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Parasites, as with the vast majority of organisms, are
dependent on iron. Pathogens must compete directly
with the host for this essential trace metal, which is
sequestered within host proteins and inorganic chelates.
Not surprisingly, pathogenic prokaryotes and eukaryotic
parasites have diverse adaptations to exploit host iron
resources. How pathogenic bacteria scavenge host iron
is well characterized and is reasonably well known for a
few parasitic protozoa, but is poorly understood for
metazoan parasites. Strategies of iron acquisition by
schistosomes are examined here, with emphasis on
possible mechanisms of iron absorption from host
serum iron transporters or from digested haem. Elucida-
tion of these metabolic mechanisms could lead to the
development of new interventions for the control of
schistosomiasis and other helminth diseases.

Filling the gaps in metabolic pathways
The recent release of the genome sequence information of
a range of parasites has provided a plethora of tools for
the study of parasite biology [1]. Despite these advances,
Scholl and colleagues [2] state that, for the malaria
genome at least, there remain many ‘gene gaps’ where
little is known of gene control of specific metabolic or
development mechanisms. One field of relative ignorance
is how parasites acquire essential trace elements, in
particular iron, from their host environment [2]. The
gene gaps for malaria become veritable chasms for less
intensively studied metazoan parasites, such as schisto-
somes. Although schistosomes are known to have strong
dependence on trace metals, little is known of the acqui-
sition biology of the elements. Adult schistosomes live in
and feed on the iron-rich environment of host blood [3,4].
However, newly penetrant schistosomules absorb iron
before their gut is differentiated [4], implicating the
parasite surface in iron acquisition, as occurs with
many other small molecular weight serum components
[5]. It is probable that iron acquisition from the host
environment constitutes a crucial factor in parasite
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survival, which has the potential to be exploited by
therapeutics.
Iron: an element essential for life
Iron contributes �5% of the Earth’s crust, and is a trace
requirement for virtually all prokaryotic and eukaryotic
organisms [6]. The element readily and reversibly tran-
sitions between two oxidation states, Fe2+ (ferrous) and
Fe3+ (ferric). This property has enabled eukaryotes and
prokaryotes to use iron for many crucial biological reac-
tions [6]. Iron forms the active centre of numerous diverse
proteins, including ribonucleotide reductase, mitochon-
drial aconitase and haem-containing proteins, such as
the cytochromes and iron-sulfur (Fe-S) proteins of the
electron transport chain [7]. Iron confers oxygen-binding
ability to haem moieties of haemoglobin (Hb) and myoglo-
bin; iron-containing proteins are central to the metabolism
of collagen, tyrosine and catecholamines [7–9], and for
innate and acquired immunological responses in mam-
mals. Despite its essential role in diverse reactions, iron,
if not appropriately chelated, can convert oxygen to toxic
free radical species by the iron-catalyzed Haber-Weiss
and Fenton reactions. These reactive oxygen radicals are
able to attack membrane lipids, proteins and DNA [6,8].
Iron, therefore, presents a dilemma for living systems –
although essential for life, it is also harmful. This paradox
has led to the evolution of sophisticated mechanisms for
regulating the absorption, transport and storage of cellular
iron [7]. Iron homeostasis is most tightly regulated at
uptake [8]. There are extensive data on iron uptake, trans-
port and regulation in prokaryotes, plants, yeast and
vertebrates. By contrast, the mechanisms of iron accumu-
lation in parasites, particularly parasitic helminths, are
neglected.
Iron: a limiting factor in pathogen invasion
Tight regulation of iron in mammalian hosts presents an
obstacle to invading pathogens, which also require this
essential element. Hosts bind iron in proteins or inorganic
chelates, and present an iron-restricted environment to
pathogenic bacteria and parasites. Indeed, hosts ‘withhold’
doi:10.1016/j.pt.2007.08.018ccess under CC BY license.
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Box 1. Potential iron sources from the host available for

scavenging by pathogens

Transferrin (Tf) – a glycoprotein in blood that binds and transports

two ferric ions with high affinity.

Non-Tf-bound iron (NTBI) – as the name suggests, this includes all

forms of iron not bound in Tf, and can include iron that is weakly

complexed to molecules such as albumin, citrate, amino acids and

sugars.

Haemoglobin – an iron-containing protein pigment of red blood

cells, functioning primarily in the transport of oxygen from the lungs

to the body tissues.

Haptoglobin/haemoglobin complexes – a protein in the blood that

binds free haemoglobin released from erythrocytes with high

affinity and thereby inhibits its oxidative activity.

Haemopexin/haem complexes – a serum glycoprotein that binds

haem, and transports it to the liver for breakdown and iron recovery.

Ferritin – a globular protein complex consisting of 24 protein

subunits that is the main intracellular iron-storage protein.

Lactoferrin – belongs to the Tf family of proteins, and is found in

milk, mucosal surfaces and secretions (such as tears and saliva).

Myoglobin – a monomeric haem protein found mainly in muscle

tissue where it serves as an intracellular storage site for oxygen.
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iron as an integral strategy of innate immunity [10] and
host–pathogen competition for the element is a deciding
factor in the success of infection [10,11]. Microbial patho-
gens, consequently, have evolved efficient mechanisms
to exploit host iron sources. Most iron circulating in mam-
malian blood is either in the form of haem (bound in
haemoglobin within erythrocytes) or reversibly bound to
glycoprotein carriers, such as transferrin (Tf). In addition
to these primary resources, invading pathogens use a
diverse range of host molecules for iron [12] (Box 1).

Iron uptake in pathogenic prokaryotes
Strategies for iron acquisition from hosts have been stu-
died extensively for prokaryotic pathogens [12]. Uptake
mechanisms include the synthesis of siderophores to bind
Fe3+, and production of specific ligands to entrap and strip
Table 1. Summary of iron uptake mechanisms in prokaryotesa,b

Protein Mechanism and target iron source

Siderophores (e.g. coprogen,

ferrichrome, enterobactin and

rhodotorulic acid)

Low molecular mass iron chelators synthe

bacteria to bind ferric iron.

FepA, FecA and FhuA Outer membrane siderophore receptors. T

outer membrane is mediated by an energ

TonB-ExbB-ExbD protein complex.

FhuD, FepD, FepG Transport of siderophores across the perip

membrane; also uses ABC permeases to f

FeoA, FeoB Ferrous iron transporters. Important durin

when ferrous iron is more predominant th

reductase activity facilitates this action, no

have been identified.

SfuABC, SitABCD, FbpABC Metal-type ABC transporters. Transport fe

Tbp1, Tbp2, Lbp1, Lbp2 Outer membrane receptors for host Tf and

IsdC, DppBCDF, HbpA Haem iron transporters. Use haem, haemo

complex. Gram-negative bacteria require T

transport and ABC permeases.

Fur Iron regulator. Controls the expression of

transcriptionally in response to iron availa
aTaken from [12].
bAbbreviations: Fep, ferric enterobactin protein; Fec, ferric citrate binding; Fhu, ferrihydro

Samonella iron transporter; Fbp, ferric-binding protein; Tbp, Tf-binding protein; Lbp, l

permease; Hbp, haem-binding protein; Fur, ferric uptake regulator protein; ABC, ATP-b
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host iron carriers (Table 1). One iron-entrapment strategy
commonly employed involves the targeted use of proteases
and reductases to cleave and reduce bound iron to free Fe2+

for internalization by a range of transporters [12]. Patho-
genic members of the Pasteurellaceae and Neisseriaceae
acquire iron directly from host transferrin by means of
specific receptor-mediated uptake [13–15]. Prokaryote iron
uptake is regulated post-transcriptionally in response to
iron availability. Usually, iron transporters are detectable
only when the bacteria are under iron-restricted conditions
[12,14].

Iron uptake in parasitic Protozoa
Iron-uptake strategies of parasitic protozoans are sum-
marized in Table 2. As is also observed for some pathogenic
bacteria, the intracellular location of some protozoans
presents those species with major obstacles of iron restric-
tion that the parasites must overcome [16]. Iron is essen-
tial for growth of Leishmania, Plasmodium, Trichomonas
and Trypanosoma species in vitro, and this development
can be disrupted by administration of iron chelators [17].
Although transferrin receptors have been preliminarily
identified for all these protozoan genera, the former two
have not held up in further investigations [17,18]. Molecu-
lar characterization of a transferrin receptor exists only for
Trypanosoma [19].

For intracellular parasites, such as Leishmania and
Plasmodium, iron uptake might be mediated through
breakdown of haem or by ferrous iron uptake of cytosolic
iron (Table 2). It is known that incubation of Leishmania
chagasi in the presence of bathophenanthroline, which
chelates Fe2+ but not Fe3+, inhibits iron uptake. Leishma-
nia probably cleaves iron from host transferrin using a
ferric reductase, and internalizes this iron via a ferrous
iron transporter [18]. In support of this hypothesis, it has
been recently shown that Leishmania amazonesis amasti-
gotes express a Fe2+ iron transporter 1 (LIT1) [20]. LIT1
Organism

sized and secreted by Gram-negative bacteria. Escherichia coli

is the model.

ransport through the

y transducing

E. coli and other Gram-negative bacteria

lasm and the cytoplasmic

acilitate uptake.

E. coli and other Gram-negative bacteria.

g low oxygen conditions

an ferric iron. Although

specific proteins

E. coli, Salmonella, Helicobacter pylori

rrous iron. Serratia marcescens, Salmonella

typhimurium, Neisseria gonorrhoeae

lactoferrin. Pasteurellaceae, Neisseriaceae,

Haemophilus spp.

globin or the haemopexin

onB protein complex for

Bacillus anthracis, E. coli, Haemophilus

influenzae

iron uptake proteins post-

bility.

Model organism is E. coli. Pseudomonas

aeruginosa, Bacillus subtilis

xamate binding; Feo, Fe-oxidising protein; Sfu, Serratia ferrous uptake protein; Sit,

actoferrin-binding protein; Isd, iron-regulated surface determinant; Dpp, dipeptide

inding cassette.



Table 2. Summary of iron sources and strategies of uptake in parasitic protozoaa

Organism Iron source(s) Mechanism

Trypanosoma brucei Tf A specific receptor-mediated uptake. The receptor is a 50–60 kDa heterodimer, and its

monomers are encoded by two homologous genes: ESAG6 and ESAG7. This complex binds

host Tf and endocytoses into the flagellar pocket for processing [19,51].

Trichomonas vaginalis Lf and Hb Lf uptake occurs via a specific non-saturable 136 kDa receptor [17]. Hb is utilized as an iron

source in vitro. Non-saturable binding of Hb indicates possible receptor [17].

Leishmania chagasi Tf and Hb A Tf receptor was initially proposed [52], however, it has since been found to be non-specific

[17]. An uncharacterized ferrous iron transporter might act in tandem with a reductase to

facilitate uptake from Tf [18]. Hb can promote growth in vitro, but there is no identified uptake

mechanism [17].

L. amazonensis ? LIT1 facilitates ferrous iron uptake in amastigotes. The biological iron source is not confirmed [20].

Use of Tf or Hb would require cleavage from the protein and reduction to the ferrous form.

Plasmodium spp. ? Rodriguez proposed that Plasmodium induces uptake of Tf receptor across the erythrocyte

plasma membrane [53] but numerous groups have found that Plasmodium cannot access Tf-bound

iron [17]. Haem-bound iron is also ruled improbable, with iron from the cytosolic pool in erythrocytes

the most probable iron source [2].
aAbbreviations: Tf, transferrin; Lf, lactoferrin; Hb, haemoglobin.; ESAG, expression site-associated genes; LIT1. Leishmania iron transporter 1.
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promoted iron transport in LIT1 null amastigotes and
endogenous LIT1 was upregulated in normal amastigotes
cultured in iron-deprived media. Furthermore, LIT1-
deficient amastigotes were unable to replicate in macro-
phages and were avirulent in mice [20]. Trichomonads
grown in iron-deficient media also lose virulence [21],
indicating that iron transporters are important virulence
factors for these flagellates.

Iron uptake in metazoans
Apart from the well characterized iron metabolism
pathways of mammals [7,9,22], knowledge of metazoan
iron homeostasis is limited. Some data exist for the iron-
related proteins of insects [23], but these data are mostly
related to the biology of transferrins and ferritins, and not
molecules for iron uptake [24]. An emerging field is in the
understanding of haem acquisition and breakdown mech-
anisms of haematophagous metazoans. Many blood-feed-
ing insects engorge on blood, and the abundance of reactive
haem is problematic. The triatomine hemipteran, Rhod-
nius prolixus, for example, processes haem, not by the
classical pathways resulting in biliverdin (BV) IX, carbon
monoxide (CO) and iron, but by unique reactions resulting
in dicysteinyl-BV IXgamma, CO and iron [25]. Some of the
haem is absorbed by the parasite and can be catabolized.
Interestingly, iron produced from haem degradation is
stored, in the presence of ferritin, in mid-gut and pericar-
dial cells of the insect [25]. These findings raise the possib-
ility that haem is amajor source of iron in haematophagous
metazoans. However, for helminths, this hypothesis
requires the presence of haem oxygenases (HO) capable
of liberating iron from haem, which have yet to be ident-
ified in worm genomes [26].

Roundworms and flatworms possess haem-containing
proteins, but are said to lack the biosynthetic machinery
for haem [26]. These data arise from biochemical assays of
haem-synthesis in a range of free-living and parasitic
helminths, including Schistosoma mansoni. Rao and col-
leagues [26] suggest that helminths scavenge haem from
dietary or environmental sources. In the case of schisto-
somes, the gastrodermal lumen represents a major source
of haem, most of which is sequestered in haematin [27]. It
is noteworthy that sequences for known enzymes of haem
biosynthesis, such as d–aminolevulinic acid dehydratase
(ALAD) and porphobilinogen deaminase (PBGD), have
www.sciencedirect.com
been reported for the schistosome expressed sequence
tag (EST) datasets [28,29], suggesting that these hel-
minths, at least, have a capacity to make haem. Whether
the source of haem for haematophagous helminths is by de
novo synthesis or salvage is an unresolved and intriguing
question. It also remains to be determined if helminths can
salvage iron from haem through action of HO.

Iron and schistosomes
There is solid evidence that iron is used by schistosomes for
development and reproduction. Schistosomes sequester
iron in the gastrodermal lumen [3], held largely in haem
and haematin [27]. In addition, extensive iron is stored
within isoforms of the highly conserved iron-storage
protein, ferritin (Fer). One isoform, Fer-2, is typical of
somatic tissues, the other, Fer-1, occurs as an abundant
component of yolk platelets of vitelline cells (eggshell
precursors and possible yolk cells) [30,31]. Female schisto-
somes express 15-fold more Fer-1 than males, but equal
amounts of Fer-2 occur in both sexes [31,32]. Roles for this
abundant egg-associated iron store include early embry-
ogenesis [31] and stabilization of cross-linked proteins in
eggshell formation [32].

Tf and non-Tf-bound iron (NTBI) stimulate the growth
of schistosomula in vitro [4]. The stimulatory effects of
NTBI can be reversed in the presence of the iron chelator,
desferroxamine. Schistosomes, therefore, might acquire
iron through Tf-dependent and Tf-independent mechan-
isms (Figure 1). Tf binding by the tegument is non-satur-
able and non-specific [4], precluding the action of specific
Tf-receptors, in contrast to mammalian cells and trypano-
somes. S. mansoni expresses two isoforms of a divalent
metal transporter (DMT) with significant sequence sim-
ilarity to the mammalian ferrous iron-uptake protein,
DMT1 (also known as Nramp2) [33]. Notably, schistosome
DMT1 has been localized to the tegument and not the
gastrodermis. This localization pattern complements in
vitro studies of iron uptake in schistosomes conducted by
Clemens and Basch, which suggested that iron uptake is
surface-mediated and most probably from iron transpor-
ters, such as Tf, which are abundant in host serum [4].
Despite their high sequence identity to mammalian
proteins, neither the schistosome ferritins nor the
DMT1 sequences possess the regions associated with
post-transcriptional iron regulation that are found in



Figure 1. Pumping iron: hypothesized iron uptake mechanisms in schistosomes. Iron uptake at the schistosome tegument is proposed to occur via non-specific binding of

the host iron-carrier protein, transferrin (Tf). Ferric (Fe3+) iron is cleaved from Tf and reduced to its ferrous (Fe2+) form by a ferric reductase. Ferrous iron is then transported

by a divalent metal transporter (DMT1). The second hypothesized mode of iron acquisition uses haem. Haem is obtained as a by-product of blood-feeding from the

breakdown of host erythrocytes by a haemoglobinolytic pathway. The resulting products from this are amino acids for nutrition, and haem. Hypothesized haem uptake is

via a haem transporter in the gastrodermis. Haem is then catabolized by haem oxygenase to release the iron. Excess haem is sequestered in haematin and egested from the

gut. Iron taken up by the helminth is stored in ferritin (Fer); Fer-1 in the vitelline cells of females and Fer-2 in general somatic tissues. Abbreviations: GC, gynecophoric canal.
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the homologous mammalian sequences [33,34]. Because
DMT transports Fe2+, which is relatively insoluble at
physiological pH [7], it is probable that ferric reductase
is required for iron uptake, but none has been identified.

Renewed interest in haem acquisition in metazoan
parasites raises the question whether schistosomes can
use host haem for synthesis of haemoproteins or as a source
of iron. The gastrodermis is enriched in haem by virtue of
haemoglobinolytic pathways [5]. It was thought that schis-
tosomes, like other human parasites, have no capacity to
digest haem, voiding it from the gut as haematin by
regurgitation. There is no in silico evidence that haem is
catabolized to release iron, because there are no ESTs
representing HO in the published schistosome EST data-
bases [28,29]. One research group, however, has described
HO activity for Schistosoma japonicum [35], but this
requires confirmation. Given the accumulating data on
haem-dependent iron uptake in metazoans [22,25], and
the reasonable hypothesis that the excess haem in the
schistosome gut could act as a source of iron, a search
for haem utilization mechanisms is warranted.

Therapies targeting iron transport
It is clear that iron is essential for growth andmaintenance
of schistosomes. Iron-uptake transporters and receptors
are implicated in pathogen virulence and immunogenicity
www.sciencedirect.com
[36,37], and are generally surface located, making them
favourable drug or vaccine targets. Recently, bacterial iron
transporters of the outer membrane of pathogenic bacteria
have been tested as potential vaccine targets with prom-
ising results [38–41]. Vaccine trials of recombinant
S. japonicum Fer-1 in experimental schistosomiasis [42]
produced only moderate protection, as expected for an
intracellular protein contained within organelles. The
DMTs identified in S. mansoni show significant overall
homology to mammalian DMTs [33]. However, there are
regions within the sequence with limited sequence identity
and these could be targeted for vaccine development. The
evidence that iron has an integral role in egg shell for-
mation [32] means that vaccination against iron homeo-
stasis targets could disrupt the formation of eggs, as well as
the pathology and morbidity associated with egg depo-
sition. Because adult worms alone cause no pathology
and do not replicate within their mammalian hosts, target-
ing egg production is a desirable approach for vaccine
development [43].

Another strategy for parasite control might include
the use of chemotherapeutics targeted at iron uptake
and regulation. The artemisinin drug family has shown
to be effective against both schistosomiasis and malaria
[44,45]. Although the mode of action of this group of drugs
is still under investigation, there is evidence that the



Box 2. Outstanding questions concerning schistosome iron

uptake

Do schistosomes acquire iron directly from host Tf?

What is the identity of the ferric reductase(s) that provides ferrous

iron to DMT1?

Is haemoglobin digestion the primary source of iron for schisto-

somes: if so, by what mechanism?

Do schistosomes have post-transcriptional regulation of iron uptake

similar to that seen in prokaryotes and mammalian cells?
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antiparasitic activity is iron-dependent [46–48]. The use of
iron chelators is best documented in the treatment of
malaria, but they have been proposed as potential che-
motherapeutic agents against other parasitic diseases [49].
In vitro, iron chelators halt the growth of schistosomes and
protozoan parasites [4,17,50].

Concluding remarks
Although the amount of data on iron assimilation in schis-
tosomes is growing, there remain significant gaps and
inconsistencies in our knowledge (Box 2). In addition, there
is no information on iron uptake and metabolism in other
parasitic helminths. It is clear that iron uptake andmetab-
olism in schistosomes represent novel areas for study. The
varied nature of iron-uptake mechanisms provides numer-
ous putative targets against which novel therapies could be
directed. Elucidating how iron homeostasis and other
metabolic processes differ from mammalian host cells is
not only important for the development of new control
strategies, but will also expand our knowledge of parasite
biology.
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