Common solution to the Lyapunov equation for
2 × 2 complex matrices

Thomas J. Laffey a, Helena Šmigoc b,∗, 1

a Department of Mathematics, University College Dublin, Belfield, Dublin 4, Ireland
b Hamilton Institute, National University of Ireland, Maynooth, Co., Kildare, Ireland

Received 28 September 2005; accepted 10 August 2006
Available online 25 October 2006
Submitted by R. Loewy

Abstract

In this work we solve the problem of a common solution to the Lyapunov equation for 2 × 2 complex matrices. We show that necessary and sufficient conditions for the existence of a common solution to the Lyapunov equation for 2 × 2 complex matrices A and B is that matrices $(A + iαI)(B + iβI)$ and $(A + iαI)^{-1}(B + iβI)$ have no negative real eigenvalues for all $α, β ∈ \mathbb{R}$. We show how these results relate to a special class of 4 × 4 real matrices.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Lyapunov equation; Lyapunov functions; Stability; Convex cones; Convex invertible cones

1. Introduction

A matrix $A ∈ \mathbb{C}^{n×n}$ is called (Hurwitz) stable if all its eigenvalues lie in the open left half of the complex plane. In this case, the linear-time invariant (LTI) system

$$\dot{x} = Ax$$

is asymptotically stable.
A classical result of Lyapunov states, that a matrix A is stable if and only if for arbitrary Hermitian positive definite Q, the Lyapunov equation

$$AP + PA^* = -Q$$

admits a positive definite solution P. The associated form $V(x) = x^TPx$ is called a quadratic Lyapunov function for the system (1).

We shall use the convention that $P > 0$ denotes a Hermitian positive definite matrix and thus, for a given stable matrix A, we will denote the set of all solutions to the Lyapunov equation for A by

$$\mathcal{P}(A) = \{P = P^* > 0 : AP + PA^* < 0\}.$$

$\mathcal{P}(A)$ is an open convex cone.

Let A_1, A_2, \ldots, A_k be stable matrices in $\mathbb{C}^{n \times n}$ and let $P > 0$ be a common solution to the following Lyapunov equations:

$$A_j P + PA_j^* < 0 \quad \text{for} \quad j = 1, 2, \ldots, k.$$

We say that the matrix P is a common solution to the Lyapunov equation for matrices A_j, $j = 1, 2, \ldots, k$. Accompanying quadratic Lyapunov function $V(x) = x^TPx$ is called a common quadratic Lyapunov function (CQLF) for the LTI systems $\dot{x} = A_jx$, $j = 1, \ldots, k$.

The problem of deciding whether stable matrices A_j, $j = 1, \ldots, k$, share a common solution to the Lyapunov equation has been extensively studied, but the complete solution is known only in a few special cases. For a source of literature on the problem, we refer the reader to the following works and the citations that appear in them [1–7]. The problem has a wide variety of applications in systems and control theory and elsewhere.

In [8] Loewy considered the following question. Given a stable matrix $A \in \mathbb{C}^{n \times n}$, for what matrices B does $\mathcal{P}(A) = \mathcal{P}(B)$ hold. He proved the following result.

Theorem 1. Let $A, B \in \mathbb{C}^{n \times n}$ be stable matrices. Then $\mathcal{P}(A) = \mathcal{P}(B)$ if and only if

$$B = \mu(A + i\alpha I) \quad \text{for some} \quad \alpha, \mu \in \mathbb{R} \text{ such that} \quad \mu > 0$$

or

$$B = \mu((A + i\alpha_1 I)^{-1} + i\alpha_2 I) \quad \text{for some} \quad \alpha_1, \alpha_2, \mu \in \mathbb{R} \text{ such that} \quad \mu > 0.$$

Let \mathcal{C} be a nonempty set in $\mathbb{C}^{n \times n}$. We say that \mathcal{C} is nonsingular (stable) if all matrices $M \in \mathcal{C}$ are nonsingular (stable).

For $A, B \in \mathbb{C}^{n \times n}$ we will denote by $\text{conv}(A, B)$ the convex cone generated by A and B.

Convex invertible cone is a convex cone that is closed under matrix inversion. By $\text{cic}(A, B)$ we will denote the convex invertible cone generated by A and B. Finally, $\hat{\text{cic}}(A, B)$ will denote the smallest convex invertible cone that contains A and B and has the following property: $M + i\alpha I \in \hat{\text{cic}}(A, B)$ for every $M \in \text{cic}(A, B)$ and $\alpha \in \mathbb{R}$. Clearly:

$$\text{conv}(A, B) \subseteq \text{cic}(A, B) \subseteq \hat{\text{cic}}(A, B).$$

Theorem 1 implies that stability of $\hat{\text{cic}}(A, B)$ is a necessary condition for the existence of a common solution to the Lyapunov equation for matrices A and B. This condition is in general not sufficient.
For given matrices A and B, the stability of $\widetilde{\text{cic}}(A, B)$ is difficult to check. Let us introduce two weaker necessary conditions that are easy to verify. If the convex cone $\text{conv}(A, B)$ is stable, then the matrix $A^{-1}B$ has no negative real eigenvalues. Similarly, stability of the convex cone $\text{conv}(A^{-1}, B)$ implies that the matrix AB has no negative real eigenvalues. In some special cases those weaker conditions are sufficient for the existence of a common solution to the Lyapunov equation.

Let A and B be real stable matrices such that the rank of $A - B$ is one. Shorten and Narendra [12] proved that a necessary and sufficient condition for the existence of a common solution to the Lyapunov equation for matrices A and B is that the matrix product AB does not have a real negative eigenvalue. A different proof of this result was presented by King and Nathanson in [13]. In this paper we will show that when A and B are real and rank of $A - B$ is two, even the stability of $\text{cic}(A, B)$ is not sufficient for the existence of a common solution to the Lyapunov equation for A and B.

Necessary and sufficient conditions for the existence of a common solution to the Lyapunov equation for 2×2 real matrices A and B is that matrices AB and $A^{-1}B$ do not have a real negative eigenvalue. In this case those conditions are equivalent to the stability of the convex cones $\text{conv}(A, B)$ and $\text{conv}(A^{-1}, B)$. The proof of this result can be found in [10]. The special case of stable matrices was proved earlier in [14] and in [15].

In this work we will investigate the existence of a common solution to the Lyapunov equation for 2×2 complex matrices. We will show that necessary and sufficient conditions for the existence of a common solution to the Lyapunov equation for 2×2 complex matrices A and B is that convex cones $\text{conv}((A + i\alpha I_2), B)$ and $\text{conv}((A + i\alpha I_2)^{-1}, B)$ are stable for all $\alpha \in \mathbb{R}$.

The notation we will use is standard. For example, by \mathbb{R} we will denote the set of real numbers and by \mathbb{C} the set of complex numbers. By $\mathbb{R}^{n \times n}$ we will denote the set of $n \times n$ real matrices and by $\mathbb{C}^{n \times n}$ the set of $n \times n$ complex matrices. We shall write A^* for the conjugate transpose of the matrix A and A^T for the transpose of the matrix A. We will denote by Q_{ij} the (i, j)th element of the matrix Q.

2. Solution to the Lyapunov equation for 2×2 complex matrices

The main result of this paper gives necessary and sufficient conditions for a pair of complex 2×2 matrices to have a common solution to the Lyapunov equation. First we will state the result and the remainder of this section will gradually lead us to its proof.

Theorem 2. The stable matrices $A \in \mathbb{C}^{2 \times 2}$ and $B \in \mathbb{C}^{2 \times 2}$ have a common solution to the Lyapunov equation if and only if the following conditions are satisfied:

(A1) The convex cone $\text{conv}((A + i\alpha I_2), B)$ is stable for all $\alpha \in \mathbb{R}$.

(A2) The convex cone $\text{conv}((A + i\alpha I_2)^{-1}, B)$ is stable for all $\alpha \in \mathbb{R}$.

Remark 3. Let us look at two equivalent ways in which we can express the conditions in Theorem 2. Conditions (A1) and (A2) are equivalent to the conditions:

(B1) Matrix $(A + i\alpha I)(B + i\beta I)$ has no negative real eigenvalues for all $\alpha, \beta \in \mathbb{R}$.

(B2) Matrix $(A + i\alpha I)^{-1}(B + i\beta I)$ has no negative real eigenvalues for all $\alpha, \beta \in \mathbb{R}$.
Indeed to establish this equivalence assume that conditions (A1) and (A2) hold. If (B1) does not hold, then the matrix $(A + i\alpha I)(B + i\beta I)$ has a negative real eigenvalue $-\mu$, $\mu > 0$, for some $\alpha, \beta \in \mathbb{R}$. Hence
\[\det((A + i\alpha I)(B + i\beta I) + \mu I) = 0 \]
and
\[\det((B + i\beta I) + \mu (A + i\alpha I)^{-1}) = 0. \]
Therefore the convex cone $\text{conv}((A + i\alpha I)^{-1}, B)$ is not stable. This contradicts the condition (A2). Similarly we can show that the existence of a negative real eigenvalue for the matrix $(A + i\alpha I)^{-1}(B + i\beta I)$ contradicts the condition (A1).

Now assume that conditions (B1) and (B2) are satisfied. If the convex cone $\text{conv}((A + i\alpha I_2, B)$ is not stable, then there exists $\lambda_0 > 0$ such that the matrix $\lambda_0(A + i\alpha I_2) + B$ has a purely imaginary eigenvalue $-i\beta$, $\beta \in \mathbb{R}$. Hence the matrix $(A + i\alpha I)^{-1}(B + i\beta I)$ has a negative eigenvalue $-\lambda_0$, contrary to the condition (B2). In a similar way we get a contradiction to the condition (B1) if the convex cone $\text{conv}((A + i\alpha I_2)^{-1}, B)$ is not stable.

Conditions (B1) and (B2) are clearly equivalent to the conditions:

\begin{enumerate}
\item[(C1)] The convex cone $\text{conv}((A + i\alpha I_2, B)$ is nonsingular for all $\alpha, \beta \in \mathbb{R}$.
\item[(C2)] The convex cone $\text{conv}((A + i\alpha I_2)^{-1}, B + i\beta I)$ is nonsingular for all $\alpha, \beta \in \mathbb{R}$.
\end{enumerate}

First we will consider the existence of a common solution to the Lyapunov equation for matrices of the form $A = D + K$, where D is a diagonal matrix and K is a skew Hermitian matrix. Therefore we will be looking at the matrices of the form:
\[A = \begin{pmatrix} -a + im & r + is \\ -r + is & -b + in \end{pmatrix} \] (2)
for some real numbers a, b, m, n, r, s.

We define the following sets of matrices:
\[\mathcal{M}_1 = \left\{ A = \begin{pmatrix} -a + im & r + is \\ -r + is & -b + in \end{pmatrix} : (m, n, r, s) \in \mathbb{R}^4, a > 0, b > 0 \right\}, \]
\[\mathcal{M}_2 = \left\{ A = \begin{pmatrix} im & r + is \\ -r + is & -b + in \end{pmatrix} : (m, n, r, s) \in \mathbb{R}^4, b > 0, r + is \neq 0 \right\}, \]
\[\mathcal{M}_3 = \left\{ A = \begin{pmatrix} -a + im & r + is \\ -r + is & -i n \end{pmatrix} : (m, n, r, s) \in \mathbb{R}^4, a > 0, r + is \neq 0 \right\} \]
and
\[\mathcal{M} = \mathcal{M}_1 \cup \mathcal{M}_2 \cup \mathcal{M}_3. \]

First we will show that every matrix $A \in \mathcal{M}$ has a solution to the Lyapunov equation of the form:
\[P = \begin{pmatrix} 1 & h + ik \\ h - ik & 1 \end{pmatrix} \] (3)
for some real numbers h and k.
Proposition 4. Let the matrix A be of the form (2) and the matrix P be of the form (3). Then the following statements hold:

1. If $A \in \mathcal{M}_2$, then P is a solution to the Lyapunov equation for A for all sufficiently small real numbers h and k that satisfy the inequality: $hr + ks < 0$.
2. If $A \in \mathcal{M}_3$, then P is a solution to the Lyapunov equation for A for all sufficiently small real numbers h and k that satisfy the inequality: $hr + ks > 0$.
3. If $A \in \mathcal{M}_1$, then P is a solution to the Lyapunov equation for A for all sufficiently small real numbers h and k.

Proof. To prove the first item, we take $A \in \mathcal{M}_2$ and matrix P of the form (2). The matrix $Q = AP + PA^*$ will be negative definite if and only if the following inequalities are satisfied: $Q_{11} < 0$, $Q_{22} < 0$, and $\det(Q) > 0$. We compute:

\[
Q_{11} = 2(hr + ks),
Q_{22} = -2(b + hr + ks),
\det Q = -4b(hr + ks) + \gamma_1 h^2 + \gamma_2 k^2 + \gamma_3 hk,
\]

where γ_1, γ_2 and γ_4 are expressions in a, b, r, s, m, n and do not depend on h and k. Observe that every pair of sufficiently small numbers h and k that satisfies inequality $Q_{11} < 0$ also satisfies inequalities $Q_{22} < 0$ and $\det(Q) > 0$.

Similar arguments give us the second item.

For $A \in \mathcal{M}_1$ we have:

\[
A + A^* = \begin{pmatrix} -2a & 0 \\ 0 & -2b \end{pmatrix} < 0,
\]

therefore the identity is a solution to the Lyapunov equation for A. Since $\mathcal{P}(A)$ is an open set, the third item holds. \[\square\]

We have found a solution to the Lyapunov equation for each of the matrices in the set \mathcal{M}, hence the following corollary clearly holds.

Corollary 5. All matrices in the set \mathcal{M} are stable.

The next proposition gives conditions when the set of matrices from \mathcal{M} has a common solution to the Lyapunov equation.

Proposition 6. Let matrices A_j be of the form:

\[
A_j = \begin{pmatrix} -a_j + im j & r_j + is j \\ -r_j + is j & -b_j + in j \end{pmatrix}
\]

and let $A_j \in \mathcal{M}_1$ for $j = 1, \ldots, l_1$, $A_j \in \mathcal{M}_2$ for $j = l_1 + 1, \ldots, l_2$ and $A_j \in \mathcal{M}_3$ for $j = l_2 + 1, \ldots, l$.

Matrices A_j, $j = 1, \ldots, l$, have a common solution to the Lyapunov equation if and only if there exist real numbers h and k that satisfy the following inequalities:

\[
h r_j + ks_j < 0 \quad \text{for } i = l_1 + 1, \ldots, l_2
\]
and \[hr_j + ks_j > 0 \quad \text{for } j = l_2 + 1, \ldots, l. \] (5)

Proof. From Proposition 4 it follows that matrix \(P \) of the form (3) will be a common solution to the Lyapunov equation for matrices \(A_j, j = 1, \ldots, l \), for all sufficiently small numbers \(h \) and \(k \) that satisfy inequalities (4) and (5).

To prove the other implication we assume that there exists a solution to the Lyapunov equation \(P \) for matrices \(A_j, j = 1, \ldots, l \). Without loss of generality we can take \(P \) to be of the form:
\[
P = \begin{pmatrix} 1 & ik \\ h - ik & h + ik \end{pmatrix}
\]
for some real numbers \(h, k \) and \(z \). Set \(Q_j = A_j P + PA_j^* \). For \(j = l_1 + 1, \ldots, l_2 \) we have \(Q_{11} = 2(hr_j + ks_j) \), hence \(hr_j + ks_j < 0 \). For \(j = l_2 + 1, \ldots, l \) we have \(Q_{22} = -2(hr_j + ks_j) \), hence \(hr_j + ks_j > 0 \). Therefore \(h \) and \(k \) satisfy inequalities (4) and (5) and the proof is complete. \(\square \)

From Proposition 6 we can obtain conditions for the existence of the common solution to the Lyapunov equation for two matrices in \(\mathbb{M} \).

Corollary 7. For matrices \(A_1 \) and \(A_2 \) in the form as in Proposition 6 the following statements hold:

1. Matrices \(A_1 \in \mathbb{M}_1 \) and \(A_2 \in \mathbb{M}_2 \) have a common solution to the Lyapunov equation.
2. Matrices \(A_1 \in \mathbb{M}_1 \) and \(A_2 \in \mathbb{M}_2 \) have a common solution to the Lyapunov equation unless \((r_1, s_1) = -\alpha(r_2, s_2) \) for some \(\alpha > 0 \).
3. Matrices \(A_1 \in \mathbb{M}_3 \) and \(A_2 \in \mathbb{M}_3 \) have a common solution to the Lyapunov equation unless \((r_1, s_1) = -\alpha(r_2, s_2) \) for some \(\alpha > 0 \).
4. Matrices \(A_1 \in \mathbb{M}_2 \) and \(A_2 \in \mathbb{M}_2 \) have a common solution to the Lyapunov equation unless \((r_1, s_1) = \alpha(r_2, s_2) \) for some \(\alpha > 0 \).

Proof. The first item follows directly from Proposition 6. To prove the second item, we observe that there exist numbers \(h \) and \(k \) that satisfy inequalities \(hr_j + ks_j > 0 \) for \(j = 1, 2 \), if and only if \((r_1, s_1) \neq -\alpha(r_2, s_2) \). We can apply similar arguments to prove the rest of the corollary. \(\square \)

Now we will consider the existence of a common solution to the Lyapunov equation for matrices \(A \) and \(B \), where \(A \in \mathbb{M} \) and \(B \) is a matrix for which \(B + B^* \) is a real negative semidefinite matrix with zero determinant.

Proposition 8. Let
\[
A = \begin{pmatrix} -a + im & r + is \\ -r + is & -a + in \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} -c + ip & t + u + iv \\ t - u + iv & -d + iq \end{pmatrix},
\]
where \(r, s, m, n, t, u \) and \(v \) are real numbers, \(a, c \) and \(d \) are positive numbers and \(cd - t^2 = 0 \). Matrices \(A \) and \(B \) do not have a common solution to the Lyapunov equation if and only if \(u = 0, r = 0 \) and \(s = -\alpha(t(p - q) + v(c - d)) \) for some positive number \(\alpha \).

Proof. In Proposition 4 we have already seen that matrix \(P \) of the form (3) will be a solution to the Lyapunov equation for \(A \) for all sufficiently small numbers \(h \) and \(k \) that satisfy inequality \(hr + ks > 0 \).
Let $Q = BP + PB^*$. The inequalities

$$Q_{11} = 2(-c + h(t + u) + kv) < 0$$

and

$$Q_{22} = 2(-d + h(t - u) - kv) < 0$$

hold for all sufficiently small h and k. We compute:

$$\det(Q) = 4hu(c - d) + 4k(t(p - q) + v(c - d)) + h^2\gamma_1 + k^2\gamma_2 + hk\gamma_3,$$

where γ_1, γ_2 and γ_3 do not depend on h and k. We see that the matrix P will be a solution to the Lyapunov equation for B for all sufficiently small numbers h and k that satisfy inequality: $hu(c - d) + k(t(p - q) + v(c - d)) > 0$. We conclude that matrices A and B have a common solution to the Lyapunov equation of the form (3) if we can find numbers h and k that satisfy inequalities:

$$hr + ks > 0 \quad \text{and} \quad hu(c - d) + k(t(p - q) + v(c - d)) > 0.$$

That is if

$$(r, s) \neq -\alpha(u(c - d), t(p - q) + v(c - d))$$

for some $\alpha > 0$.

Next we consider matrices of the form

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 1 + z \end{pmatrix}. \quad (6)$$

Let $Q = BP + PB^*$. The inequalities

$$Q_{11} = -2c < 0 \quad \text{and} \quad Q_{22} = -2d(1 + z) < 0$$

hold for all sufficiently small z. We compute:

$$\det(Q) = -4tuz - z^2((u + t)^2 + v^2).$$

Since $t \neq 0$ we can choose z such that $\det(Q) > 0$ as long as $u \neq 0$. In this case a matrix of the form (6) will be a solution to the Lyapunov equation for B.

The set $\mathcal{P}(B)$ is open, hence a matrix of the form

$$P = \begin{pmatrix} 1 & h + ik \\ h - ik & 1 + z \end{pmatrix} \quad (7)$$

will be a solution to the Lyapunov equation for B for all sufficiently small numbers h, k. We conclude that a matrix P of the from (7) will be a common solution to the Lyapunov equation for A and B for all sufficiently small numbers z, h and k that satisfy inequality $hr + ks > 0$.

We have proved that matrices A and B have a common solution to the Lyapunov equation unless $u = 0$, $r = 0$ and $s = -\alpha(t(p - q) + v(c - d))$ for some positive number α. Now we will show that if those relations hold, the matrices A and B do not have a common solution to the Lyapunov equation.

Assume that they have a common solution P. Without loss of generality we can assume that P is of the form:

$$P = \begin{pmatrix} 1 & h + ik \\ h - ik & 1 + z \end{pmatrix}.$$
Let \(Q_A = AP + PA^* \) and \(Q_B = BP + PB^* \). We compute:

\[
\det(Q_A) = 2aks(2 + z) - (h(m - n) + zs) - h^2a^2 - k^2(a^2 + (m - n)^2 + 4s^2)
\]

and

\[
\det(Q_B) = 2k(t(p - q) + v(c - d)) - h(c^2 + (p - q)^2 + 4v^2).
\]

Since we want \(\det(Q_A) > 0 \) and \(\det(Q_B) > 0 \) we need to satisfy the inequalities:

\[
2aks(2 + z) > 0 \quad \text{and} \quad 2k(t(p - q) + v(c - d))(2 + z) > 0.
\]

Those inequalities do not hold for any choice of \(k \) and \(z \), since we have assumed that \(s = -\alpha(t(p - q) + v(c - d)) \), \(\alpha > 0 \). We conclude that in this case matrices \(A \) and \(B \) do not have a common solution to the Lyapunov equation. \(\square \)

Before we give the proof of Theorem 2 we need a couple of lemmas. The first lemma is well known and easy to check.

Lemma 9. Let \(A \in \mathbb{C}^{n \times n} \) be stable and \(T \in \mathbb{C}^{n \times n} \) invertible. Then \(P \) is a solution to the Lyapunov equation for \(A \) if and only if \(T^{-1}AT \) is a solution to the Lyapunov equation for \(T^{-1}PT \).

In particular, matrices \(A \) and \(B \) have a common solution to the Lyapunov equation if and only if matrices \(T^{-1}AT \) and \(T^{-1}BT \) have.

Lemma 10. Let \(A \) and \(B \) be stable matrices such that the matrices \(A - \epsilon I \) and \(B \) have a common solution to the Lyapunov equation for every \(\epsilon > 0 \). Then there exists a positive definite matrix \(P \) such that the matrices \(AP + PA^* \) and \(BP + PB^* \) are negative semidefinite.

Proof. For every \(\epsilon > 0 \) there exists positive definite matrix \(P_\epsilon \) with norm 1 such that matrices \((A - \epsilon I)P_\epsilon + P_\epsilon(A - \epsilon I)^* \) and \(BP_\epsilon + P_\epsilon B^* \) are negative definite. The matrices \(P_\epsilon \) are contained in the compact set, hence there exists a convergent sequence \(\{P_n; n = 1, 2, \ldots\} \) contained in the set \(\{P_\epsilon; \epsilon > 0\} \). The matrix \(P = \lim_{n \to \infty} P_n \) is nonzero positive semidefinite matrix with norm 1 such that the matrices \(AP + PA^* \) and \(BP + PB^* \) are negative semidefinite. Since the matrices \(A \) and \(B \) are invertible, matrices \(AP + PA^* \) and \(BP + PB^* \) are nonzero.

Among all matrices \(P \) that have this property we choose one for which \[
\text{rank}(AP + PA^*) + \text{rank}(BP + PB^*)
\]

is maximal. We will prove that such a matrix \(P \) must be positive definite.

Suppose that \(P \) is singular. Using unitary similarity and Lemma 9 we can assume that \(P \) is of the form:

\[
P = \begin{pmatrix} P_1 & 0 \\ 0 & 0 \end{pmatrix}
\]

for some positive definite matrix \(P_1 \). Let

\[
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}
\]

be the corresponding partitions of the matrices \(A \) and \(B \).
Since the matrix
\[AP + PA^* = \begin{pmatrix} A_{11}P_1 + P_1A_{11}^* + P_1A_{21}^* \\ A_{21}P_1 \end{pmatrix} \]
is negative semidefinite, we have \(A_{21}P_1 = 0 \) and consequently \(A_{21} = 0 \). Similar argument gives us \(B_{21} = 0 \). Hence the matrices \(A_{22} - \epsilon I \) and \(B_{22} \) have a common solution to the Lyapunov equation for every \(\epsilon > 0 \).

The previous argument applied to the matrices \(A_{22} \) and \(B_{22} \) gives us the existence of a nonzero positive semidefinite matrix \(P_2 \) such that matrices \(A_{22}P_2 + P_2A_{22}^* \) and \(B_{22}P_2 + P_2B_{22}^* \) are nonzero negative semidefinite.

Put \(P_0 = \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix} \).

Then
\[\text{rank}(AP_0 + P_0A^*) + \text{rank}(BP_0 + P_0B^*) > \text{rank}(AP + PA^*) + \text{rank}(BP + PB^*). \]

This contradicts the choice of the matrix \(P \). Hence we have proved that the matrix \(P \) must be positive definite. □

In the following lemma we will show that if conditions (A1) and (A2) in Theorem 2 are satisfied for the matrices \(A \) and \(B \), then those conditions are satisfied for the matrices \(A - \gamma I \) and \(B - \delta I \) for all \(\gamma \geq 0 \) and \(\delta \geq 0 \).

Lemma 11. Let \(A \) and \(B \) be stable matrices in \(\mathbb{C}^{n \times n} \) such that conditions (A1) and (A2) are satisfied. Then for all \(\gamma \geq 0 \) and \(\delta \geq 0 \) the following conditions hold:

(D1) The convex cone \(\text{conv}((A - \gamma I + i\alpha I), B - \delta I) \) is stable for all \(\alpha \in \mathbb{R} \).

(D2) The convex cone \(\text{conv}((A - \gamma I + i\alpha I)^{-1}, B - \delta I) \) is stable for all \(\alpha \in \mathbb{R} \).

Proof. Let conditions (A1) and (A2) hold and suppose that the convex cone \(\text{conv}(A - \gamma I + i\alpha I, B - \delta I) \) is not stable for some \(\gamma \geq 0 \), \(\delta \geq 0 \) and \(\alpha \in \mathbb{R} \).

Then there exists \(\eta > 0 \) such that the matrix \((A - \gamma I + i\alpha I) + \eta(B - \delta I) \) has a purely imaginary eigenvalue \(-i\lambda \), \(\lambda \in \mathbb{R} \):
\[\det((A - \gamma I + i\alpha I) + \eta(B - \delta I) + i\lambda I) = 0. \]

It follows that the matrix \(A + \eta B \) has an eigenvalue \(\gamma + \delta - i(\alpha + \lambda) \), hence it is not stable. Therefore the convex cone \(\text{conv}(A, B) \) is not stable, which contradicts condition (A1).

Suppose that the convex cone \(\text{conv}((A - \gamma I + i\alpha I)^{-1}, B - \delta I) \) is not stable for some \(\gamma \geq 0 \), \(\delta \geq 0 \) and \(\alpha \in \mathbb{R} \). Then there exists \(\eta > 0 \) such that the matrix \((A - \gamma I + i\alpha I)^{-1} + \eta(B - \delta I) \) has a purely imaginary eigenvalue \(-i\lambda \), \(\lambda \in \mathbb{R} \). Hence
\[\det((A - \gamma I + i\alpha I)^{-1} + \eta(B - \delta I) + i\lambda I) = 0 \]
and
\[\det((\eta(B - \delta I) + i\lambda I)^{-1} + A - \gamma I + i\alpha I) = 0. \]
Since \((\eta(B - \delta I) + i\lambda I)^{-1} + A\) is not stable, there exists \(\eta_1 > 0\) such that the matrix \((\eta(B - \delta I) + i\lambda I)^{-1} + \eta_1 A\) has a purely imaginary eigenvalue \(-i\lambda_1, \lambda_1 \in \mathbb{R}:
\[
\det((\eta(B - \delta I) + i\lambda I)^{-1} + \eta_1 A + i\lambda_1 I) = 0.
\]

It follows that
\[
\det(\eta(B - \delta I) + i\lambda I + (\eta_1 A + i\lambda_1 I)^{-1}) = 0.
\]

This contradicts the assumption that the convex cone \(\text{conv}((A + i\lambda_1/\eta_1 I)^{-1}, B)\) is stable. \(\square\)

We can now prove the main result of this paper.

Proof of Theorem 2. If matrices \(A\) and \(B\) have a common solution to the Lyapunov equation then \(\text{cic}(A, B)\) is stable, hence conditions (A1) and (A2) are satisfied.

We will prove the other implication by contradiction. We suppose that matrices \(A\) and \(B\) do not have a common solution to the Lyapunov equation, but they satisfy conditions (A1) and (A2) in Theorem 2.

Let
\[
\alpha_0 = \inf\{\alpha; \text{ } A - \alpha I_2 \text{ and } B \text{ have a common solution to the Lyapunov equation}\}.
\]

Define \(A_0 = A - \alpha_0 I_2\). Then by Lemma 10 there exists a positive definite matrix \(P\) such that matrices \(A_0 P + PA_0^*\) and \(B P + PB^*\) are negative semidefinite. If either \(A_0 P + PA_0^* > 0\) or \(B P + PB^* > 0\), then matrices \(A_0\) and \(B\) have a common solution to the Lyapunov equation. Hence \(\det(A_0 P + PA_0^*) = 0\) and \(\det(B P + PB^*) = 0\). By Lemma 11, the matrices \(A_0\) and \(B\) satisfy conditions (A1) and (A2).

The matrices \(A_1 = P^{-1/2} A_0 P^{1/2}\) and \(B_1 = P^{-1/2} B P^{1/2}\) are stable, satisfy conditions (A1) and (A2) and \(A_1 + A_1^* \leq 0\) and \(B_1 + B_1^* \leq 0\). Furthermore, Lemma 9 tells us that matrices \(A_1 - \epsilon I\) and \(B_1\) have a common solution to the Lyapunov equation for every \(\epsilon > 0\), but matrices \(A_1\) and \(B_1\) do not have a common solution to the Lyapunov equation.

Let \(U_1\) be a unitary matrix such that
\[
U_1^*(A + A^*)U_1 = \begin{pmatrix}
-2a & 0 \\
0 & 0 \\
\end{pmatrix}
\]
and
\[
U_1^*(B + B^*)U_1 = \begin{pmatrix}
-2c & \gamma \\
\bar{\gamma} & -2d \\
\end{pmatrix}.
\]

We choose a real number \(\theta\) such that \(e^{i\theta} \gamma = 2t > 0\) and define:
\[
D = \begin{pmatrix}
e^{-i\theta} & 0 \\
0 & 1 \\
\end{pmatrix}
\]
and \(U = U_1 D\).

Then
\[
U^*(A + A^*)U = \begin{pmatrix}
-2a & 0 \\
0 & 0 \\
\end{pmatrix}
\]
and
\[
U^*(B + B^*)U = \begin{pmatrix}
-2c & 2t \\
2t & -2d \\
\end{pmatrix}.
\]

Set \(A_2 = U^* A_1 U\) and \(B_2 = U^* B_1 U\).

Then
\[
A_2 = \begin{pmatrix}
-a + im & r + is \\
-r + is & in \\
\end{pmatrix}
\]
and
\[
B_2 = \begin{pmatrix}
-c + ip & t - u + iv \\
t + u + iv & -d + iq \\
\end{pmatrix},
\]

where \(r, s, m, n, t, u\) and \(v\) are real numbers, \(a, b\) and \(c\) are nonnegative numbers and \(cd - t^2 = 0\).

Now we look at the conditions for the common solution to the Lyapunov equation. We consider several cases.
If \(t = 0, c = 0 \) and \(d \neq 0 \), then \(A_2 \in \mathcal{M}_3 \) and \(B_2 \in \mathcal{M}_2 \). Matrices \(A_2 \) and \(B_2 \) do not have a common solution to the Lyapunov equation if and only if \((u, v) = \alpha(r, s) \) for some positive \(\alpha \), by Corollary 7. Hence:

\[
A_2 = \begin{pmatrix}
-a + im & r + is \\
-r + is & i n
\end{pmatrix}
\quad \text{and} \quad
B_2 = \begin{pmatrix}
\alpha p & \alpha(r + is) \\
\alpha(-r + is) & -d + iq
\end{pmatrix}.
\]

A short computation gives us:

\[
\alpha(r^2 + s^2)(A - i n I)^{-1} + B_2 = \begin{pmatrix}
-ip & 0 \\
0 & \alpha(-a + i(m - n)) - d + iq
\end{pmatrix}.
\]

We see that the matrix \(\alpha(r^2 + s^2)(A - i n I)^{-1} + B_2 \) is not stable, contrary to condition (A2).

If \(t = 0, c \neq 0 \) and \(d = 0 \), then \(A_2 \in \mathcal{M}_3 \) and \(B_2 \in \mathcal{M}_3 \). By Corollary 7 they do not have a common solution to the Lyapunov equation if and only if \((u, v) = -\alpha(r, s) \) for some positive \(\alpha \). Since in this case

\[
\alpha A_2 + B_2 = \begin{pmatrix}
\alpha(-a + im) - c + ip & 0 \\
0 & i(\alpha n + q)
\end{pmatrix},
\]

we have a contradiction to the stability of the convex cone \(\text{conv}(A_2, B_2) \).

Finally, let \(t \neq 0 \). Then \(c \neq 0 \) and \(d \neq 0 \). In this case Proposition 8 tells us that matrices \(A_2 \) and \(B_2 \) do not have a common solution to the Lyapunov equation if and only if \(u = 0, r = 0, \) and \(s = -\alpha(t(p - q) + v(c - d)) \) for some positive \(\alpha \). Therefore:

\[
A_2 = \begin{pmatrix}
-a + im & -i\alpha(t(p - q) + v(c - d)) \\
-i\alpha(t(p - q) + v(c - d)) & i n
\end{pmatrix}
\]

and

\[
B_2 = \begin{pmatrix}
-c + ip & t + iv \\
t + iv & -d + iq
\end{pmatrix},
\]

where \(cd = t^2 \). Now take

\[
\beta = \frac{c^2(ct(p - q) + (c - t)(c + t)v)^2(t^2 + v^2)}{t^4},
\]

\[
\gamma = -p - \frac{c}{t} v \quad \text{and} \quad \delta = \frac{c^3(t^2 + v^2)}{t^2 \alpha} > 0.
\]

A simple computation gives us

\[
\beta(B_2 + iyI_2)^{-1} + \delta A_2 = \begin{pmatrix}
\zeta & 0 \\
0 & \eta
\end{pmatrix},
\]

where \(\zeta \in \mathbb{C} \) and \(\eta \in \mathbb{R} \). We conclude that \(\text{conv}((A_2 - \frac{y}{\delta}I_2)^{-1}, B_2) \) is not stable. \[\square\]

3. Examples

We present an example to show that stability of the convex invertible cone \(\text{cic}(A, B) \) is not sufficient for the existence of a common solution to the Lyapunov equation for \(2 \times 2 \) complex matrices \(A \) and \(B \).
Example 12. Take matrices $A \in \mathcal{M}_3$ and $B \in \mathcal{M}_2$, that do not have a common solution to the Lyapunov equation:

$$A = \begin{pmatrix} -\alpha + im & r + is \\ -r + is & in \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} ip & \alpha(r + is) \\ \alpha(-r + is) & -d + iq \end{pmatrix}.$$

Assume that $n \neq 0$, $p \neq 0$ and $\alpha \neq mp/(r^2 + s^2)$. We will show that in this case the convex invertible cone $\text{cic}(A, B)$ is stable.

It is easy to see that the matrix $M + M^*$ is negative semidefinite for every matrix $M \in \text{cic}(A, B)$.

We define the following sets:

$$\mathcal{N}_1 = \{\alpha A + \beta B + \gamma A^{-1} + \delta B^{-1}; \alpha \geq 0, \beta \geq 0, \gamma \geq 0, \delta \geq 0\}$$

and

$$\mathcal{N}_j = \{M_1 + M_2 + M_3^{-1}; M_1, M_2, M_3 \in \mathcal{N}_{j-1}\}.$$

Then $\mathcal{N}_j \subseteq \mathcal{N}_{j+1}$ and $\bigcup_{j=1}^{\infty} \mathcal{N}_j = \text{cic}(A_1, A_2)$, since $\bigcup_{j=1}^{\infty} \mathcal{N}_j$ is closed under addition, multiplication by a positive scalar and inversion.

Using induction we will show that the matrices of the form $\alpha A, \alpha B, \alpha A^{-1}$ or αB^{-1} for some $\alpha \geq 0$ are the only matrices in \mathcal{N}_j for which the identity matrix is not a solution to the Lyapunov equation.

It is easy to see that the identity matrix is a solution to the Lyapunov equation for matrices $A + \alpha B, A^{-1} + \alpha B, A + \alpha A^{-1}, A^{-1} + \alpha B^{-1}, A + \alpha A^{-1}$ and $B + \alpha B^{-1}$ for every $\alpha > 0$. Hence the statement holds for \mathcal{N}_1.

Assuming that it is true for \mathcal{N}_j we will prove it for \mathcal{N}_{j+1}. Take

$$M = M_1 + M_2 + M_3^{-1} \in \mathcal{N}_{j+1},$$

where matrices M_1, M_2 and M_3 lie in \mathcal{N}_j. Matrices $M_1 + M_1^*, M_2 + M_2^*$ and $M_3 + M_3^*$ are negative semidefinite. If the identity matrix is a solution to the Lyapunov equation for either M_1, M_2 or M_3, then it is also a solution for M. If not, then M_1, M_2 and M_3 are of the form $\alpha A, \alpha B, \alpha A^{-1}$ or αB^{-1} for some $\alpha \geq 0$ by induction hypothesis. This implies that M lies in \mathcal{N}_1.

We have proved that the only matrices in $\text{cic}(A, B)$ for which the identity matrix is not a solution to the Lyapunov equation are the matrices of the form $\alpha A, \alpha B, \alpha A^{-1}$ or αB^{-1} for some $\alpha \geq 0$. Since matrices A, B are stable, this implies that $\text{cic}(A, B)$ is stable.

In the following example we look at a special case of the previous example. We show that stability of $\text{cic}(A, B)$ does not imply the existence of a common solution to the Lyapunov equation for complex 2×2 matrices A and B even in the case when rank of the matrix $A - B$ is one.

Example 13. Let m, n, r be real numbers such that r is not equal to 0 or 1, $m \neq 0$, $n \neq 0$ and $r(r - 1) \neq m^2$. Let

$$R = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}.$$

Consider the following matrices:

$$A = \begin{pmatrix} -1 + im & r \\ -r & in \end{pmatrix} \quad \text{and} \quad B = A + R.$$

Corollary 7 tells us matrices A and B have a common solution to the Lyapunov equation if and only if r lies in the interval $(0,1)$ and Example 12 tells us that $\text{cic}(A, B)$ is stable.
4. Real case

In this section we will explain how can results for \(2 \times 2\) complex matrices be related to a class of \(4 \times 4\) real matrices. We will use the standard embedding of \(\mathbb{C}^{n \times n}\) into \(\mathbb{R}^{2n \times 2n}\).

We will write matrix \(A\) in \(\mathbb{C}^{n \times n}\) in the following way:

\[
A = A_{\text{Re}} + iA_{\text{Im}}
\]

where \(A_{\text{Re}}\) and \(A_{\text{Im}}\) are matrices in \(\mathbb{R}^{n \times n}\).

Denote \(\tilde{A} = A_{\text{Re}} - iA_{\text{Im}}\) and

\[
\hat{A} = \begin{pmatrix}
A_{\text{Re}} & A_{\text{Im}} \\
-A_{\text{Im}} & A_{\text{Re}}
\end{pmatrix}.
\]

Since the spectrum of the matrix \(\hat{A}\) is the union of the spectra of matrices \(A\) and \(\tilde{A}\), the matrix \(\hat{A}\) is stable if and only if the matrix \(A\) is stable.

Proposition 14. There exists a common solution to the Lyapunov equation \(P \in \mathbb{C}^{n \times n}\) for matrices \(A\) and \(B\) if and only if there exists a common solution \(\hat{P} \in \mathbb{R}^{2n \times 2n}\) for matrices \(\hat{A}\) and \(\hat{B}\).

Proof. Let

\[
T = \frac{1}{\sqrt{2}} \begin{pmatrix} I_n & iI_n \\ iI_n & I_n \end{pmatrix},
\]

where \(I_n\) is the identity matrix in \(\mathbb{R}^{n \times n}\).

Observe that:

\[
\tilde{A} = T^* \hat{A} T = \begin{pmatrix} A & 0 \\ 0 & \bar{A} \end{pmatrix} \quad \text{and} \quad \tilde{B} = T^* \hat{B} T = \begin{pmatrix} B & 0 \\ 0 & \bar{B} \end{pmatrix}.
\]

Assume that \(A\) and \(B\) have a common solution to the Lyapunov equation \(P \in \mathbb{C}^{n \times n}\). Then

\[
\tilde{P} = \begin{pmatrix} P & 0 \\ 0 & P \end{pmatrix}
\]

is a common solution to the Lyapunov equation for \(\tilde{A}\) and \(\tilde{B}\). Lemma 9 tells us that

\[
\hat{P} = T \tilde{P} T^* = \begin{pmatrix} P_{\text{Re}} & P_{\text{Im}} \\ -P_{\text{Im}} & P_{\text{Re}} \end{pmatrix} \in \mathbb{R}^{2n \times 2n}
\]

is a common solution to the Lyapunov equation for matrices \(\hat{A}\) and \(\hat{B}\).

To prove the other implication, we suppose that \(P_1 \in \mathbb{R}^{2n \times 2n}\) is a common solution to the Lyapunov equation for matrices \(A\) and \(B\). Then

\[
\tilde{P}_1 = T^* P_1 T = \begin{pmatrix} P_{11} & P_{12} \\ P_{12}^* & P_{22} \end{pmatrix}
\]

is a common solution to the Lyapunov equation for matrices \(\tilde{A}\) and \(\tilde{B}\). Now it is easy to see that \(P_{11}\) is a common solution to the Lyapunov equation for matrices \(A\) and \(B\). \(\Box\)

We are ready to state the conditions for the existence of a common solution to the Lyapunov equation for real \(4 \times 4\) matrices that correspond to \(2 \times 2\) complex matrices. Note that matrix

\[
J = \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix}
\]

corresponds to the matrix \(iI_2\) in the standard embedding.

Theorem 15. Let \(A_1, A_2, B_1\) and \(B_2\) be real \(2 \times 2\) matrices such that the matrices:

\[
A = \begin{pmatrix} A_1 & A_2 \\ -A_2 & A_1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} B_1 & B_2 \\ -B_2 & B_1 \end{pmatrix}
\]

have a common solution to the Lyapunov equation.
are stable. Then A and B have a common solution to the Lyapunov equation if and only if the following conditions are satisfied:

\((D1)\) The convex cone $\text{conv}((A + \alpha J), B)$ is stable for all $\alpha \in \mathbb{R}$.

\((D2)\) The convex cone $\text{conv}((A + \alpha J)^{-1}, B)$ is stable for all $\alpha \in \mathbb{R}$.

Proof. By Proposition 14 matrices A and B have a common solution to the Lyapunov equation if and only if matrices $A_1 + iA_2$ and $B_1 + iB_2$ have. Therefore we have to show that conditions \((A1)\) and \((A2)\) hold for matrices $A_1 + iA_2$ and $B_1 + iB_2$ if and only if the conditions \((D1)\) and \((D2)\) hold for matrices A and B.

Let T be the matrix (8) defined in the proof of Proposition 14. Since

\[
T^*(A + \alpha J)T = \begin{pmatrix}
A_1 + i(A_2 + \alpha I_2) & 0 \\
0 & A_1 - i(A_2 + \alpha I_2)
\end{pmatrix}
\]

and

\[
T^*(A + \alpha J)^{-1}T = \begin{pmatrix}
(A_1 + i(A_2 + \alpha I_2))^{-1} & 0 \\
0 & (A_1 - i(A_2 + \alpha I_2))^{-1}
\end{pmatrix}
\]

the conditions are clearly equivalent. \(\square\)

Corollary 16. Let A_1, A_2, B_1 and B_2 be real 2×2 matrices such that the matrices:

\[
A = \begin{pmatrix}
A_1 & A_2 \\
-A_2 & A_1
\end{pmatrix}
\quad \text{and} \quad
B = \begin{pmatrix}
B_1 & B_2 \\
-B_2 & B_1
\end{pmatrix}
\]

are stable. Then A and B have a common solution to the Lyapunov equation if and only if the following conditions are satisfied:

\((E1)\) The convex cone $\text{conv}((A + i\alpha I_4), B)$ is stable for all $\alpha \in \mathbb{R}$.

\((E1)\) The convex cone $\text{conv}((A + i\alpha I_4)^{-1}, B)$ is stable for all $\alpha \in \mathbb{R}$.

Proof. We observe that

\[
T^*(iI_{2n})T = iI_{2n}
\]

for the matrix T defined in (8). The rest of the proof is similar to the proof of Theorem 15. \(\square\)

Remark 17. In the previous section we have seen that for real 2×2 matrices A and B, stability of the convex cones $\text{conv}(A, B)$ and $\text{conv}(A^{-1}, B)$ implies the stability of convex cones $\text{conv}(A + i\alpha I_2, B + i\beta I_2)$ and $\text{conv}(A + i\alpha I_2)^{-1}, B + i\beta I_2)$ for all $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$. We see that this is not true for real 4×4 matrices. Therefore stability of these cones is a necessary condition for the existence of a common solution to the Lyapunov equation for matrices A and B that is stronger than the conditions that the convex cones $\text{conv}(A, B)$ and $\text{conv}(A^{-1}, B)$ are stable.

We can use Example 13 to show that the stability of $\text{cic}(A, B)$ is not sufficient for the existence of a common solution to the Lyapunov equation for real 4×4 matrices. In particular, this is not true even in the case when rank of the matrix $A - B$ is two.

Example 18. Let m, n, r, s be real numbers such that r is not equal to 0 or 1, $m \neq 0$, $n \neq 0$ and $r(r - 1) \neq m^2$. Let
Consider the following matrices:

\[\hat{R} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}. \]

The matrices \(\hat{A} \) and \(\hat{B} \) do not have a common solution to the Lyapunov equation if and only if \(r \) does not lie in the interval \((0, 1)\). However, \(\text{cic}(\hat{A}, \hat{B}) \) is stable for every \(r \in \mathbb{R} \).

Theorem 19. Let \(A \) and \(B \) be real \(n \times n \) matrices, such that the matrices \(A^k \) and \(B^l \) commute with both \(A \) and \(B \) for some \(k, l \in \{1, 2, 3, 4\} \). Then matrices \(A \) and \(B \) have a common solution to the Lyapunov equation if and only if the following conditions are satisfied:

(A1) The convex cone \(\text{conv}(\lambda I + A^1) \) is stable for all \(\lambda \in \mathbb{R} \).
(A2) The convex cone \(\text{conv}(\lambda I + A^{k-1}) \) is stable for all \(\lambda \in \mathbb{R} \).

Proof. If \(k = 1 \) or \(l = 1 \) then matrices \(A \) and \(B \) commute. We observe that for a stable matrix \(A \) the set of matrices that commute with \(A^2 \) is the same as the set of matrices that commute with \(A \). Thus matrices \(A \) and \(B \) commute if \(k = 2 \) or \(l = 2 \). Commuting matrices have a common solution to the Lyapunov equation.

Now we consider the case when \(k, l \in \{3, 4\} \). Assume that conditions (A1) and (A2) hold. Let \(\mathcal{S} \) be a simple component of the algebra over \(\mathbb{C} \) generated by matrices \(A \) and \(B \) and let \(\mathcal{A}_\mathcal{S} \) and \(\mathcal{B}_\mathcal{S} \) be the images of matrices \(A \) and \(B \) in \(\mathcal{S} \). To prove our statement it suffices to show that matrices \(\mathcal{A}_\mathcal{S} \) and \(\mathcal{B}_\mathcal{S} \) have a common solution to the Lyapunov equation.

Matrices \(\mathcal{A}_\mathcal{S} \) and \(\mathcal{B}_\mathcal{S} \) are central in \(\mathcal{S} \). Hence \(\mathcal{A}_\mathcal{S} = \alpha I \) and \(\mathcal{B}_\mathcal{S} = \beta I \) for some \(\alpha \in \mathbb{C} \) and \(\beta \in \mathbb{C} \). It follows that minimal polynomial of \(A \) divides polynomial \(q(x) = x^k - \alpha \). For \(k = 3 \) or \(k = 4 \) at most two \(k \)th roots of \(\alpha \) have negative real part, hence the minimal polynomial of the matrix \(A \) is linear or quadratic. The same argument tells us that the matrix \(\mathcal{B}_\mathcal{S} \) has a linear or a quadratic minimal polynomial. Laffey [17] proved that this implies that \(\mathcal{S} \) is isomorphic to \(\mathbb{C} \) or \(\mathbb{C}^2 \times \mathbb{C} \).

If \(\mathcal{S} \) is isomorphic to \(\mathbb{C} \), then the matrices \(\mathcal{A}_\mathcal{S} \) and \(\mathcal{B}_\mathcal{S} \) commute. Thus they have a common solution to the Lyapunov equation. Observe that matrices \(\mathcal{A}_\mathcal{S} \) and \(\mathcal{B}_\mathcal{S} \) satisfy conditions (A1) and (A2). Therefore we can use Corollary 16 to prove the statement when \(\mathcal{S} \) is isomorphic to \(\mathbb{C}^2 \times \mathbb{C} \).

Acknowledgments

The authors gratefully acknowledge many discussions with Professor R. Shorten and would like to thank the referee for his valuable comments. The first author would like to thank Professor N. Cohen for some interesting conversations.
References