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SUMMARY

Insulin receptor substrate (Irs) mediates metabolic
actions of insulin. Here, we show that hepatic Irs1
and Irs2 function in a distinct manner in the regulation
of glucose homeostasis. The PI3K activity associ-
ated with Irs2 began to increase during fasting,
reached its peak immediately after refeeding, and
decreased rapidly thereafter. By contrast, the PI3K
activity associated with Irs1 began to increase a
few hours after refeeding and reached its peak there-
after. The data indicate that Irs2 mainly functions dur-
ing fasting and immediately after refeeding, and Irs1
functions primarily after refeeding. In fact, liver-
specific Irs1-knockout mice failed to exhibit insulin
resistance during fasting, but showed insulin resis-
tance after refeeding; conversely, liver-specific Irs2-
knockout mice displayed insulin resistance during
fasting but not after refeeding. We propose the con-
cept of the existence of a dynamic relay between Irs1
and Irs2 in hepatic insulin signaling during fasting
and feeding.

INTRODUCTION

The liver is an essential organ for glucose homeostasis; it stores

excess glucose after food intake in the form of glycogen and

releases glucose by glycogenolysis or gluconeogenesis during

fasting (Gribble, 2005). Insulin promotes glycogen synthesis
and inhibits glycogenolysis and gluconeogenesis by exerting

direct and indirect effects on the enzyme activities and gene

expressions in the liver (Saltiel and Kahn, 2001). Dysregulation

of the hepatic insulin actions is a critical component in the path-

ogenesis of type 2 diabetes (Saltiel and Kahn, 2001).

Recently, it was reported that circulating insulin not only di-

rectly inhibits glucose production in the liver, but also acts at

the level of the brain to suppress gluconeogenesis (Wada

et al., 2005; Kasuga, 2006; Plum et al., 2006). Downregulation

of the hypothalamic insulin receptor caused hepatic insulin resis-

tance (Obici et al., 2002a), and intracerebroventricular injection

of insulin suppressed hepatic glucose production (Obici et al.,

2002b), suggesting that insulin inhibits hepatic glucose produc-

tion via both the classical direct hepatic pathway and a newly

identified central indirect pathway. Considering this indirect cen-

tral action of insulin, it was considered that genetically engi-

neered animals lacking in insulin signaling exclusively in the liver

may be useful models for clarifying the physiological roles of the

direct effects of insulin in the liver. In fact, mice with genetic de-

letion of the hepatic insulin receptors (LIRKO mice) were found

to exhibit severe insulin resistance and hyperglycemia after

feeding, indicating that hepatic insulin-receptor signaling plays

a pivotal role in the regulation of hepatic and systemic glucose

homeostasis (Michael et al., 2000).

Insulin receptor substrate (Irs) 1 and Irs2 exhibit high structural

homology, are abundantly expressed in the liver, and are thought

to be responsible for transmitting insulin signaling from the insu-

lin receptor to the intracellular effectors in the regulation of

glucose and lipid homeostasis (Saltiel and Kahn, 2001; Nandi

et al., 2004; Taniguchi et al., 2006; Thirone et al., 2006). However,

while mice lacking in systemic Irs1 failed to show any impairment
Cell Metabolism 8, 49–64, July 2008 ª2008 Elsevier Inc. 49

mailto:kadowaki-3im@h.u-tokyo.ac.jp


Cell Metabolism

Dynamic Functional Relay of Hepatic Irs1 and Irs2
50 Cell Metabolism 8, 49–64, July 2008 ª2008 Elsevier Inc.



Cell Metabolism

Dynamic Functional Relay of Hepatic Irs1 and Irs2
of hepatic insulin signaling (Tamemoto et al., 1994; Araki et al.,

1994; Tobe et al., 1995; Yamauchi et al., 1996), those lacking

in systemic Irs2 exhibited impaired hepatic insulin signaling

and impaired suppression of glucose production by insulin

(Withers et al., 1998; Kubota et al., 2000). Hyperinsulinemic-

euglycemic clamp studies have revealed that systemic Irs2-

knockout mice show markedly impaired suppression of hepatic

glucose production and reduced stimulation of liver glycogen

synthesis, while systemic Irs1-knockout mice show insulin resis-

tance predominantly in the skeletal muscle and adipose tissue

but not in the liver (Previs et al., 2000). These data point to the

significance of liver Irs2 and/or brain Irs2 in the hepatic actions

of insulin.

Recently, liver-specific Irs2-knockout mice were generated,

which unexpectedly exhibited little or no disturbance of glucose

homeostasis (Dong et al., 2006; Simmgen et al., 2006). Consid-

ering the severe insulin resistance and hyperglycemia observed

after feeding in the LIRKO mice (Michael et al., 2000), these data

led us to re-examine the role of Irs1, the other major Irs protein in

the liver. In this study, we generated liver-specific Irs1-knockout

mice, as well as liver-specific Irs2-knockout mice, to investigate

the physiological roles of hepatic Irs1 and Irs2 in the regulation of

glucose metabolism. Furthermore, we also generated liver-spe-

cific Irs1/Irs2 double-knockout mice in an attempt to elucidate

whether hepatic insulin signaling is exclusively mediated by

Irs1 and Irs2.

RESULTS

Generation of Liver-Specific Irs1- and Irs2-Knockout
Mice
Genomic DNA PCR was performed to detect Cre-mediated re-

combination at the genomic DNA level. The Irs1 and Irs2 alleles

were found to be deleted in the livers of the liver-specific Irs1-

knockout (LIrs1KO) and liver-specific Irs2-knockout (LIrs2KO)

mice, respectively, but not in any of the tissues in the control

mice (Figure S1A). While the Irs1 mRNA was almost completely

abrogated, the Irs2 mRNA levels remained unchanged in the

LIrs1KO mice; conversely, while the Irs1 mRNA levels remained

unchanged, the Irs2 mRNA was almost completely abrogated in

the LIrs2KO mice (Figure S1B). Western blotting of the Irs1 or Irs2

immunoprecipitates from the livers of the control and LIrs1KO

mice under the fasting condition revealed that while expression

of the Irs1 protein was almost completely abrogated in the

LIrs1KO mice, the expression level of the Irs2 protein was indis-

tinguishable from that in the control mice (Figure 1A, upper

panels). When insulin was administered via the inferior vena
cava under the fasting condition, tyrosine phosphorylation of

Irs1 (Figure 1A, lower-left panels) and insulin-stimulated recruit-

ment of the p85-adaptor subunit of phosphatidylinositol 3-

kinase (PI3K) to the Irs1 immunoprecipitates (Figure S2A, left

panels) were also abrogated in the LIrs1KO mice. On the other

hand, insulin-stimulated tyrosine phosphorylation of Irs2 (Fig-

ure 1A, lower-right panels) and insulin-stimulated recruitment

of the p85-adaptor subunit of PI3K to the Irs2 immunoprecipi-

tates (Figure S2A, right panels) were significantly increased in

these LIrs1KO mice, similar to the findings in systemic, Irs1-de-

ficient mice (Tobe et al., 1995; Yamauchi et al., 1996). On the

other hand, in the LIrs2KO mice, the Irs2 protein was almost

completely abrogated, while the expression level of the Irs1

protein was indistinguishable from that in the control mice (Fig-

ure 1B, upper panels). While insulin-stimulated tyrosine phos-

phorylation of Irs2 (Figure 1B, lower-right panels) and insulin-

stimulated recruitment of the p85-adaptor subunit of PI3K to

the Irs2 immunoprecipitates (Figure S2B, right panels) were

abrogated in these LIrs2KO mice, insulin-stimulated tyrosine

phosphorylation of Irs1 (Figure 1B, lower-left panels) and insu-

lin-stimulated recruitment of the p85-adaptor subunit of PI3K

to Irs1 immunoprecipitates (Figure S2B, left panels) under the

fasting condition were similar between the control and LIrs2KO

mice, similar to the findings in systemic, Irs2-deficient mice (Ku-

bota et al., 2000). When lysates from the livers of fasted LIrs1KO

mice were immunoprecipitated with anti-Irs1 antibody, the insu-

lin-stimulated PI3K activity associated with Irs1 was completely

abrogated (Figures 1C, left panel, and S2C, left panel), while that

associated with Irs2 was �2-fold as high as that in the control

mice (Figures 1C, middle panel, and S2C, middle panel). Thus,

insulin-stimulated PI3K activity associated with tyrosine-phos-

phorylated proteins was similar between the two genotypes

under the fasting condition (Figures 1C, right panel, and S2C,

right panel). On the other hand, in fasted LIrs2KO mice, insulin-

stimulated PI3K activity associated with Irs2 was completely ab-

rogated (Figures 1D, middle panel, and S2D, middle panel), while

that associated with Irs1 was similar to that in the control mice

(Figures 1D, left panel, and S2D, left panel). Consequently, insu-

lin-stimulated PI3K activity associated with tyrosine-phosphory-

lated proteins was reduced by half in the LIrs2KO mice as com-

pared with that in the control mice (Figures 1D, right panel, and

S2D, right panel). Basal and insulin-stimulated phosphorylation

of Akt, forkhead transcription factor O1 (FoxO1), and glycogen

synthase kinase (GSK)3b, which are all among the major sub-

strates of Akt, were similar in the liver of the control and LIrs1KO

mice under the fasting condition (Figures 1E and S2E). In con-

trast, basal phosphorylation of Akt and GSK3b tended to be
Figure 1. Generation of the LIrs1KO and LIrs2KO Mice

(A and B) Upper panels show liver lysates from LIrs1KO (A) and LIrs2KO (B) mice were immunoprecipitated with anti-Irs1 or anti-Irs2 antibody and subsequently

immunoblotted with anti-Irs1 or anti-Irs2 antibody after overnight (about 16 hr) fasting. Lower panels show insulin-stimulated tyrosine phosphorylation of Irs1 or

Irs2 at 70 s after administration of 10 U of insulin in the liver of the LIrs1KO (A) and LIrs2KO (B) mice after overnight (about 16 hr) fasting. Results are representative

of three independent experiments.

(C and D) Insulin-stimulated PI3K activity associated with Irs1-, Irs2-, and tyrosine-phosphorylated proteins at 70 s after administration of 10 U of insulin in the liver

of the LIrs1KO (C) and LIrs2KO (D) mice after overnight (about 16 hr) fasting. Results are representative of three independent experiments.

(E and F) Insulin-stimulated phosphorylation of Akt, FoxO1, and GSK3b at 70 s after administration of 10 U of insulin in the liver of the LIrs1KO (E) and LIrs2KO (F)

mice after overnight (about 16 hr) fasting. Results are representative of three independent experiments.

(G and H) Serum levels of TC, TG, and FFA in 8-week-old LIrs1KO (G) and LIrs2KO (H) mice after overnight (about 16 hr) fasting (n = 11–17).

(I and J) Serum leptin and adiponectin levels in 8-week-old LIrs1KO (I) and LIrs2KO (J) mice after overnight (about 16 hr) fasting (n = 6–11). All the experiments

illustrated in this figure were performed using 8- to 10-week-old male mice, unless otherwise specified. Results are represented as mean ± SEM *p < 0.05.
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reduced, and that of FoxO1 was significantly reduced in the

livers of the LIrs2KO mice (Figures 1F and S2F). Insulin-stimu-

lated phosphorylation of Akt, FoxO1, and GSK3b was also signif-

icantly reduced in the livers of the LIrs2KO mice (Figures 1F and

S2F). We next measured insulin-stimulated phosphorylation of

Irs1, Irs2, Akt, and FoxO1 at 30 min after administration of

0.1 U of insulin in the livers of the LIrs1KO and LIrs2KO mice to

investigate the events as they might occur under more physio-

logical conditions. The insulin-stimulated phosphorylation levels

of Irs1, Irs2, Akt, and FoxO1 remained essentially the same in the

LIrs1KO (Figure S2G) and LIrs2KO (Figure S2H) mice, regardless

of the dose of insulin. These data indicate that the potentially

reduced insulin-stimulated PI3K activity following acute or sub-

acute administration of insulin under the fasting condition is

compensated for in the LIrsKO mice by increased tyrosine phos-

phorylation of Irs2, whereas that in the LIrs2KO mice is not com-

pensated for by increased tyrosine phosphorylation of Irs1. The

serum levels of total cholesterol (TC), triglyceride (TG), and free

fatty acid (FFA) were similar between the control and LIrsKO

mice (Figure 1G) or between the control and LIrs2KO mice

(Figure 1H) under the fasting condition. In addition, the serum

leptin and adiponectin levels were also not significantly different

between the control and LIrsKO mice (Figure 1I) or between the

control and LIrs2KO mice (Figure 1J), under the fasting condition.

LIrs2KO (but Not LIrs1KO) Mice Showed Insulin
Resistance under the Fasting Condition
LIrsKO mice showed similar body-weight gain to the control

mice (data not shown), unlike the finding reported previously in

systemic Irs1-deficient mice (Tamemoto et al., 1994; Araki

et al., 1994). An insulin-tolerance test (ITT) conducted after fast-

ing revealed that the glucose-lowering effect of insulin was sim-

ilar between the control and LIrs1KO mice (Figure 2A). In the oral-

glucose-tolerance test (OGTT) conducted after fasting, the blood

glucose and serum insulin levels before and after glucose load-

ing were not significantly different between the two mouse

genotypes (Figure 2B). We next carried out a hyperinsulinemic-

euglycemic clamp study in the animals under the fasting condi-

tion. None of the parameters (i.e., the glucose infusion rate [GIR]),

hepatic glucose production (HGP), or the rate of glucose disap-

pearance (Rd) differed significantly between the control and

LIrs1KO mice (Figure 2C), indicating that LIrs1KO mice do not

exhibit insulin resistance or glucose intolerance under the fasting

condition.

LIrs2KO mice also showed similar body-weight gain to the

control mice (data not shown), unlike the finding reported previ-

ously in the systemic Irs2-deficient mice (Tobe et al., 2001). An

ITT conducted after fasting revealed insulin resistance in the

LIrs2KO mice (Figure 2D). In the OGTT conducted after fasting,

the blood glucose levels after glucose loading (Figure 2E, upper
panel), as well as the serum insulin levels (Figure 2E, lower panel)

before and after glucose loading, were significantly elevated in

these mice. In the hyperinsulinemic-euglycemic clamp study

conducted under the fasting condition, the GIR was significantly

lower and the HGP significantly higher in the LIrs2KO mice than

in the control mice, whereas no significant difference in the Rd

was noted between the two mouse genotypes (Figure 2F). These

findings indicate that the LIrs2KO mice show hepatic insulin

resistance under the fasting condition. In the skeletal muscle

(Figures S3A and S3B) and white adipose tissue (Figures S3C

and S3D), basal- and insulin-stimulated phosphorylation of Akt

was similar between the control and LIrs1KO mice or between

the control and LIrs2KO mice, indicating that insulin signaling

was not impaired in either the skeletal muscle or white adipose

tissue of the LIrs1KO and LIrs2KO mice under the fasting condi-

tion. There were no significant histological changes in the livers

of either the LIrs1KO or LIrs2KO mice (Figure S4A), unlike the ob-

servations in the LIRsKO mice (Michael et al., 2000). The fasting

TG content in the liver (Figure S4B), the serum aspartate amino-

transferase (AST), and alanine aminotransferase (ALT) (Figure

S4C) levels also showed no significant differences in the LIrs1KO

and LIrs2KO mice as compared with the findings in the control

mice, suggesting that disruption of Irs1 or Irs2 does not cause

any significant hepatic disorder.

LIrs1KO (but Not LIrs2KO) Mice Exhibited Insulin
Resistance under the Refeeding Condition
Since insulin regulates glucose homeostasis in the liver not only

during fasting but also after refeeding, the insulin sensitivity and

insulin signaling under the refeeding condition were also exam-

ined in the knockout mice. Unexpectedly, the ITT revealed insulin

resistance in the LIrs1KO mice at 6 hr after the start of refeeding

following 24 hr of fasting (Figure 3A), unlike under the fasting con-

dition (Figure 2A). The GIR was significantly lower (and the HGP

significantly higher) in the LIrs1KO mice as compared with the

values in the control mice under the refeeding condition (Fig-

ure 3B), unlike under the fasting condition (Figure 2C). In contrast

to these findings in the LIrs1KO mice, the ITT revealed insulin

resistance under the fasting condition (Figure 2D) but not under

the refeeding condition (Figure 3C) in the LIrs2KO mice. Unlike

the observations under the fasting condition in these animals

(Figure 2F), no significant differences in the GIR, HGP, or Rd

were found between the control and LIrs2KO mice under the re-

feeding condition (Figure 3D). Significantly reduced phosphory-

lation of Akt, FoxO1, and GSK3b was observed after refeeding,

but not under the fasting condition, in the livers of the LIrs1KO

mice (Figures 3E and S5A). The hepatic glycogen content was

also decreased significantly in these mice after refeeding, but

not under the fasting condition (Figure 3F). While the expression

levels of PEPCK and G6Pase showed no significant differences
Figure 2. LIrs2KO (but Not LIrs1KO) Mice Showed Insulin Resistance and Glucose Intolerance under the Fasting Condition

(A) ITT in 8-week-old control and LIrs1KO mice after 3 hr fasting (n = 25–27).

(B) Blood glucose and serum insulin levels in 8-week-old control and LIrs1KO mice during an OGTT conducted after 24 hr fasting (n = 22).

(C) GIR, HGP, and Rd in control and LIrs1KO mice in the hyperinsulinemic-euglycemic clamp study conducted after 6 hr fasting (n = 5).

(D) ITT in 8-week-old control and LIrs2KO mice after 3 hr fasting (n = 17–19).

(E) Blood glucose and serum insulin levels in 8-week-old control and LIrs2KO mice during an OGTT conducted after 24 hr fasting (n = 17–19).

(F) GIR, HGP, and Rd in control and LIrs2KO mice in the hyperinsulinemic-euglycemic clamp study conducted after 6 hr fasting (n = 6–10). All the experiments

illustrated in this figure were performed using 8- to 10-week-old male mice, unless otherwise specified. Results are represented as mean ± SEM *p < 0.05,

**p < 0.01.
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as compared with those in the control mice under the fasting

condition, suppression of these expressions after refeeding was

significantly impaired in the LIrs1KO mice as compared with

that in the control mice (Figure 3G, upper panels). While the ex-

pression levels of SREBP1c and glucokinase were indistinguish-

able between the control and LIrs1KO mice under the fasting

condition, these expressions were significantly lower in the

LIrs1KO mice as compared with the levels in the control mice un-

der the refeeding condition (Figure 3G, lower panels). While re-

duced phosphorylation of Akt, FoxO1, and GSK3b was observed

in the LIrs2KO mice under the fasting condition, no such reduc-

tion of phosphorylation was observed under the refeeding condi-

tion (Figures 3H and S5B). The hepatic glycogen content was

also similar between the control and LIrs2KO mice under the re-

feeding condition (Figure 3I). Although the expression levels of

PEPCK and G6Pase were significantly higher in the LIrs2KO

mice than in the control mice under the fasting condition, sup-

pression of these expressions under the refeeding condition

was similar in degree to that noted in the control mice under

the refeeding condition (Figure 3J, upper panels). The expression

levels of SREBP1c and glucokinase were significantly lower in

the LIrs2KO mice under the fasting condition; however, these

expressions were restored to levels similar to those in the control

mice under the refeeding condition (Figure 3J, lower panels).

These findings suggest that in the liver, lack of Irs1 affects insulin

signaling under the refeeding condition, and lack of Irs2 affects

insulin signaling under the fasting condition. In the skeletal

muscle (Figure S5C) and white adipose tissue (Figure S5D), the

phosphorylation level of Akt was similar between the control

and LIrs1KO mice or between the control and LIrs2KO mice un-

der both the fasting and refeeding conditions. This indicates that

insulin signaling was not impaired in the skeletal muscle and

white adipose tissue of the LIrs1KO and LIrs2KO mice under

either the fasting or the refeeding condition.

Distinct Roles of Irs1 and Irs2 in Mediating the Actions
of Insulin in the Liver
What are the reasons for these differences between the LIrs1KO

and LIrs2KO mice? We examined the expressions of Irs1, Irs2,

and the PI3K activity associated with Irs1 and Irs2 under the fast-

ing and refeeding conditions. The Irs1 mRNA and protein levels

remained unchanged at 6 hr after the start of refeeding following

the 24 hr fasting, which is associated with an�5-fold increase of

the Irs1-associated PI3K activity under the refeeding condition

(Figure 4A). In contrast, the Irs2 mRNA and protein levels were

significantly decreased after refeeding, associated with Irs2-

associated PI3K activity that was not increased even under the
refeeding condition (Figure 4B). We next examined in greater

detail the diurnal changes in the glucose and insulin levels, the

expressions of Irs1 and Irs2, and their downstream molecules

under the fasting and refeeding conditions in the control,

LIrs1KO, and LIrs2KO mice. The blood glucose levels were al-

most indistinguishable between the control and LIrs1KO mice

or between the control and LIrs2KO mice throughout the exper-

iment (Figure 5A, upper panels). In contrast, the LIrs1KO mice

exhibited higher serum insulin levels at 4 and 6 hr after the start

of refeeding than the control mice (Figure 5A, lower-left panel),

the LIrs2KO mice exhibited higher serum insulin levels after the

24 hr fasting and at 30 and 60 min after the start of refeeding

than the control mice (Figure 5A, lower-right panel). The mRNA

levels of Irs1 were slightly increased during the second half of

the 24 hr fasting and remained essentially unaltered after refeed-

ing in both the control and LIrs2KO mice (Figure 5B, upper

panel). The mRNA levels of Irs2 were markedly increased during

the second half of the 24 hr fasting, and then fell immediately

after the start of refeeding in both the control and LIrs1KO

mice (Figure 5B, lower panel). Although the Irs2 mRNA expres-

sion after refeeding remained suppressed in the control mice,

the Irs2 expression in the LIrs1KO mice began to increase by

2 hr after the start of refeeding (Figure 5B, lower panel). The

Irs1 protein levels remained essentially unaffected by food intake

throughout the experiment, which is associated with a mobility

shift from 30 min until 4 hr after refeeding in the control mice

(Figure 5C). The Irs2 protein levels increased during the 24 hr

fasting in the control mice (Figure 5C). The Irs2 protein under-

went a prominent mobility shift immediately after the start of

refeeding, presumably due to insulin-stimulated tyrosine phos-

phorylation (Figure 5C). The Irs2 protein levels rapidly decreased

after refeeding (Figure 5C). Recruitment of the p85-adaptor sub-

unit of PI3K to Irs1 immunoprecipitates (Figure S6A, left panels)

and the PI3K activity associated with Irs1 (Figures 5D, upper-left

panel, and S6B, upper panel) began to increase by 2 hr after the

start of refeeding. In contrast, recruitment of the p85-adaptor

subunit of PI3K to Irs2 immunoprecipitates (Figure S6A, right

panels) and the PI3K activity associated with Irs2 (Figures 5D,

lower-left panel, and S6B, lower panel) increased during the sec-

ond half of the 24 hr fasting, despite the decrease in the serum

insulin levels, and increased further up to 30 min after the start

of refeeding, before decreasing rapidly thereafter. These data

suggest that Irs2 mainly acts during fasting and immediately af-

ter the start of refeeding, and Irs1 takes over the lead role there-

after. In fact, during fasting or immediately after the start of

refeeding, while the PI3K activity associated with Irs2 (Figures

5D, lower -right panel, and S6C, upper panel) and with
Figure 3. LIrs1KO (but Not LIrs2KO) Mice Exhibited Insulin Resistance under the Refeeding Condition

(A) ITT in the control and LIrs1KO mice at 6 hr after the start of refeeding following 24 hr fasting (n = 17–23).

(B) Hyperinsulinemic-euglycemic clamp study in the control and LIrs1KO mice at 6 hr after the start of refeeding following 24 hr fasting (n = 5–6).

(C) ITT in the control and LIrs2KO mice at 6 hr after the start of refeeding following 24 hr fasting (n = 10–20).

(D) Hyperinsulinemic-euglycemic clamp study in the control and LIrs2KO mice at 6 hr after the start of refeeding following 24 hr fasting (n = 6–10).

(E–G) Phosphorylation of Akt, FoxO1, and GSK3b in the liver (E), the hepatic glycogen content (F), and the expression levels of PEPCK, G6Pase, SREBP1c, and

glucokinase in the liver (G) of the control and LIrs1KO mice after 24 hr fasting or at 6 hr after the start of refeeding following 24 hr fasting (F and G, n = 5–6). In (E),

results are representative of three independent experiments.

(H–J) Insulin-stimulated phosphorylation of Akt, FoxO1, and GSK3b in the liver (H), the hepatic glycogen content (I), and the expression levels of PEPCK, G6Pase,

SREBP1c, and glucokinase in the liver (J) of the control and LIrs2KO mice after 24 hr fasting or at 6 hr after the start of refeeding following 24 hr fasting (I and J,

n = 6–10). In (H), results are representative of three independent experiments. All the experiments illustrated in this figure were performed using 8- to 10-week-

old male mice. Results are represented as mean ± SEM *p < 0.05, ***p < 0.001.
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Figure 4. Expressions of Irs1 and Irs2, and the PI3K Activity Associated with Irs1 and Irs2 under the Fasting and Refeeding Conditions

(A and B) Irs1 mRNA and protein levels and Irs1-associated PI3K activity (A), and Irs2 mRNA and protein levels and Irs2-associated PI3K activity (B) in the liver of

the control mice after 24 hr fasting or at 6 hr after the start of refeeding following 24 hr fasting (n = 6). The results of western blotting and the PI3K activity are

representative of three independent experiments.

All the experiments illustrated in this figure were performed using 8- to 10-week-old male mice. Results are represented as mean ± SEM **p < 0.01.
tyrosine-phosphorylated proteins (Figure S6C, lower panels)

increased in the LIrs1KO mice, the PI3K activity associated

with Irs1 (Figures 5D, upper-right panel and S6D, upper panel)

and with tyrosine-phosphorylated proteins (Figure S6D, lower

panels) did not increase in the LIrs2KO mice. However, the

PI3K activity associated with Irs1 (Figures 5D, upper-right panel,

and S6D, upper panel) and with tyrosine-phosphorylated pro-

teins (Figure S6D, lower panels) in the LIrs2KO mice began to in-

crease by 2 hr after the start of refeeding, while the PI3K activity

associated with Irs2 (Figures 5D, lower-right panel, and S6C,

upper panel) and with tyrosine-phosphorylated proteins (Fig-

ure S6C, lower panels) in the LIrs1KO mice rather decreased

after refeeding. Consistent with this, Akt phosphorylation was

induced immediately after the start of refeeding in the LIrs1KO

mice (Figure S6E), but not in the LIrs2KO mice (Figure S6F).

Akt phosphorylation in the LIrs2KO mice began to increase by

2 hr after the start of refeeding (Figure S6F), but this Akt phos-

phorylation in the LIrs1KO mice rather decreased after refeeding

(Figure S6E). Thus, Akt phosphorylation decreased during fast-

ing and was induced immediately after the start of refeeding,

and this induction was sustained for at least 6 hr after the start

of refeeding in the control mice (Figures 5E and S6G). These

data and the phenotypes observed in the LIrs1KO and LIrs2KO

mice suggest that Irs2 mainly functions under the fasting condi-

tion and for a short period immediately after the start of refeed-

ing; Irs1 primarily acts thereafter, under the refeeding condition,
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suggesting the existence of a functional relay between Irs1 and

Irs2 in insulin signaling during fasting and after refeeding.

LIrs1/2DKO Mice Developed Diabetes and Exhibited
Insulin Resistance
In order to determine whether abrogation of both Irs1 and Irs2 in

the liver may cause insulin resistance under both the fasting and

refeeding conditions, we generated LIrs1/2DKO mice. While the

Irs1 and Irs2 alleles were not detected in the livers, both contin-

ued to be expressed in all of the other tissues than the livers

of the LIrs1/2DKO mice (Figure S7A). The expressions of both

Irs1 and Irs2 mRNA (Figure S7B) and protein (Figure 6A, upper

panels) were almost completely abrogated in the livers of the

LIrs1/2DKO mice. Insulin-stimulated tyrosine phosphorylation

of Irs1 and Irs2 (Figure 6A, lower panels) and recruitment of the

p85-adaptor subunit of PI3K to the Irs1 or Irs2 immunoprecipi-

tates (Figure S7C) were also abrogated in the fasted LIrs1/

2DKO mice. Insulin-stimulated PI3K activity associated with

Irs1 (Figure 6B, left panel), Irs2 (Figure 6B, middle panel), and

tyrosine-phosphorylated proteins (Figure 6B, right panel) was

almost completely abrogated in the liver of the fasted LIrs1/

2DKO mice. Insulin-stimulated phosphorylation of Akt, FoxO1,

and GSK3b was also almost completely abrogated in these

fasted mice (Figures 6C and S7D), suggesting that insulin signal-

ing is almost completely mediated by Irs1 and Irs2 in the liver

under the fasting condition. The LIrs1/2DKO mice showed
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similar body-weight gain to the control mice (data not shown). An

ITT after fasting in 8-week-old LIrs1/2DKO mice revealed severe

insulin resistance (Figure 6D), and an OGTT conducted after fast-

ing in these mice revealed severe glucose intolerance with

marked hyperinsulinemia (Figure 6E), indicating that LIrs1/

2DKO mice developed diabetes. These phenotypes were similar

to those of the LIRKO mice (Michael et al., 2000), suggesting that

insulin-receptor signaling may be almost exclusively mediated

by Irs1 and Irs2 in the liver. However, while the glucose tolerance

gradually improved by the age of 24 weeks in the LIRKO mice

(Michael et al., 2000), the severe insulin resistance (Figure 6F)

and glucose intolerance (Figure 6G) persisted in the LIrs1/

2DKO mice until 24 weeks of age. Consistent with the results

of the ITT, the GIR and Rd were significantly lower (and the

HGP significantly higher) in the LIrs1/2DKO mice under the fast-

ing condition (Figure 6H). The serum levels of TC, TG, and FFA

were not significantly different between the control and LIrs1/

2DKO mice under the fasting condition (Figure 6I). The serum

leptin and adiponectin levels, however, were significantly higher

in the LIrs1/2DKO mice than in the control mice under the fasting

condition (Figure 6J). The TG content in the liver was not signif-

icantly different between the control and LIrs1/2DKO mice under

the nonfasted condition (Figure 6K).

Unlike the LIrs1KO or LIrs2KO mice, the degree of insulin resis-

tance remained unchanged even after refeeding in the LIrs1/

2DKO mice (Figure 7A). Consistent with the results of the ITT,

the GIR and Rd were significantly lower (and the HGP signifi-

cantly higher) in the LIrs1/2DKO mice under the refeeding condi-

tion (Figure 7B). Moreover, phosphorylation of Akt, FoxO1, and

GSK3b remained almost completely abrogated in the LIrs1/

2DKO mice under the refeeding condition (Figure 7C). The he-

patic glycogen content in the LIrs1/2DKO mice was significantly

lower than that in the control mice under the refeeding condi-

tion—although it was increased as compared with that noted

under the fasting condition (Figure 7D)—despite the absence

of GSK3b phosphorylation (Figure 7C). While the PEPCK and

G6Pase expressions were increased in the LIrs2KO mice under

the fasting condition (Figure 3J), unexpectedly, their expression

levels were similar in the control and LIrs1/2DKO mice (Fig-

ure 7E). This may be explained by the suppression of hepatic

gluconeogenesis via the hypothalamus induced by the marked

hyperinsulinemia (Obici et al., 2002b). Suppression of PEPCK

and G6Pase expressions under the refeeding condition was

significantly impaired in the LIrs1/2DKO mice (Figure 7E). The

expression level of SREBP1c was similar between the control

and LIrs1/2DKO mice under the fasting condition, but was signif-

icantly decreased under the refeeding condition in the LIrs1/

2DKO mice as compared with that in the control mice (Figure 7E).

The expression of glucokinase was almost completely abro-

gated in the LIrs1/2DKO mice under both the fasting and refeed-

ing conditions (Figure 7E). These findings indicate that the LIrs1/

2DKO mice showed insulin resistance under both the fasting and

refeeding conditions.

Hepatic Overexpression of Dominant-Negative
FoxO1-Ameliorated Diabetes in the LIrs1/2DKO Mice
FoxO1 is a forkhead winged/helix transcription factor that medi-

ates many effects of insulin downstream of the Irs-PI3K-Akt

cascade (Nakae et al., 1999; Kops et al., 1999; Brunet et al.,
1999). In mammals, nuclear FoxO1, which accumulates in the

presence of insulin resistance, dysregulates nutrient homeosta-

sis by promoting hepatic gluconeogenesis, while the suppres-

sion of FoxO1 expression has been demonstrated to reverse

the effects of insulin resistance and restore glucose tolerance

in diabetic mice (Altomonte et al., 2003; Taniguchi et al., 2006).

Thus, in order to investigate whether FoxO1 mediates insulin-

induced regulation of glucose homeostasis downstream of Irs1

and Irs2 in the liver, expression of dominant-negative FoxO1

(DN-FoxO1) (Nakae et al., 2001) was induced in the livers of

the LIrs1/2DKO mice. The blood glucose and serum insulin levels

before and after glucose loading were partially, but significantly,

decreased during an OGTT conducted after fasting in the LIrs1/

2DKO mice treated with DN-FoxO1, as compared with the levels

in the LIrs1/2DKO mice treated with lacZ (Figure 7F). These

findings suggest that the Irs1/Irs2-FoxO1 pathway may play an

important role in the regulation of glucose homeostasis in the

liver under the fasting condition.

DISCUSSION

The liver maintains blood glucose levels within a normal range:

while it ensures a sufficient supply of glucose in the fasting state,

it takes up ingested carbohydrate to store it as glycogen and

synthesizes lipids in the fed state, although this dual nature has

not been fully accounted for in terms of insulin signaling. In this

study, the LIrs1KO mice failed to exhibit insulin resistance during

fasting, but showed insulin resistance after refeeding, associ-

ated with decreased expressions of glucokinase and SREBP1c.

Conversely, the LIrs2KO mice exhibited insulin resistance during

fasting but not after refeeding, associated with increased ex-

pression of PEPCK and G6Pase. These data suggest that both

Irs1 and Irs2 are physiologically required for diurnal regulation

of glucose metabolism by insulin in the liver.

Our close monitoring of the diurnal changes of glucose and

insulin levels revealed that although the blood glucose levels

were almost indistinguishable between the LIrs1KO and LIrs2KO

mice (Figure 5A, upper panels), the LIrs1KO mice exhibited

higher serum insulin levels at 4 and 6 hr after the start of refeed-

ing. The LIrs2KO mice exhibited higher serum insulin levels after

the 24 hr fasting and at 30 and 60 min after the start of refeeding

than the control mice (Figure 5A, lower panels). These results

indicate the presence of insulin resistance at these time points,

which was confirmed by the results of the ITT and hyperinsuline-

mic-euglycemic clamp studies in the LIrs1KO mice under the

refeeding condition (Figures 3A and 3B) and the LIrs2KO mice

under the fasting condition (Figures 2D and 2F).

Insulin has been shown to suppress the expression of Irs2

both in vitro and in vivo, by inhibiting the synthesis of Irs2

mRNA at the transcriptional level (Zhang et al., 2001; Hirashima

et al., 2003; Taniguchi et al., 2006). Indeed, the mRNA levels of

Irs2 in the control mice increased during the second half of the

24 hr fasting—when the serum insulin levels were quite low—

and immediately decreased within 30 min after the start of re-

feeding, which is associated with increase of the serum insulin

levels induced by the food intake (Figures 5A and 5B). Our results

strongly suggest that suppression of Irs2 immediately after the

start of refeeding, presumably due to the increased serum insulin

levels, may be mediated by Irs2 itself, because PI3K activity
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associated with Irs2— but not Irs1—increased immediately after

the start of refeeding not only in the control mice, but also in the

LIrs1KO mice (Figures 5C, S6B, S6C, and S6D). Downregulation

of Irs2 expression by Irs2 itself implies the existence of a feed-

back mechanism to prevent excessive insulin-signal transmis-

sion by Irs2 in response to food intake. Whereas the sharp fall

of the Irs2 mRNA levels in the control mice persisted immediately

after the start of refeeding, the levels in the LIrs1KO mice began

to increase again at 2 hr after the start of refeeding (Figure 5B).

This suggests that Irs1, as well as Irs2, is required for the sup-

pression of Irs2 mRNA after the start of refeeding.

Expression of a sufficient amount of hepatic Irs2 during fasting

appears to be pivotal for normal glucose homeostasis. If Irs2 pro-

tein is abundantly expressed during fasting, elevated glucose

levels promptly decrease after refeeding. However, in the pres-

ence of hyperinsulinemia with insulin resistance (when the fast-

ing Irs2 level is scarce), insulin signaling is impaired, and the el-

evated glucose levels fail to decrease immediately after the start

of refeeding. In fact, LIrs2KO mice showed glucose intolerance

(Figure 2E), while the LIrs1KO mice exhibited no such glucose

intolerance (Figure 2B).

Based on our findings, we propose that glucose homeostasis

is regulated by both hepatic Irs1 and Irs2; Irs1 and Irs2 exert dis-

tinct actions under the fasting and refeeding conditions. The se-

rum insulin levels decrease gradually during fasting and increase

immediately after the start of refeeding. Irs2 protein levels in-

crease during the second half of a fasting period and decrease

immediately after the start of refeeding, while the Irs1 protein

levels remain essentially unaffected by food intake. The PI3K ac-

tivity associated with Irs2 begins to increase during the second

half of a fasting period despite the decrease in serum insulin

levels and reaches its peak immediately after the start of refeed-

ing, before rapidly decreasing thereafter. On the other hand, the

PI3K activity associated with Irs1 begins to increase by a few

hours after the start of refeeding and reaches its peak thereafter,

suggesting a dynamic switch of the principal effector in the he-

patic insulin signaling during fasting and after refeeding. Thus,

we propose the concept of the existence of a functional relay be-

tween Irs1 and Irs2 in hepatic insulin signaling during fasting and

after refeeding; Irs1 functions primarily after refeeding and Irs2

functions mainly during fasting and immediately after the start

of refeeding. This also indicates that Irs2 may be the main con-

tributor to the regulation of gluconeogenesis, i.e., PEPCK and

G6Pase, while Irs1 may predominantly regulate the expression

of SREBP1c and glucokinase.

This concept could explain most (if not all) of the findings of

previous studies on the roles of Irs1 and Irs2 in the regulation

of glucose and lipid metabolism by insulin both in vitro and

in vivo. With respect to Irs1-dependent signals, Kasuga and col-

leagues argued that the Irs1-PI3K pathway is essential for the
insulin-induced expression of the SREBP1c and glucokinase

genes in cultured-rat hepatocytes (Matsumoto et al., 2002).

The group led by Kahn has proposed that acute suppression

of hepatic Irs1 by adenovirus-mediated short hairpin RNA

(shRNA) results in decreased expression of glucokinase induced

by insulin (Taniguchi et al., 2005). With respect to Irs2-dependent

pathways, Dong et al. reported that the fasted LIrs2KO mice in

their study exhibited glucose intolerance and that the expression

of PEPCK increased under the fasting condition (Dong et al.,

2006).

On the other hand, it is likely that distinct compensatory mech-

anisms are induced by genetic ablation or relatively acute

shRNA-mediated inactivation, giving rise to the phenotypic dif-

ferences (Michael et al., 2000; Taniguchi et al., 2005). Indeed,

chronic, complete shutdown of insulin signaling in the livers of

the LIRKO mice results in decreased serum TG levels but no al-

teration of lipid accumulation in the liver (Michael et al., 2000),

whereas double knockdown of Irs1 and Irs2 by shRNA treatment

results in increased TG levels in the serum and liver (Taniguchi

et al., 2005), shown by the same group. Thus, the phenotype in

regard to the lipid synthesis in the liver of the LIrs1/2DKO mice

is indeed more consistent with that of the LIRKO mice, and it is

possible that incomplete inactivation of Irs proteins may en-

hance some of the insulin actions and/or promote the shift of

substrates for energy storage from glucose to lipids, leading to

upregulation of SREBP1c.

Although the serum levels of TC, TG, and FFA were not signif-

icantly different between the control and LIrs1/2DKO mice, the

serum leptin and adiponectin levels were significantly higher in

the LIrs1/2DKO mice under the fasting condition (Figure 6J), as

observed in the LIRKO (Cohen et al., 2007) and Irs1/Irs2 dou-

ble-knockdown mice treated with shRNA (Taniguchi et al.,

2005). Recently, it has been reported that the expression levels

of the short (Ob-Ra), long (Ob-Rb), and soluble (Ob-Re) forms

of the leptin receptor were significantly increased in the liver of

the LIRKO mice and that insulin suppressed the leptin-receptor

expression in isolated hepatocytes from normal mice, suggest-

ing that high levels of circulating leptin receptor bind to leptin

and alter its clearance (Cohen et al., 2007). Thus, insulin signaling

in the liver plays an important role in leptin homeostasis. Consis-

tent with this, it has been reported that leptin-receptor expres-

sion was significantly increased in the livers of the liver-specific

Irs2:total Irs-1-knockout mice (Dong et al., 2006) and our LIrs1/

2DKO mice (data not shown). In contrast, the expressions of

adiponectin receptors (AdipoR1 and AdipoR2 [Yamauchi et al.,

2003]) were not increased in the livers of the LIrs1/2DKO mice

(data not shown), suggesting the absence of a significant change

in the adiponectin clearance. The molecular mechanism under-

lying the increase of the serum adiponectin levels in these mice

remains unknown.
Figure 5. Distinct Roles of Irs1 and Irs2 in Insulin Signaling in the Liver under the Fasting and Refeeding Conditions

(A and B) Blood glucose and serum insulin levels (A) and the mRNA levels of Irs1 and Irs2 (B) in the control (black), LIrs1KO (red), and LIrs2KO (blue) mice under the

fasting and refeeding conditions (n = 4). Results are represented as mean ± SEM *p < 0.05, LIrs1KO versus control mice. #p < 0.05, LIrs2KO versus control mice.

(C) Protein levels of Irs1 and Irs2 in the liver of the control mice under the fasting and refeeding conditions. Results are representative of three independent

experiments.

(D) PI3K activity associated with Irs1 or Irs2 in the control, LIrs1KO, and LIrs2KO mice under the fasting and refeeding conditions. Results are representative of

three independent experiments.

(E) Phosphorylation of Akt in the liver of the control mice under the fasting and refeeding conditions. Results are representative of three independent experiments.

All the experiments illustrated in this figure were performed using 8- to 10-week-old male mice.
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Why do hepatic Irs1 and Irs2 have distinct roles? One of the

reasons may be the dual aspects of the role played by the liver.

While other target tissues of insulin simply take in glucose, the

liver produces and consumes glucose to adapt to various phys-

iological conditions. The opposing functions of utilizing glucose,

that is, glucose production during fasting and glucose uptake af-

ter food intake, may be the reason for the distinctive roles of Irs1

and Irs2. In the long history of evolution, mammals had to survive

for certain periods without food. The necessity of development

of a mechanism to handle sporadic starvation may have resulted

in the refined roles of Irs1 and Irs2 under the fasting and refeed-

ing conditions.

In conclusion, Irs1 and Irs2 exert distinct actions under the

fasting and refeeding conditions and are almost exclusively re-

sponsible for the mediation of insulin signaling in the liver. Under-

standing the molecular basis of hepatic insulin signaling in the

regulation of glucose metabolism may be expected to provide

a basis for a better understanding of the pathogenesis and treat-

ment of type 2 diabetes mellitus.

EXPERIMENTAL PROCEDURES

Construction of the Targeting Vector, ES Cell Culture, and

Generation of the Mutant Mice

To construct the targeting vector for the Irs1 gene, a mouse genomic DNA

library packaged in Lambda DASH II (Clontech, Mountain View, CA) was

screened using mouse Irs1 cDNA as the probe. Five clones containing the

Irs1 gene were isolated. We constructed a targeting vector in which a third

loxP site was introduced into the 50 side of the Irs1 gene and the floxed neo-

mycin-resistance gene (neoR) was introduced into the 30 side of the Irs1

gene (Figure S8A). The diphtheria toxin A fragment (DTA) gene under an

MC1 promoter was ligated onto the 50 end of the homologous region for neg-

ative selection against random integration (Kubota et al., 2004). The targeting

vector was electroporated into E14.1 embryonic stem cells (129/Sv), and the

cells were screened for homologous recombinant clones by Southern blot

analysis using probe A and probe B, as described previously (Kubota et al.,

2004) (Figures S8A and S8B). The cells were aggregated with eight-cell

embryos from ICR mice and transferred into pseudopregnant ICR females to

generate chimeric mice. Male chimeric mice with an agouti coat color were

mated with C57Bl/6 female mice to generate heterozygous (Irs1lox/+) mice

(Kubota et al., 2004).

Animals

The mice were housed under a 12 hr light-dark cycle and given regular chow,

CE-2 (CLEA Japan, Inc., Tokyo, Japan), consisting of 25.6% (w/w) protein,

3.8% fiber, 6.9% ash, 50.5% carbohydrates, 4% fat, and 9.2% water. Albu-
min-Cre-recombinase transgenic mice (AlbCre mice) were purchased from

Jackson Laboratory. The Irs1lox/+ mice or mice with a floxed allele of Irs2

(Irs2lox/lox) (Kubota et al., 2004) were intercrossed with the AlbCre mice to gen-

erate AlbCreIrs1lox/+ or AlbCreIrs2lox/+ mice. AlbCreIrs1lox/+ or AlbCreIrs2lox/+

mice were crossed with Irs1lox/+ or Irs2lox/+ mice to obtain wild-type, Irs1lox/+,

AlbCre, and AlbCreIrs1lox/lox (LIrs1KO) mice; or wild-type, Irs2lox/+, AlbCre,

and AlbCreIrs2lox/lox (LIrs2KO) mice, respectively. To generate liver-specific

Irs1/Irs2 double-knockout (LIrs1/2DKO) mice, AlbCreIrs1lox/+ or AlbCreIrs2lox/+

mice were crossed with Irs2lox/+ or Irs1lox/+ mice, then the resultant

AlbCreIrs1lox/+/Irs2lox/+ were crossed with Irs1lox/+/Irs2lox/+ mice. The wild-

type, AlbCre, Irs1lox/lox, Irs2lox/lox, and Irs1lox/lox/Irs2lox/lox mice were phenotyp-

ically indistinguishable; the Irs1lox/lox, Irs2lox/lox, and Irs1lox/lox/Irs2lox/lox mice

were used as controls. All the mouse lines were maintained on a mixed back-

ground derived from C57Bl/6 and 129/Sv. All experiments in this study were

performed using male littermates. For the refeeding condition, the mice were

first deprived of food for 24 hr, followed by refeeding for 6 hr before the exper-

iments. Genotyping was performed by PCR amplification of the tail DNA from

each mouse at 3 weeks of age. The PCR primers for the Cre recombinase were

50-ACATGTTCAGGGATCGCCAGG-30 and 50-TAACCAGTGAAACAGCATTG

C-30. The primers for the Irs1 and floxed Irs1 alleles were 50-TCTGTGAGC

CTGTTTTCTGGTGGTC-30, 50-TCCTATTGATGAAAGCCCAAGGCAC-30, and

50-CAGCGCATCGCCTTCTATCGCCTTC-30. The primers for the Irs2 and

floxed Irs2 alleles were 50-CCAGTGGGTGGCAGTGTGGGTAGG-30, 50-CAGC

GCATCGCCTTCTATCGCCTTC-30, and 50-GCCATGTCCTTACAACCATTAGC

GG-30, respectively. To detect Cre-mediated recombination at the genomic

DNA level in various tissues by PCR, primers were designed for the upstream

portion (primer a) and downstream portion (primer b) of Irs1 genomic DNA and

the upstream portion (primer c) and downstream portion (primer d) of Irs2

genomic DNA (Figure S1A). Primer a was 50-TTTCCTACATAATGCGAGG

TCCCC-30, primer b was 50-AAATGTTGGAAGCAGAATCAGGACC-30, primer

c was 50-CCAGTGGGTGGCAGTGTGGGTAAGA-30, and primer d was 50-CC

CATGTCTGCTTGTATGGAGAGCC-30. Primer pairs a and b yielded PCR prod-

ucts with a length of 0.2 kb after Cre-mediated Irs1 deletion, and primer pairs c

and d yielded PCR products with a length of 0.4 kb after Cre-mediated Irs2

deletion. The primers used for G3PDH were 50-TGAAGGTCGGTGTGAACG

GATTTGGC-30 and 50-CATGTAGGCCATGAGGTCCACCAC-30. The methods

used for animal care and the experimental procedures were approved by

the Animal Care Committee of the University of Tokyo.

Immunoprecipitation, Western Blot Analysis, and PI3K Assay

For insulin stimulation, 10 or 0.1 U of human insulin (Novolin R, Novo Nordisk,

Denmark) were injected via the inferior vena cava; the liver, skeletal muscle or

white adipose tissue were dissected and immediately frozen in liquid nitrogen

70 s or 30 min after the insulin stimulation, respectively. To prepare tissue

lysates, frozen tissue was homogenized in buffer A (25 mM Tris-HCl [pH

7.4], 10 mM sodium orthovanadate, 10 mM sodium pyrophosphate, 100 mM

sodium fluoride, 10 mM EDTA, 10 mM EGTA, and 1 mM phenylmethylsulfonyl

fluoride [PMSF]). For immunoprecipitation of Irs1, Irs2, and phosphotyrosine,

5 mg of the liver extracts were incubated with specific antibodies against
Figure 6. LIrs1/2DKO Mice Showed Severe Insulin Resistance and Developed Diabetes

(A) In upper panels, liver lysates were immunoprecipitated with anti-Irs1 or anti-Irs2 antibody and subsequently immunoblotted with anti-Irs1 or anti-Irs2 antibody

in 8- to 10-week-old control and LIrs1/2DKO mice. Lower panels show insulin-stimulated tyrosine phosphorylation of Irs1 or Irs2 at 70 s after administration of

10 U of insulin in the liver of the control and LIrs1/2DKO mice after overnight (about 16 hr) fasting. Results are representative of three independent experiments.

(B) Insulin-stimulated PI3K activity associated with Irs1, Irs2, and tyrosine-phosphorylated proteins at 70 s after administration of 10 U of insulin in the liver of 8- to

10-week-old control and LIrs1/2DKO mice after overnight (about 16 hr) fasting. Results are representative of three independent experiments.

(C) Insulin-stimulated phosphorylation of Akt, FoxO1, and GSK3b at 70 s after administration of 10 U of insulin in the liver of 8- to 10-week-old control and

LIrs1/2DKO mice after overnight (about 16 hr) fasting. Results are representative of three independent experiments.

(D) ITT in 8-week-old control and LIrs1/2DKO mice after 3 hr fasting (n = 16–19).

(E) Blood glucose and serum insulin levels in 8-week-old control and LIrs1/2DKO mice during an OGTT conducted after 24 hr fasting (n = 17–18).

(F) ITT in 24-week-old control and LIrs1/2DKO mice after 3 hr fasting (n = 9–17).

(G) Blood glucose and serum insulin levels in 24-week-old control and LIrs1/2DKO mice during an OGTT conducted after 24 hr fasting (n = 10–13).

(H) GIR, HGP, and Rd in 8-week-old control and LIrs1/2DKO mice in the hyperinsulinemic-euglycemic clamp study conducted after 6 hr fasting (n = 6–7).

(I) Serum levels of TC, TG, and FFA in 8-week-old control and LIrs1/2DKO mice after overnight (about 16 hours) fasting (n = 10–14).

(J) Serum leptin and adiponectin levels in 8-week-old control and LIrs1/2DKO mice after overnight (about 16 hr) fasting (n = 6–14).

(K) The TG content of the liver in 8-week-old nonfasted control and LIrs1/2DKO mice (n = 6). Results are represented as mean ± SEM *p < 0.05. **p < 0.01,

***p < 0.001.
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Irs1, Irs2, or phosphotyrosine, respectively, for 1 hr at 4�C. Then, protein G-Se-

pharose was added, followed by incubation for 2 hr at 4�C. After washing three

times with buffer A, the immunocomplexes were resolved on 7% SDS-PAGE.

Phosphorylated or total protein was analyzed by immunoblotting with specific

antibodies against Irs1, Irs2, phosphotyrosine, and anti-p85PAN antibody.

Phosphorylated or total protein of Akt, FoxO1, and Gsk3b were analyzed by

immunoblotting with specific antibodies after the tissue lysates were resolved

on SDS-PAGE and transferred to a Hybond-P PVDF transfer membrane

(Amersham Biosciences, Buckinghamshire, UK). Bound antibodies were de-

tected with HRP-conjugated secondary antibodies, using ECL detection re-

agents (Amersham Biosciences, Buckinghamshire, UK). For the PI3K assay,

5 mg of the liver extracts were immunoprecipitated with antibody against

Irs1, Irs2, or phosphotyrosine, and the immune complexes were assayed for

PI3K activity using phosphatidylinositol as the substrate. The procedure was

performed as described previously (Kubota et al., 2000). The activities of

PI3K were quantitated with an image analyzer (BAS 2000, Fuji Film, Tokyo,

Japan) and expressed as the photostimulated luminescence intensity (PSL).

In Vivo Glucose Homeostasis

For the glucose tolerance test, the mice were loaded with oral glucose at

1.5 mg/g body weight. Blood samples were taken at different time points,

and the concentrations of glucose were measured with an automatic glucom-

eter (Glutest Ace, Sanwa Chemical Co., Nagoya, Japan). Whole blood was col-

lected and centrifuged in heparinized tubes, and the separated serum samples

were stored at �20�C. Insulin levels were determined using an insulin radio-

immunoassay (RIA) kit (BIOTRAK, Amersham, UK), with rat insulin as the

standard (Kubota et al., 1999). For the insulin tolerance test, mice were intraper-

itoneally challenged with 0.75 mU/g (body weight) of human insulin (Novolin R,

Novo Nordisk, Denmark). Venous blood samples were then drawn at different

time points (Kubota et al., 1999).

Hyperinsulinemic-Euglycemic Clamp Study

Clamp studies were carried out as described previously (Kubota et al., 2006),

with slight modifications. In brief, 2–3 days before the study, an infusion cath-

eter was inserted into the right jugular vein of the animals under general anes-

thesia induced with sodium pentobarbital. The studies on the mice were per-

formed under conscious and unstressed conditions. A continuous infusion of

insulin (Novolin R, Novo Nordisk, Denmark) was given (5.0 mU/kg/min for the

LIrs1KO and LIrs2KO mice and 7.5 mU/kg/min for the LIrs1/2DKO mice), and

the blood glucose concentration (monitored every 5 min) was maintained at

�120 mg/dl by administration of glucose (5 g of glucose per 10 ml enriched

to approximately 20% with [6,6-2H2]glucose [Sigma]) for 120 min. Blood

was sampled via tail-tip bleeds at 90, 105, and 120 min, for determination of

the rate of glucose disappearance (Rd). Rd was calculated according to non-

steady-state equations, and hepatic glucose production (HGP) was calculated

as the difference between the Rd and the exogenous glucose infusion rates

(GIR) (Kubota et al., 2006).

Histology and the Glycogen and TG Contents of the Liver

To study the liver histology, the livers were dissected and fixed in buffered

neutral formalin (10%). The fixed-tissue blocks were embedded in paraffin.

The paraffin sections (5 mm) were stained by the standard H&E staining proce-

dure. The method for measurement of the glycogen content in the liver has

been described previously (Lo et al., 1970). In brief, approximately 50 mg of

the liver samples were weighed and boiled in 30% KOH saturated with

Na2SO4 and 95% ethanol was added to precipitate the glycogen from the
alkaline digestate. After cooling on ice, the samples were centrifuged and

the glycogen precipitates were dissolved in distilled H2O. The glycogen con-

centrations were then read on a spectrophotometer after the addition of 5%

phenol and 96%–98% H2SO4. For determining the TG content in the liver,

the tissue homogenates were extracted with 2:1 (vol/vol) chloroform/metha-

nol. Chloroform/methanol was added to the homogenate, and the mixture

was shaken for 15 min. After centrifugation at 14,000 rpm for 10 min, the or-

ganic layer was collected. This extraction was repeated three times, and the

collected sample was dried and resuspended in 1% Triton X-100/ethanol.

The measurement was conducted using Triglyceride E-test Wako (Wako

Pure Chemical Industries, Ltd., Osaka, Japan).

SUPPLEMENTAL DATA

Supplemental Data include eight figures and Supplemental Experimental

Procedures and can be found at http://www.cellmetabolism.org/cgi/content/

full/8/1/49/DC1/.

ACKNOWLEDGMENTS

We thank Katsuyoshi Kumagai, Katsuko Takasawa, Eri Yoshida-Nagata,

Namiko Kasuga, Miharu Nakashima, Ayumi Nagano, Sayaka Sasamoto,

Yuko Miki, Ritsuko Fujita, Norie Ohtsuka-Kowatari, Eishin Hirata, and Hiroshi

Chiyonobu for their excellent technical assistance and assistance with the an-

imal care. This work was supported by a grant for CREST from Japan Science

and Technology Corporation; a grant for Promotion of Fundamental Studies in

Health Science of the Organization for Pharmaceutical Safety and Research;

a grant for TSBMI from the Ministry of Education, Culture, Sports, Science

and Technology of Japan; a Grant-in-aid for Scientific Research in Priority

Areas (A) (16209030) and (A) (18209033) from the Ministry of Education, Cul-

ture, Sports, Science and Technology of Japan (to T. K.); and a Grant-in-aid

for Scientific Research in Priority Areas (C) (19591037) from the Ministry of

Education, Culture, Sports, Science and Technology of Japan (to N. K.). We

certify that none of the authors of this manuscript have any financial interests

to declare in relation to this work.

Received: November 7, 2007

Revised: March 28, 2008

Accepted: May 23, 2008

Published: July 1, 2008

REFERENCES

Altomonte, J., Richter, A., Harbaran, S., Suriawinata, J., Nakae, J., Thung,

S.N., Meseck, M., Accili, D., and Dong, H. (2003). Inhibition of Foxo1 function

is associated with improved fasting glycemia in diabetic mice. Am. J. Physiol.

Endocrinol. Metab. 285, E718–E728.

Araki, E., Lipes, M.A., Patti, M.E., Bruning, J.C., Haag, B., 3rd, Johnson, R.S.,

and Kahn, C.R. (1994). Alternative pathway of insulin signalling in mice with

targeted disruption of the Irs1 gene. Nature 372, 186–190.

Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson,

M.J., Arden, K.C., Blenis, J., and Greenberg, M.E. (1999). Akt promotes cell

survival by phosphorylating and inhibiting a Forkhead transcription factor.

Cell 96, 857–868.
Figure 7. LIrs1/2DKO Mice Exhibited Insulin Resistance Under the Refeeding Condition

(A) ITT in the control and LIrs1/2DKO mice at 6 hr after the start of refeeding following 24 hr fasting (n = 14–15).

(B) GIR, HGP, and Rd in control and LIrs1/2DKO mice in the hyperinsulinemic-euglycemic clamp study at 6 hr after the start of refeeding following 24 hr fasting

(n = 5–6).

(C–E) Phosphorylation of Akt, FoxO1, and GSK3b in the liver (C), the hepatic glycogen content (D), and the expression levels of PEPCK, G6Pase, SREBP1c, and

glucokinase in the liver (E) of 8-week-old control and LIrs1/2DKO mice after 24 hr fasting or at 6 hr after the start of refeeding following 24 hr fasting (D and E, n = 6).

In (C), results are representative of three independent experiments.

(F) Blood glucose and serum insulin levels in the control and LIrs1/2DKO mice treated with lacZ or DN-FoxO1 mice during an OGTT conducted after 24 hr fasting

(n = 7–10). All the experiments illustrated in this figure were performed using 8- to 10-week-old male mice, unless otherwise specified. Results are represented as

mean ± SEM *p < 0.05. **p < 0.01, ***p < 0.001.
Cell Metabolism 8, 49–64, July 2008 ª2008 Elsevier Inc. 63

http://www.cellmetabolism.org/cgi/content/full/8/1/49/DC1/
http://www.cellmetabolism.org/cgi/content/full/8/1/49/DC1/


Cell Metabolism

Dynamic Functional Relay of Hepatic Irs1 and Irs2
Cohen, S.E., Kokkotou, E., Biddinger, S.B., Kondo, T., Gebhardt, R., Kratzsch,

J., Mantzoros, C.S., and Kahn, C.R. (2007). High circulating leptin receptors

with normal leptin sensitivity in liver-specific insulin receptor knock-out

(LIRKO) mice. J. Biol. Chem. 282, 23672–23678.

Dong, X., Park, S., Lin, X., Copps, K., Yi, X., and White, M.F. (2006). Irs1 and

Irs2 signaling is essential for hepatic glucose homeostasis and systemic

growth. J. Clin. Invest. 116, 101–114.

Gribble, F.M. (2005). Metabolism: a higher power for insulin. Nature 434,

965–966.

Hirashima, Y., Tsuruzoe, K., Kodama, S., Igata, M., Toyonaga, T., Ueki, K.,

Kahn, C.R., and Araki, E. (2003). Insulin down-regulates insulin receptor sub-

strate-2 expression through the phosphatidylinositol 3-kinase/Akt pathway.

J. Endocrinol. 179, 253–266.

Kasuga, M. (2006). Insulin resistance and pancreatic beta cell failure. J. Clin.

Invest. 116, 1756–1760.

Kops, G.J., de Ruiter, N.D., de Vries-Smits, A.M., Powell, D.R., Bos, J.L., and

Burgering, B.M. (1999). Direct control of the Forkhead transcription factor AFX

by protein kinase B. Nature 398, 630–634.

Kubota, N., Terauchi, Y., Miki, H., Tamemoto, H., Yamauchi, T., Komeda, K.,

Satoh, S., Nakano, R., Ishii, C., Sugiyama, T., et al. (1999). PPAR gamma

mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance.

Mol. Cell 4, 597–609.

Kubota, N., Tobe, K., Terauchi, Y., Eto, K., Yamauchi, T., Suzuki, R., Tsuba-

moto, Y., Komeda, K., Nakano, R., Miki, H., et al. (2000). Disruption of insulin

receptor substrate 2 causes type 2 diabetes because of liver insulin resistance

and lack of compensatory beta-cell hyperplasia. Diabetes 49, 1880–1889.

Kubota, N., Terauchi, Y., Tobe, K., Yano, W., Suzuki, R., Ueki, K., Takamoto, I.,

Satoh, H., Maki, T., Kubota, T., et al. (2004). Insulin receptor substrate 2 plays

a crucial role in beta cells and the hypothalamus. J. Clin. Invest. 114, 917–927.

Kubota, N., Terauchi, Y., Kubota, T., Kumagai, H., Itoh, S., Satoh, H., Yano, W.,

Ogata, H., Tokuyama, K., Takamoto, I., et al. (2006). Pioglitazone ameliorates

insulin resistance and diabetes by both adiponectin-dependent and -indepen-

dent pathways. J. Biol. Chem. 281, 8748–8755.

Lo, S., Russell, J.C., and Taylor, A.W. (1970). Determination of glycogen in

small tissue samples. J. Appl. Physiol. 28, 234–236.

Matsumoto, M., Ogawa, W., Teshigawara, K., Inoue, H., Miyake, K., Sakaue,

H., and Kasuga, M. (2002). Role of the insulin receptor substrate 1 and phos-

phatidylinositol 3-kinase signaling pathway in insulin-induced expression of

sterol regulatory element binding protein 1c and glucokinase genes in rat

hepatocytes. Diabetes 51, 1672–1680.

Michael, M.D., Kulkarni, R.N., Postic, C., Previs, S.F., Shulman, G.I., Magnu-

son, M.A., and Kahn, C.R. (2000). Loss of insulin signaling in hepatocytes leads

to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6,

87–97.

Nakae, J., Park, B.C., and Accili, D. (1999). Insulin stimulates phosphorylation

of the forkhead transcription factor FKHR on serine 253 through a Wortman-

nin-sensitive pathway. J. Biol. Chem. 274, 15982–15985.

Nakae, J., Kitamura, T., Silver, D.L., and Accili, D. (2001). The forkhead

transcription factor FoxO1 (Fkhr) confers insulin sensitivity onto glucose-6-

phosphatase expression. J. Clin. Invest. 108, 1359–1367.

Nandi, A., Kitamura, Y., Kahn, C.R., and Accili, D. (2004). Mouse models of

insulin resistance. Physiol. Rev. 84, 623–647.

Obici, S., Feng, Z., Karkanias, G., Baskin, D.G., and Rossetti, L. (2002a).

Decreasing hypothalamic insulin receptors causes hyperphagia and insulin

resistance in rats. Nat. Neurosci. 5, 566–572.
64 Cell Metabolism 8, 49–64, July 2008 ª2008 Elsevier Inc.
Obici, S., Zhang, B.B., Karkanias, G., and Rossetti, L. (2002b). Hypothalamic

insulin signaling is required for inhibition of glucose production. Nat. Med. 8,

1376–1382.

Plum, L., Belgardt, B.F., and Bruning, J.C. (2006). Central insulin action in

energy and glucose homeostasis. J. Clin. Invest. 116, 1761–1766.

Previs, S.F., Withers, D.J., Ren, J.M., White, M.F., and Shulman, G.I. (2000).

Contrasting effects of Irs-1 versus Irs-2 gene disruption on carbohydrate

and lipid metabolism in vivo. J. Biol. Chem. 275, 38990–38994.

Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of

glucose and lipid metabolism. Nature 414, 799–806.

Simmgen, M., Knauf, C., Lopez, M., Choudhury, A.I., Charalambous, M.,

Cantley, J., Bedford, D.C., Claret, M., Iglesias, M.A., Heffron, H., et al.

(2006). Liver-specific deletion of insulin receptor substrate 2 does not impair

hepatic glucose and lipid metabolism in mice. Diabetologia 49, 552–561.

Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T.,

Terauchi, Y., Ueki, K., Kaburagi, Y., Satoh, S., et al. (1994). Insulin resistance

and growth retardation in mice lacking insulin receptor substrate-1. Nature

372, 182–186.

Taniguchi, C.M., Ueki, K., and Kahn, R. (2005). Complementary roles of

Irs-1 and Irs-2 in the hepatic regulation of metabolism. J. Clin. Invest. 115,

718–727.

Taniguchi, C.M., Emanuelli, B., and Kahn, C.R. (2006). Critical nodes in signal-

ling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96.

Thirone, A.C., Huang, C., and Klip, A. (2006). Tissue-specific roles of IRS

proteins in insulin signaling and glucose transport. Trends Endocrinol. Metab.

17, 72–78.

Tobe, K., Tamemoto, H., Yamauchi, T., Aizawa, S., Yazaki, Y., and Kadowaki,

T. (1995). Identification of a 190-kDa protein as a novel substrate for the insulin

receptor kinase functionally similar to insulin receptor substrate-1. J. Biol.

Chem. 270, 5698–5701.

Tobe, K., Suzuki, R., Aoyama, M., Yamauchi, T., Kamon, J., Kubota, N., Terau-

chi, Y., Matsui, J., Akanuma, Y., Kimura, S., et al. (2001). Increased expression

of the sterol regulatory element-binding protein-1 gene in insulin receptor

substrate-2(�/�) mouse liver. J. Biol. Chem. 276, 38337–38340.

Wada, A., Yokoo, H., Yanagita, T., and Kobayashi, H. (2005). New twist on

neuronal insulin receptor signaling in health, disease, and therapeutics.

J. Pharmacol. Sci. 99, 128–143.

Withers, D.J., Gutierrez, J.S., Towery, H., Burks, D.J., Ren, J.M., Previs, S.,

Zhang, Y., Bernal, D., Pons, S., Shulman, G.I., et al. (1998). Disruption of

Irs-2 causes type 2 diabetes in mice. Nature 391, 900–904.

Yamauchi, T., Tobe, K., Tamemoto, H., Ueki, K., Kaburagi, Y., Yamamoto-

Honda, R., Takahashi, Y., Yoshizawa, F., Aizawa, S., Akanuma, Y., et al.

(1996). Insulin signalling and insulin actions in the muscles and livers of insu-

lin-resistant, insulin receptor substrate 1-deficient mice. Mol. Cell. Biol. 16,

3074–3084.

Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S.,

Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., et al. (2003). Cloning of

adiponectin receptors that mediate antidiabetic metabolic effects. Nature

423, 762–769.

Zhang, J., Ou, J., Bashmakov, Y., Horton, J.D., Brown, M.S., and Goldstein,

J.L. (2001). Insulin inhibits transcription of IRS-2 gene in rat liver through an in-

sulin response element (IRE) that resembles IREs of other insulin-repressed

genes. Proc. Natl. Acad. Sci. USA 98, 3756–3761.


	Dynamic Functional Relay between Insulin Receptor Substrate 1 and 2 in Hepatic Insulin Signaling during Fasting and Feeding
	Introduction
	Results
	Generation of Liver-Specific Irs1- and Irs2-Knockout Mice
	LIrs2KO (but Not LIrs1KO) Mice Showed Insulin Resistance under the Fasting Condition
	LIrs1KO (but Not LIrs2KO) Mice Exhibited Insulin Resistance under the Refeeding Condition
	Distinct Roles of Irs1 and Irs2 in Mediating the Actions of Insulin in the Liver
	LIrs1/2DKO Mice Developed Diabetes and Exhibited Insulin Resistance
	Hepatic Overexpression of Dominant-Negative FoxO1-Ameliorated Diabetes in the LIrs1/2DKO Mice

	Discussion
	Experimental Procedures
	Construction of the Targeting Vector, ES Cell Culture, and Generation of the Mutant Mice
	Animals
	Immunoprecipitation, Western Blot Analysis, and PI3K Assay
	In Vivo Glucose Homeostasis
	Hyperinsulinemic-Euglycemic Clamp Study
	Histology and the Glycogen and TG Contents of the Liver

	Supplemental Data
	Supplemental Data
	Acknowledgments
	References


