Fitting Subgroups and Profinite Completions of Polycyclic Groups

P. F. Pickel
Polytechnic Institute of New York, 333 Jay Street, Brooklyn, New York 11201 Communicated by J. E. Roseblade

Received February 8, 1974

For any group G, the profinite topology on G is the uniform topology on G for which a neighborhood basis of the identity is given by subgroups of finite index in G. The profinite completion \hat{G} of G is the completion of G in this topology. If G is a polycyclic-by-finite ($\mathscr{P} \mathscr{F}$-) group and if H is a subgroup of G, then the induced topology on H is the profinite topology on H so that \hat{H} may be considered to be a subgroup of \hat{G}. If H is normal in G, then \hat{I} is normal in \hat{G} and $(G / H)^{\wedge}$ is isomorphic to \hat{G} / \hat{H}. The purpose of this paper is to prove the following generalization of [5, Lemma 2], in which the corresponding result was shown for nilpotent-by-finite groups.

Theorem 1. Let G be a \mathscr{P}-group and let N be the maximal normal nilpotent (Fitting) subgroup of G. Then \hat{N} is the Fitting subgroup of \hat{G}.

For a given group G, let $\mathscr{F}(G)$ denote the set of isomorphism classes of finite homomorphic images of G. We say groups G and H have isomorphic finite quotients if $\mathscr{F}(G)=\mathscr{F}(H)$. The following proposition was proven in [5].

Proposition 2. If G and H are $\mathscr{P} \mathscr{F}$-groups, then G and H have isomorphic finite quotients if and only if \hat{G} is isomorphic to \hat{H}.

As an immediate consequence of Theorem 1 and Proposition 2, we have:

Theorem 3. If two $\mathscr{P} \mathscr{F}$-groups have isomorphic finite quotients, then their respective Fitting subgroups must have the same finite quotients.

Preliminaries. We first quote some as yet unpublished work of E. Formanek [2]. Let R be the ring of algebraic integers in a number field F. A subgroup G of the group $G L(n, R)$ of invertible matrices with entries in R and determinant
in R is said to have the congruence subgroup property (CSP) if each subgroup H of finite index in G contains a congruence subgroup

$$
G(m)=\{g \in G \mid g \equiv 1 \bmod m\}
$$

for some integer m. Thus G has CSP if and only if the profinite topology coincides with the congruence topology (the topology generated by taking the congruence subgroups as a neighborhood base for the identity). If we let $T(n, R)$ denote the subgroup of $G L(n, R)$ consisting of upper triangular matrices, $D(n, R)$ the subgroup of diagonal matrices and $N(n, R)$ the subgroup of upper unitriangular matrices (matrices with 1 on the diagonal), we have

Theorem 4. [2, Theorem 1]. Let G be a subgroup of $T(n, R)$. Then G has CSP.

Theorem 5. [2, Theorem 2] Let G be an abelian subgroup of $G L(n, R)$. Then G has CSP.

Theorem 4 if obtained by first proving the result for subgroups of $N(n, R)$ and $D(n, R)$ and then combining the two. CSP for subgroups of $D(n, R)$ is a consequence of an arithmetic theorem of Chevalley [1]. Theorem 5 is obtained by upper triangulating G (see Lemma 7 below).

Lemma 6. (essentially [2, Lemma 10]) Let M be an abelian subgroup of automorphisms of a finitely generated free abelian group A. Suppose N is a subgroup of M and g is an element of M but not of N. Then there is an integer m such that $g \not \equiv h \bmod m$ for any h in N.

Proof. $\quad M$ and thus M / N are finitely generated and consequently residually finite. Since $g N \neq 1$ in $M / N, g N$ is not in $(M / N)^{a}$ for some integer a. Thus g is not in $M^{a} N$. Since M has CSP by Theorem $5, M^{a}$ contains $M(m)$ for some m. This means that g is not in $M(m) N$ or $g \not \equiv h \bmod m$ as required.

Lemma 7. Suppose M is a finitely generated abelian subgroup of $G L(n, Z)$ and that F is an algebraic number field which contains the eigenvalues of a set of generators of M. Let R be the ring of algebraic integers in F. Then M is conjugate over F to a subgroup M^{\prime} of $T(n, R)$ such that each element of M^{\prime} commutes with its diagonal part.

Proof. Consider M as acting on F^{n}. Since the elements of M commute, any generalized eigenspace of an element x of M (set of vectors v such that $(x-\alpha I)^{n} v=0$ for a particular eigenvalue α) is invariant under M. We may thus decompose F^{n} as a direct sum of subspaces V_{i}, invariant under M, on which each element of M has a single eigenvalue. Choose a basis of each
V_{i} in which each element of M has an upper triangular matrix. Let d be the least common denominator of entries in elements of a generating set of M in this new basis. By conjugating by the diagonal matrix

$$
\operatorname{diag}\left(1, d, d^{2}, \ldots, d^{n-1}\right)
$$

we may insure that the elements of M in the new basis have integer entries. Let the group of matrices in the new basis be M^{\prime}. On each V_{i} the diagonal part of any element of M^{\prime} is a scalar matrix. Thus each element of M^{\prime} commutes with its diagonal part.

Recall that an automorphism α of an abelian group A is unipotent if α can be written as $1+\eta$ with η nilpotent. If B is an α-invariant subgroup of A, then α is unipotent on A if and only if the automorphisms induced on B and A / B are unipotent. If A is torsion-free, every nontrivial unipotent automorphism has infinite order. The group generated by an element x and a normal abelian subgroup A is nilpotent if and only if x induces a unipotent automorphism on A.

Now let G be a $\mathscr{P} \mathscr{F}$-group and let $N=$ Fitt G. By Mal'cev [4] there is a free abelian normal subgroup K / N of finite index in G / N. Let I / N^{\prime} be the periodic part of N / N^{\prime}.

Proposition 8. No element of K, not in N, induces a unipotent automorphism of N/I.

Proof. Note that Fitt $K=$ Fitt $G=N$. Suppose x in K induces a unipotent automorphism of N / I. Since I / N^{\prime} is finite, some power x^{m} of x centralizes I / N^{\prime}. It follows that x^{m} induces a unipotent automorphism of N / N^{\prime}. Let $L=g p\left\{x^{m}, N\right\} . L / N^{\prime}$ is nilpotent since x^{m} induces a unipotent automorphism of $N / N^{\prime} . N$ is a normal nilpotent subgroup of L so, by [3, Theorem 7], L is also nilpotent. Since L is also normal in K, L is contained in Fitt $K=N$. Thus x^{m} is in N. Since K / N is torsion-free, we must have x in N as well.

Proposition 9. No element of \hat{K}, not in \hat{N}, induces a unipotent automorphism of \hat{N} / \hat{I}.

Proof. K acts on N / I by conjugation. By Proposition $8, K / N$ acts as a free abelian group K^{*} of automorphisms of the free abelian group N / I with no nontrivial unipotent elements. K^{*} may be considered to be a subgroup of GL($n, Z)$. The group of automorphisms of \hat{N} / \hat{I} induced by \hat{K} / \hat{N} is the completion $\left(K^{*}\right)^{\wedge}$ of K^{*} in the congruence topology (as a subgroup of $\mathrm{GL}(n, Z)$). If x in \hat{K} induces a unipotent automorphism of \hat{N} / \hat{I}, the corresponding element in $\left(K^{*}\right)^{\wedge}$ must be unipotent. Thus it suffices to show that no nontrivial element of $\left(K^{*}\right)^{\wedge}$ is unipotent.

By Lemma $7, K^{*}$ is conjugate in $G L(n, F)$ to a subgroup \bar{K} of $T(n, R)$.

The congruence topology in $\mathrm{GL}(n, R)$ is unchanged by conjugation by elements of $G L(n, F)$. Thus $\left(K^{*}\right)^{\wedge}$ is conjugate to $(\bar{K})^{\wedge}$ as well. Since unipotents are also preserved by conjugation, it is enough to show that no nontrivial element of $(\bar{K})^{*}$ is unipotent.

Consider the map $d: T(n, R) \rightarrow D(n, R)$ which erases off diagonal elements. Since by Proposition 8, no nontrivial element of \bar{K} is unipotent, $d: \bar{K} \rightarrow d(\bar{K})$ is an isomorphism. Thus
(A) If x is an element of $\bar{K}, d(x)$ is a k th power in $d(\bar{K})$ if and only if x is a k th power in \bar{K}.

By using Lemma 7, we have arranged that
(B) If x is an element of $\bar{K}, d(x)$ commutes with x and with $n(x)=$ $x-d(x)$. Thus for any positive integer $m, x^{m n!}$ is congruent $\bmod m$ to $d(x)^{m n!}$ (expand $(d(x)+n(x))^{m n!}$ by the Binomial Theorem and use $\left.n(x)^{n}=0\right)$.

By Theorem 4,
(C) If D is a subgroup of $D(n, R)$, then for each positive integer m, there is a positive integer $\theta(m)$ such that if g is in D and $g \equiv 1 \bmod \theta(m)$, then g is an m th power in D.

Now suppose that α is a unipotent element of $(\bar{K})^{\wedge}$ and let a_{1}, a_{2}, \ldots be a sequence of elements of \bar{K} converging to α, such that
(D) $a_{i} \equiv \ldots \bmod i$! for each i, and
(E) $\quad a_{i} \equiv a_{j} \bmod i$! for each j greater than i.

Since α is unipotent, $d(\alpha)=1$ so that $d\left(a_{i}\right) \equiv 1 \bmod i$! for each i. For any integer m, let $k=m \cdot \theta(m!n!)$, where θ is the function given by (C) for the subgroup $d(\bar{K})$ of $D(n, R)$. By (D), $d\left(a_{k}\right) \equiv 1 \bmod \theta(m!n!)$ so by (C), $d\left(a_{k}\right)$ is an $m!n!$ power in $d(\bar{K})$. By (A), a_{k} is an $m!n!$ power in \bar{K}. By (B), $a_{k} \equiv$ $d\left(a_{k}\right) \bmod m!$. But $d\left(a_{k}\right) \equiv 1 \bmod k!$ so $d\left(a_{k}\right) \equiv 1 \bmod m!$ and $a_{k} \equiv 1 \bmod m!$. By (E) $a_{m} \equiv a_{k} \bmod m$!, so that $a_{m} \equiv 1 \bmod m!$. Thus for each $m, \alpha \equiv$ $a_{m} \equiv 1 \bmod m!$ so $\alpha=1$. This shows that the only unipotent element of $(\bar{K})^{\wedge}$ is the identity, as required.

Proof of Theorem 1. Let H be the centralizer of N / I in G. By Proposition 8, no element of $K \backslash N$ can centralize N / I so that $H \cap K=N$ and H / N must be finite.

Lemma $10 . \quad \hat{H}=C_{G}(\hat{N} / \hat{I})$.
Proof. Suppose x in \hat{G} centralized \hat{N} / \hat{I}. We may write $x=g k$ with g in G and k in \hat{K}. The automorphism g^{*} induced by g on \hat{N} / \hat{I} must be the same as that induced by k^{-1}. Thus g^{*} is in $\left(K^{*}\right)^{\wedge}$, the group of automorphisms
induced on \hat{N} / \hat{I} by elements of \hat{K}. This implies that g^{*} commutes with all elements of the group K^{*} of automorphisms induced by K on N / I. Now g^{*} must be in K^{*} for otherwise, letting $M=g p\left\{g^{*}, K^{*}\right\}, N=K^{*}, A=N / I$, we would contradict Lemma 6. Thus there is an element k^{\prime} of K such that $g k^{\prime}$ centralizes N / I. Therefore $g k^{\prime}=h$ is in H and x may be written $x=h k^{\prime \prime}$ with $k^{\prime \prime}$ in \hat{K}. Since x and h centralize $\hat{N} / \hat{I}, k^{\prime \prime}$ must also centralize \hat{N} / \hat{l}. Now Proposition 9 implies that $k^{\prime \prime}$ must be in $\hat{N} \subset \hat{H}$, so that \hat{x} is in \hat{H}.

Now let $M=\operatorname{Fitt}(\hat{G})$. Since every element of M must induce a unipotent automorphism of \hat{N} / \hat{I}, Proposition 9 implies that $M \cap \hat{K}$ equals \hat{N}. This implies that M / \hat{N} is finite. Since \hat{N} / \hat{I} is torsion-free, no nontrivial unipotent automorphism of \hat{N} / \hat{I} can have finite order, so M must centralize \hat{N} / \hat{I}. By Lemma 10, M must be contained in \hat{H}. Since H is nilpotent-by-finite, we may apply [5, Lemma 2] to conclude that M is contained in $\operatorname{Fitt}(\hat{H})=\hat{N}$. This completes the proof of Theorem 1.

I would like to thank J. E. Roseblade for suggestions which shortened and hopefully clarified the proof.

References

1. C. Chevalley, Deux Theorems d'Arithmétique, J. Math. Soc. Japan 3 (1951), 36-44.
2. E. Formanek, Conjugate separability in polycyclic groups, to appear.
3. P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958), 787-801.
4. A. Mal'cev, On infinite soluble groups, Doklady Acad. Nauk. SSR (NS) (1949), 23-25 (Russian).
5. P. F. Pickel, Nilpotent-by-finite groups with isomorphic finite quotients, Trans. Amer. Math. Soc. 183 (1973), 313-325.
