Let us begin by reviewing the complement
series for the caseq = 1. We can realize this represe
tation on the basis|k〉 = e−ikθ with k an integer. The
action of the generators takes the form

He−ikθ = 2ke−ikθ ,

X+e−ikθ = (k − τ)e−i(k+1)θ ,

X−e−ikθ = −(k + τ)e−i(k−1)θ ,

where for the complementary series−1 < τ < 0. As
described in[25] there is an equivalence of represe
tations underτ → −1 − τ̄ . We will also be interested
in the discrete series representation correspondin
τ = −1. For our purposes, this may be considere
continuation of the complementary series.

The complementary series is unitary with respec
the norm

(A.1)〈χ |ψ〉 =
∞∑

n=−∞


(τ − n + 1)


(−τ − n)
anb̄n,

where

ψ =
∞∑

n=−∞
ane

−inθ , χ =
∞∑

n=−∞
bne

−inθ .

The coefficients appearing in the norm(A.1) arise
when the Klein–Gordon norm is computed for a fie
in de Sitter with mass 0� m < (d − 1)/2, as shown in
Appendix B.
The q-deformed version of the algebra takes
form

KK−1 = K−1K = 1,

KX±K−1 = q±2X±,

(A.2)[X+,X−] = K − K−1

q − q−1
,

where the classical limit is obtained by settingK =
qH and taking the limitq → 1. We will be interested
in the case whereq = e2πi/N with N odd. The basic
structure of the representations of interest can be
ried over from the results of[16],

K|m〉 = q−2mλ|m〉,
X+|m〉 =

(
bc + qm − q−m

q − q−1

λq1−m − λ−1qm−1

q − q−1

)

× |m − 1〉,
X−|m〉 = |m + 1〉,
with m = 0, . . . ,N − 1, λ = q2l , l = (N − 1)/2 andb,
c complex numbers that satisfy

(A.3)bc = τ2 + τ − l2 − l.

These transformations are supplemented by the cy
operations

X+|0〉 = b|N − 1〉, X−|N − 1〉 = c|0〉.
To check unitarity, we need to check positivity of t
norm (A.1). The eigenvalues ofH are real, sincel is
an integer. It remains to examine

〈X+m|X+m〉
= −〈m|X−X+|m〉

(A.4)

= −
(

bc + qm − q−m

q − q−1

λq1−m − λ−1qm−1

q − q−1

)
〈m|m〉

if we use the notion of conjugation defined by the
structureX∗± = −X∓, K∗ = K−1. Substituting in for
bc, we need to check whether

v = l2 + l − τ(τ + 1)

−
(

qm − q−m

q − q−1

λq1−m − λ−1qm−1

q − q−1

)

> 0.
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This can be expressed as

v = l2 + l − τ(τ + 1) − sin(2π(l−k)
2l+1 )sin(2π(l+1+k)

2l+1 )

sin2( 2π
2l+1)

= l2 + l − τ(τ + 1) + sin2(
2π(l−k)

2l+1 )

sin2( 2π
2l+1)

.

Since−1 � τ � 0 this expression is always positiv
so theq-deformed representation is unitary.

Appendix B. Klein–Gordon norm

In this appendix we demonstrate the coefficie
appearing in the norm(A.1) arise from the Klein–
Gordon norm when 0� m� � 1/2. The Klein–Gordon
norm is

(B.1)(ψ,φ) = −i

∫
dΣµ (ψ

←→
∂µφ∗).

Rather than working with the coordinate patch(1), we
will instead work in global coordinates

ds2 = −dT 2 + �2 cosh2 T dθ2

to make direct contact with previous work[16,17]and
takeθ to have 2π periodicity. The dilaton vanishes a
θ = 0 in these coordinates. In the mass range of in
est the mode expansion for a free minimally coup
scalar field takes the form

φ =
∞∑

n=−∞
fn(T )e−inθ ,

whereφ satisfies the equation

�φ = m2φ.

The solutions take the form

fn = AnP
−τ− 1

2

− 1
2−n

(
tanh

T

�

)
+ BnQ

−τ− 1
2

− 1
2−n

(
tanh

T

�

)
,

whereτ = −1/2−√
1/4− (m�)2 and the coefficients

are chosen so the modes are orthonormal with res
to the Klein–Gordon norm(B.1). This imposes the
condition

A∗
nBn − AnB

∗
n = i

π5/2


(τ − n + 1)


(−τ − n)
.

t

Then dependent factor in this expression reprodu
the nontrivialn dependent factor that appear in t
norms of the complementary series(A.1).
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