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For any group G, the profinite topology on G is the uniform topology on G 
for which a neighborhood basis of the identity is given by subgroups of finite 
index in G. The profinite completion G of G is the completion of G in this 
topology. If  G is a polycyclic-by-finite (Y3-) group and if H is a subgroup 
of G, then the induced topology on His the profinite topology on H so that fi 

may be considered to be a subgroup of G. If  H is normal in G, then I? is 
normal in G and (G/H)^ is isomorphic to G/J?. The purpose of this paper is 
to prove the following generalization of [5, Lemma 21, in which the corre- 
sponding result was shown for nilpotent-by-finite groups. 

THEOREM 1. Let G be a YS-group and let X be the maximal normal 

nilpotent (Fitting) subgroup of G. Then fl is the Fitting subgroup of c. 

For a given group G, let 9(G) denote the set of isomorphism classes of 

finite homomorphic images of G. We say groups G and H have isomorphic 
finite quotients if 9(G) = F(H). The following proposition was proven 
in [5]. 

PROPOSITION 2. If G and Hare $F-groups, then G and H have isomorphic 
jkite quotients if and only if i; is isomorphic to I?. 

As an immediate consequence of Theorem 1 and Proposition 2, we have: 

THEOREM 3. If  two ZJF-groups have isomorphic jinite quotients, then their 
respective Fitting subgroups must have the samejinite quotients. 

Preliminaries, We first quote some as yet unpublished work of E. Formanek 
[2]. Let R be the ring of algebraic integers in a number field F. A subgroup G 
of the group GL(n, R) of invertible matrices with entries in R and determinant 
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in R is said to have the congruence subgroup property (CSP) if each subgroup 
H of finite index in G contains a congruence subgroup 

G(m) ={gEGIg= lmodmj 

for some integer m. Thus G has CSP if and only if the profinite topology 

coincides with the congruence topology (the topology generated by taking 
the congruence subgroups as a neighborhood base for the identity). I f  we let 
T(n, R) denote the subgroup of GL(n, R) consisting of upper triangular 
matrices, D(n, R) the subgroup of diagonal matrices and N(n, R) the subgroup 
of upper unitriangular matrices (matrices with 1 on the diagonal), we have 

THEOREM 4. [2, Theorem I]. Let G be a subgroup of T(n, R). Then G 
has CSP. 

THEOREM 5. [2, Theorem 21 Let G be an abelian subgroup of GL(n, R). 

Then G has CSP. 

Theorem 4 if obtained by first proving the result for subgroups of N(n, R) 
and D(n, R) and then combining the two. CSP for subgroups of D(n, R) is a 
consequence of an arithmetic theorem of Chevalley [l]. Theorem 5 is obtained 
by upper triangulating G (see Lemma 7 below). 

LEMMA 6. (essentially [2, Lemma lo]) Let M be an abelian subgroup of 
uutomorphisms of a jkitely generated free ubelian group A. Suppose N is a 
subgroup of M andg is an element of M but not of N. Then there is an integer m 
such that g + h mod m for any h in N. 

Proof. M and thus M/N are finitely generated and consequently residually 
finite. Since gN # 1 in M/N, gN is not in (M/N)@ for some integer a. Thus g 
is not in M”N. Since M has CSP by Theorem 5, Ma contains M(m) for some m. 
This means that g is not in M(m)N or g & h mod m as required. 

LEMMA 7. Suppose M is a finitely generated abelian subgroup of GL(n, 2) 
and that F is an algebraic number field which contains the eigenvuhes of a set 
of generators of M. Let R be the ring of algebraic integers in F. Then M is 
conjugate over F to a subgroup M’ qf T(n, R) such that each element of M 
commutes with its diagonal part. 

Proof. Consider M as acting on F *. Since the elements of M commute, 
any generalized eigenspace of an element x of M (set of vectors v  such that 
(x - cJ)‘% = 0 for a particular eigenvalue a) is invariant under M. We may 
thus decompose Fn as a direct sum of subspaces Vi , invariant under M, on 
which each element of M has a single eigenvalue. Choose a basis of each 
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Vi in which each element of M has an upper triangular matrix. Let d be the 
least common denominator of entries in elements of a generating set of M 

in this new basis. By conjugating by the diagonal matrix 

diag(1, d, d2 ,..., d”-l) 

we may insure that the elements of M in the new basis have integer entries. 
Let the group of matrices in the new basis be M’. On each Vi the diagonal 

part of any element of M’ is a scalar matrix. Thus each element of M’ com- 
mutes with its diagonal part. 

Recall that an automorphism cy of an abelian group A is unipotent if OL can 
be written as 1 + 71 with 7 nilpotent. I f  B is an a-invariant subgroup of A, 
then 01 is unipotent on A if and only if the automorphisms induced on B and 
A/B are unipotent. I f  A is torsion-free, every nontrivial unipotent automor- 
phism has infinite order. The group generated by an element x and a normal 
abelian subgroup A is nilpotent if and only if x induces a unipotent automor- 
phism on A. 

Now let G be a 9’9-group and let N = Fitt G. By Mal’cev [4] there is a 
free abelian normal subgroup K/N of finite index in G/N. Let I/N’ be the 
periodic part of N/N’. 

PROPOSITION 8. No element of K, not in N, induces a unipotent auto- 
morphism of N/I. 

Proof. Note that Fitt K = Fitt G = N. Suppose x in K induces a 
unipotent automorphism of N/I. Since I/N’ is finite, some power xm of x 
centralizes I/N’. It follows that x” induces a unipotent automorphism of N/N’. 
Let L = gp(xm, N). L/N’ is nilpotent since xm induces a unipotent automor- 
phism of N/N’. N is a normal nilpotent subgroup of L so, by [3, Theorem 71, 

L is also nilpotent. Since L is also normal in K, L is contained in Fitt K = N. 
Thus xrn is in N. Since K/N is torsion-free, we must have x in N as well. 

PROPOSITION 9. No element of I?, not in fi, induces a unipotent automor- 
phism of &/I. 

Proof. K acts on N/1 by conjugation. By Proposition 8, K/N acts as a 
free abelian group K* of automorphisms of the free abelian group N/I with 
no nontrivial unipotent elements. K* may be considered to be a subgroup 
of GL(n, Z). The group of automorphisms of R/l induced by R/R is the 
completion (K*)  ̂ of K* in the congruence topology (as a subgroup of 
GL(n, Z)). I f  x in R induces a unipotent automorphism of fi/f, the corre- 
sponding element in (K*)  ̂ must be unipotent. Thus it suffices to show that 
no nontrivial element of (K*)” is unipotent. 

By Lemma 7, K* is conjugate in GL(n, F) to a subgroup R of T(n, R). 
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The congruence topology in GL(n, R) is unchanged by conjugation by 
elements of GL(n,F). Thus (K*)  ̂ is conjugate to (K)̂  as well. Since uni- 
potents are also preserved by conjugation, it is enough to show that no non- 
trivial element of (R)* is unipotent. 

Consider the map d: T(n, R) -+ D(n, R) which erases off diagonal elements. 
Since by Proposition 8, no nontrivial element of R is unipotent, d: K + d(R) 
is an isomorphism. Thus 

(A) If  x is an element of R, d(x) is a kth power in d(R) if and only if x 
is a kth power in R. 

By using Lemma 7, we have arranged that 

(B) If  x is an element of K, d(x) commutes with x and with n(x) = 
x ~ d(x). Thus for any positive integer m, xVrn! is congruent mod m to 
d(x)f’fn! (expand (d(x) + n(~))~‘~! by th B e inomial Theorem and use ran = 0). 

By Theorem 4, 

(C) If  L) is a subgroup of D(n, R), then for each positive integer m, 
there is a positive integer e(m) such that if g is in D and g = 1 mod 0(m), 
then g is an mth power in D. 

Now suppose that 01 is a unipotent element of (K)̂  and let a, , us ,... be a 
sequence of elements of R converging to 01, such that 

CD) ai ym 01 mod i! for each i, and 

w ai = aj mod i! for each j greater than i. 

Since 01 is unipotent, d(a) = 1 so that d(q) = 1 mod i! for each i. For any 
integer m, let k = m 0(m!n!), where 0 is the function given by (C) for the 
subgroup d(X) of D(n, I?). By (D), d(a,) = 1 mod B(m!n!) so by (C), d(a,) is 
an m!n! power in d(K). By (A), ak is an m!n! power in R. By (B), ak E 
d(u,J mod m!. But d(aJ : 1 mod k! so d(a,) =I 1 mod m! and a, = I mod m!. 

By (E) a,, 3 aJc mod m!, so that a,, = 1 mod m!. Thus for each m, 01 I 
r 1 mod m! so oc = I. This shows that the only unipotent element of 

&‘-is the identity, as required. 

Proof of Theorem 1. Let H be the centralizer of N/I in G. By Proposition 8, 
no element of K\N can centralize N/I so that H n K = N and H/N must be 
finite. 

LEMMA 10. f? = Cc(fi/r^). 

Proof. Suppose x in G centralized R/f. We may write x = gk with g in G 
and k in k. The automorphism g* induced by g on H/f must be the same as 
that induced by k-l. Thus g* is in (K*)^, the group of automorphisms 
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induced on R/f by elements of R. This implies that g* commutes with all 
elements of the group K* of automorphisms induced by K on N/I. Now g* 
must be in K* for otherwise, letting M = gp{g*, K*}, N = K*, A = N/I, 
we would contradict Lemma 6. Thus there is an element Fz’ of K such that 
gh’ centralizes N/I. Therefore gk’ = h is in H and x may be written x = hh” 
with k” in l?. Since x and h centralize R/f, K” must also centralize A$7/i. Now 

Proposition 9 implies that lz” must be in fi C i?, so that f  is in A. 
Now let M = Fitt(@. Since every element of M must induce a unipotent 

automorphism of N/f, Proposition 9 implies that M n l? equals N. This 
implies that M/8 is finite. Since fi/l^ is torsion-free, no nontrivial unipotent 
automorphism of @/r̂  can have finite order, so M must centralize fi/f. 
By Lemma 10, M must be contained in fi. Since H is nilpotent-by-finite, 
we may apply [5, Lemma 21 to conclude that M is contained in Fitt(@ = 1c’. 
This completes the proof of Theorem 1. 

I would like to thank J. E. Roseblade for suggestions which shortened and 
hopefully clarified the proof. 
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