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a b s t r a c t

Isoprenoids are biosynthesized via the mevalonate or the 2-C-methyl-D-erythritol-4-phosphate
(MEP) pathways the latter being used by most pathogenic bacteria, some parasitic protozoa, plant
plastids, but not by animals. We determined the X-ray structure of the homodimeric [4Fe–4S] clus-
ter carrying E-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate synthase (GcpE) of Thermus thermo-
philus which catalyzes the penultimate reaction of the MEP pathway and is therefore an
attractive target for drug development. The [4Fe–4S] cluster ligated to three cysteines and one glu-
tamate is encapsulated at the intersubunit interface. The substrate binding site lies in front of an
(ab)8 barrel. The great [4Fe–4S] cluster-substrate distance implicates large-scale domain rearrange-
ments during the reaction cycle.

Structured summary:
gcpE binds to gcpE by x-ray crystallography (View interaction)

� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Isoprenoids such as dolichol, quinones, carotenoids, vitamins
and sterols, are synthesised from isopentenyl diphosphate and its
isomer, dimethylallyl diphosphate by two completely different bio-
synthetic pathways dependent on the organism. Animals, fungi, ar-
chaea and some bacteria, use the well-known mevalonate pathway,
the vast majority of bacteria and some parasitic protozoa of the
phylum apicomplexa, the 2-C-methyl-D-erythritol-4-phosphate
(MEP) pathway [also known as the 1-deoxy-D-xylulose-5-phos-
phate, or non-mevalonate pathway] (Fig. 1) [1–3]. In plants, the
mevalonate pathway is operative in the cytosol, while the MEP
pathway functions inside the plastids. Since the MEP pathway is
not used by humans, it represents an attractive target for the devel-
opment of new antimicrobial and herbicidal compounds [4,5].

In the penultimate step of the MEP pathway, 2-C-methyl-D-
erythritol-2,4-cyclo-diphosphate (MEcPP) is converted to E-1-hy-
chemical Societies. Published by E
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droxy-2-methyl-but-2-enyl-4-diphosphate (HMBPP) by the Fe/S
cluster carrying enzyme HMBPP synthase termed E-1-hydroxy-
2-methyl-but-2-enyl-4-diphosphate synthase (GcpE) or IspG
(Fig. 1) [6–9]. The catalyzed C@C double bond formation is
mechanistically difficult because two basic groups are elimi-
nated (one dissociation implies a ring opening) and the lacking
two electrons are supplied one by one by a protein-bound Fe/S
cluster. Diverse mechanistic scenarios for the GcpE reaction
were postulated involving cations, radicals and anions and re-
cently Fe/S cluster intermediates including iron–carbon species
[7,9–13]. GcpE is a homodimeric enzyme with a molecular mass
of about 40–45 kDa per monomer [7,10]. Based on Mössbauer
and EPR spectroscopic data, the highly dioxygen sensitive Fe/S
cluster was identified as a [4Fe–4S] cluster type ligated to three
cysteine residues [14,15]. The protein-bound [4Fe–4S] cluster is
reduced in vivo by flavodoxin or ferredoxin and NADPH depend-
ing on the organism [16] and in vitro by 5-deazaflavin and
dithionite [15]. The reaction has been kinetically characterized
for GcpE from several organisms [17]. For example, the specific
activity of Thermus thermophilus GcpE was 0.6 lmol min�1 mg�1

at pH 7.5, the kcat value 0.4 s�1 and the Km value of HMBPP
0.42 mM [7].

For understanding this fascinating reaction on an atomic basis
and for opening a perspective for rational drug design, we solved
lsevier B.V. All rights reserved.
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Fig. 1. MEP pathway and the reaction of GcpE. Isopentenyl diphosphate (IPP) and its isomer, dimethylallyl diphosphate (DMAPP) are the precursors of isoprenoid
biosynthesis.
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the structure of GcpE from T. thermophilus at 2.5 Å resolution. We
describe the architecture of the enzyme as well as the binding
mode of the [4Fe–4S] cluster and discuss the putative substrate
binding site and mechanistic aspects. During writing of the manu-
script, the GcpE structure of Aquifex aeolicus was reported by Lee
et al. [18].
2. Materials and methods

2.1. Enzyme production

All experiments were carried out under oxygen exclusion. TOP
10 Escherichia coli cells (Invitrogen) were transformed with the
PQETtGcpE vector containing untagged GcpE and grown in LB-
broth (Roth) supplemented with 150 lg ml�1 ampicillin and
300 lM FeCl3 at 37 �C [7]. The cells were harvested by centrifuga-
tion (17700�g, 15 min, 4 �C) and stored at �30 �C until use. The
cell pellet (40 g) was resuspended in 400 ml 30 mM Tris–HCl (pH
7.5) and lysed by ultrasonic treatment at 0 �C. Purification was per-
formed using a DEAE, a Source 15 Q and a Superdex 200 column as
described in Supplementary data. GcpE was stored at a concentra-
tion of ca. 12 mg ml�1, in 30 mM Tris–HCl, pH 7.5 and 150 mM
NaCl for crystallization.

2.2. Crystallization and X-ray structure analysis

Crystallization was performed at 18 �C using the sitting drop va-
pour diffusion method. Best crystals grew by mixing 1.0 ll enzyme
solution and 1.0 ll reservoir solution composed of 30% (v/v) MPD
and 20% (v/v) ethanol. Data were collected at the Swiss-Light
source beamline PXII and processed with XDS [19]. Phase determi-
nation is described in Supplement. The structure was refined using
REFMAC [20]. Crystal parameters, data collection and refinement
statistics are listed in Supplementary Table 1. Figs. 2–4 were pre-
pared with MOLSCRIPT [21] and CHIMERA [22]. The atomic coordi-
nates and structure factors of GcpE have been deposited in the
Protein Data Bank, www.pdb.org with ID codes 2y0f, respectively.

3. Results and discussion

3.1. Overall architecture of the enzyme

Recombinant untagged GcpE from T. thermophilus was crystal-
lized under strictly anaerobic conditions and its structure deter-
mined with the multiple anomalous dispersion method based on
the irons of the Fe/S cluster (see Supplementary Table 1). The final
R/Rfree factors are 20.0%/26.3% at 2.5 Å resolution. The structure is
relatively mobile resulting in temperature factors of the four
monomers in the asymmetric unit of about 75, 85, 97, 102 Å2,
respectively.

Architecturally, each GcpE monomer of the homodimer (resi-
dues marked A and B) is composed of two domains (Fig. 2A + Sup-
plementary Fig. 1). The N-terminal domain (A4:A285) essentially
consists of the well-known TIM barrel fold which revealed –
according to Dali [23] – the highest structural relationship to dihy-
dropteroate synthase (3h24-A) with an rms deviation of 2.7 Å (84%
of the Ca atoms used). Three noteworthy differences exist between
GcpE and the canonical (ba)8 barrel including a b-hairpin (A7:A22)
forming the N-terminal bottom of the b-barrel, a break of helix 3
into two small helices (perhaps for adjusting strand 4) and a he-
lix-loop-helix protrusion after strand 5 (Fig. 2 + Supplementary
Fig. 1). The exposed protrusion is mainly fixed by interactions to
the counter subunit (see below) but also to the b-barrel core
by the loop after strand 6 and, in particular, by the stretch follow-
ing the shortened strand 4. The b-barrel interior adopts a funnel-
like shape. The funnel is locked by side chains of the parallel
strands at the end of the narrow segment before it becomes wider
(see below). The C-terminal domain (A291–A404) consists of an
open ab structure (Fig. 2A + Supplementary Fig. 1). Its fold corre-
sponds to one sulfite reductase domain the highest relationship
being found to the Desulfovibrio vulgaris enzyme (2v4j-B) with an
rms deviation of 3.0 Å (27% of the Ca atoms used). The mixed
five-stranded b-sheet is flanked by two long helices on one side
and a short helix distorted by ProA348 on the other. The latter side
also serves as primary binding site for the [4Fe–4S] cluster.

The two globular domains are connected by a highly solvent-
exposed linker of about five residues (A286–A290) (Fig. 2). Solely,
these residues form a few non-covalent, mostly short-range inter-
actions between the two domains. Therefore, the observed orienta-
tion between the two domains is essentially determined by
interactions with the counter subunit of the GcpE homodimer
(Fig. 2B) [7]. (The structural data are even compatible with a homo-
tetrameric state.) The monomers of the dimer are oriented to each
other in a head-to-tail arrangement forming three contact areas. In
the two peripheral interfaces, each burying a surface area of ca.
460 Å2, the helix-loop-helix protrusion of one subunit faces strand
10 and helix 20 of the counter subunit and vice versa. The third
extended interface with a surface area of ca. 1010 Å2 is found
between the central TIM barrel domains involving helices 6 (its
N-terminal end), 7 and 8 of both subunits (Fig. 2B). Although the
GcpE dimer conveys a rather fragile impression, the related
domain-domain arrangements in the four monomers of the
asymmetric unit indicate sufficient rigidity and stability.
3.2. Binding mode of the Fe/S cluster

The electron density profile at the position of the Fe/S cluster
clearly argues for a [4Fe–4S] cluster in agreement with EPR spec-
troscopic data [15]. The [4Fe–4S] cluster is highly occupied, as its
temperature factor (69 Å2) is only moderately higher than that of
the polypeptide environment.

The [4Fe–4S] cluster of each monomer is embedded into the
crevice formed by strands 10 and 20 and the following loops (direc-
ted towards different sides of the b-sheet plane) capped by the he-
lix-loop-helix protrusion of the respective counter subunit (Figs. 2
and 3). It is essentially shielded from bulk solvent despite the
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Fig. 2. Structure of GcpE. (A) The monomer is composed of a TIM barrel (in red and with marked secondary structures) and an open ab barrel domain (blue; marked by
dashed numbers). The irons and sulfurs of the [4Fe–4S] cluster are drawn as brown and green balls. (B) The dimer has a size of 95 � 80 � 40 Å3. Its core built up of the TIM
barrel domain of both subunits (red, blue) is linked to each of the open ab domains by the helix-loop-helix protrusion and the polypeptide linker with a hole in between.

Fig. 3. Binding mode of the [4Fe–4S] cluster: The [4Fe–4S] cluster is ligated to the
invariant CysA297, CysA300, CysA343 and GluA350. It is completely enveloped into
the polypeptide matrix at the center of the monomer–monomer interface and thus
inaccessible for the bulk solvent.
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relatively small inter-subunit contact area and the low depth the
cluster being buried. In the first interaction shell, the iron is ligated
by three strictly conserved cysteine and, unexpectedly, by one glu-
tamate side chains (Fig. 3). CysA297 protrudes from strand 10,
CysA300 from the following loop and CysA343 from the loop fol-
lowing strand 20. The carboxylate side chain of the invariant
GluA350 points from helix 20 towards the [4Fe–4S] cluster and is
surrounded by MetA341, AsnA346, MetB158 and AsnB161 the lat-
ter residues originating from the helix-loop-helix protrusion of the
counter subunit. The carboxylate oxygen of GluA350, not ligated to
the [4Fe–4S] cluster, might interact via a solvent molecule with
AsnA346 and AsnB161. Glutamate/aspartate side chains are very
rare ligands of [4Fe–4S] clusters but not unprecedented. An aspar-
tate is found in light-independent protochlorophyllide reductase
[24,25] and in some ferredoxins of thermophilic microorganisms
[26]. In the second interaction shell, the [4Fe–4S] cluster non-cova-
lently contacts several mostly invariant residues including
ProA298, GlyA299, ArgA302, MetA341, GlyA342, AsnA346 and
MetB158 (Fig. 2). The residues of the third shell are not in direct
contact to the [4Fe–4S] cluster, but plug solvent-accessible gaps
and thereby enhance the intersubunit interactions. For example,
at one side of the interface, strands 10 and helix 10 and the first helix
of the helix-loop-helix protrusion are linked together by hydrogen
bonds between GlyA301 and ThrB155 and between ArgA302,
AsnA346 and AspB159. At the other side lies a hydrophobic cluster
consisting of ProA298, CysA300, TrpB146, LeuB154, MetB158 and
ValB174. Despite their crucial function, the residues of the
helix-loop-helix protrusion are, surprisingly, not significantly
conserved.
3.3. Substrate binding and catalysis

Sequence comparison and protein surface analysis convincingly
suggest in agreement with general structural principles the sub-
strate binding site in front of the funnel-shaped C-terminal side of
the TIM barrel (Fig. 2B). The funnel interior is coated by polar, pre-
dominantly positively charged residues which are highly con-
served (Fig. 4). GlnA27, ValA85, ArgA141, HisA227 and SerA202
form the funnel bottom and ArgA56, AspA87, ArgA110, LysA204
and ArgA260 its sides (Fig. 4B). As the available space for binding
the cyclic MEcPP is too large relative to the funnel size (due to
its rapidly increasing diameter) and the positively charged side
chains are widespread and conformationally variable, the exact po-
sition and orientation of the substrate is not reliably predictable. It
appears plausible that the negatively charged diphosphate side of



Fig. 4. Substrate-binding site: (A) The substrate MEcPP is embedded into the conserved funnel-shaped C-terminal side of the TIM barrel. The degree of conservation increases
from white to red. (B) The interior of the funnel is coated by polar, mainly positively charged residues that are presumably responsible for substrate binding and activation.
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the MEcPP ring points towards the funnel bottom and the catalyt-
ically active side towards the funnel entrance where the binding
site of the [4Fe–4S] cluster in a closed state is expected (see below).

It became immediately obvious that the X-ray structure does
not reflect a state of the reaction cycle from which the crucial cat-
alytic steps proceed. In the current open structure the distance be-
tween the funnel bottom or a tentatively modeled substrate and
the [4Fe–4S] cluster is ca. 25 or 20 Å, respectively, which is much
too long for a direct participation of the [4Fe–4S] cluster in sub-
strate binding and activation as proposed by recent EPR data
[12,13]. The necessary reconciliation of these contradictory results
requires a large-scale displacement of the open ab relative to the
TIM barrel domain of the counter subunit. We suggest that the
complete ab domain of the established open state moves as rigid
body along the helix-loop-helix protrusion towards the TIM barrel
opening and locks the funnel from the top (Supplementary Fig. 2).
In the thereby created closed state the funnel interior is shielded
from bulk solvent. During this process the iron-ligating Glu350
substantially changes its microenvironment and might be finally
replaced as iron ligand by the substrate or an intermediate of the
reaction.

Despite its limitation, the structure of the open state provides a
first picture about the initial catalytic steps. After binding of the
substrate into the open TIM barrel funnel (which is not possible
in the closed state) epoxidation and ring opening of MEcPP [9,13]
takes place prior to the redox process (Fig. 1). The intramolecular
nucleophilic substitution reaction might be assisted by the invari-
ant acid-base catalysts AspA87 and HisA227. We speculate that the
drastic structural change from cyclic MEcPP to the open epoxide is
propagated via strands 4, 5 and 6 to the helix-loop-helix protrusion
and induces its dissociation from the counter subunit and the pos-
tulated open-to-close transition. In the closed state of GcpE, a
docking site for the external electron donor is formed and the
[4Fe–4S] cluster can be reduced. This proposal is compatible with
EPR spectroscopic data [12,15] that showed reduction only in the
presence of the substrate and with the suitability of the epoxide
as substrate [27] which can obviously trigger an open-to-close
transition. In addition, the break of the [4Fe–4S] cluster in the sub-
strate-free open state by Ti(III) is prevented in the substrate-bound
closed state [12] perhaps due to a shielding effect or to a shift of
the redox potential in the new microenvironment of the [4Fe–4S]
cluster.
4. Outlook

As the coordinates of A. aeolicus GcpE [18] were not available
prior to manuscript submission we only add a brief structural com-
parison. As expected by an overall sequence identity of 41% the A.
aeolicus and T. thermophlus GcpEs are highly related with rms val-
ues between the TIM barrel and open ab domains of 1.6 and 2.2 Å,
respectively. The major difference is related to an inter-domain
rearrangement. In comparison to T. thermophilus GcpE, the open
ab domain of A. aeolicus GcpE is moved ca. 6 Å on the route postu-
lated for the open-to-close transition towards the TIM barrel fun-
nel opening of the counter subunit (Supplementary Fig. 2). For
more profound investigations of the rigid-body domain movement,
the catalytic mechanism and the exact substrate binding mode
which is crucial for inhibitor design, the structure of the GcpE-sub-
strate/product complex is indispensable.
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