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SUMMARY

Brain circuits endow behavioral flexibility. Here, we
study circuits encoding flexible chemotaxis in C.
elegans, where the animal navigates up or down
NaCl gradients (positive or negative chemotaxis) to
reach the salt concentration of previous growth (the
set point). The ASER sensory neuron mediates posi-
tive and negative chemotaxis by regulating the fre-
quency and direction of reorientation movements in
response to salt gradients. Both salt gradients and
set point memory are encoded in ASER temporal
activity patterns. Distinct temporal activity patterns
in interneurons immediately downstream of ASER
encode chemotactic movement decisions. Different
interneuron combinations regulate positive versus
negative chemotaxis. We conclude that sensori-
motor pathways are segregated immediately after
the primary sensory neuron in the chemotaxis circuit,
and sensory representation is rapidly transformed to
motor representation at the first interneuron layer.
Our study reveals compact encoding of perception,
memory, and locomotion in an experience-depen-
dent navigational behavior in C. elegans.

INTRODUCTION

Brain circuits endow animals with flexibility to drive learned

behaviors, requiring that multiple patterns of sensory, memory,

and motor activities can be encoded and organized in the ner-

vous system connectome. Because synaptic connectivity can

be ambiguous about information flow, functional analysis is

required to characterize circuit mechanisms for perception,
memory, and motor activities that underlie learned behaviors.

Here, we address these questions in experience-dependent

chemotaxis in the nematode C. elegans.

C. elegans exhibits chemotaxis toward numerous com-

pounds, including NaCl (Bargmann and Horvitz, 1991; Ward,

1973). It was shown that C. elegans is attracted to higher NaCl

concentrations. This behavioral response can be modulated by

associative learning between specific salt concentration and

starvation, suggesting that salt chemotaxis is used to help locate

food (Saeki et al., 2001; Tomioka et al., 2006). Preexposure to

high salt concentrations attenuates salt chemotaxis, suggesting

that salt perception also exhibits habituation (Jansen et al.,

2002). However, salinity is not only a sensory cue but also an

environmental factor, like temperature, that directly affects cell

physiology; either too high or too low NaCl concentrations could

be undesirable. For small animals like C. elegans, adaptation to

environmental conditions can be partly met through motile

behavior. For example, the animal can actively migrate toward

a specific temperature to which it has become accustomed, irre-

spective of whether the animal is fed or starved at that tempera-

ture (Ramot et al., 2008).

We refer to movement up or down salt gradients as positive or

negative chemotaxis, respectively. Previous studies revealed the

sensory neurons and behavioral strategies underlying positive

salt chemotaxis (Iino and Yoshida, 2009; Pierce-Shimomura

et al., 1999; Ward, 1973). Through laser ablation analysis, Barg-

mann and Horvitz (1991) discovered that the ASE neurons repre-

sent the principal sensory neurons for attraction toward NaCl.

The left-right pair of ASE neurons (ASEL and ASER, respectively)

(Figure 1A) exhibit asymmetries in gene expression, develop-

mental programs, and physiological properties (Chang et al.,

2003; Pierce-Shimomura et al., 2001; Suzuki et al., 2008). The

ASEL/R neurons connect with several postsynaptic interneurons

with a complex pattern, where the same sensory neuron simulta-

neously connects with multiple interneurons, principally the AIY,

AIZ, and AIB interneurons, that also interconnect with each other
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Figure 1. C. elegans Performs Bidirectional Chemotaxis in Linear NaCl Gradients

(A) Simplified synaptic connections for the salt-sensing ASE neurons.

(B) Navigation trajectories of 50 wild-type N2 animals on linear NaCl gradients with 2 mMNaCl/cm steepness. Animals were grown at 50 mMNaCl and started at

25 mM (blue) or 75 mM (orange). Trajectories are aligned to have the same starting point (circle with S) for presentation purposes.

(legend continued on next page)
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(Figure 1A) (White et al., 1986). By tracking the movements of

individual worms moving up NaCl gradients, Pierce-Shimomura

et al. (1999) showed that a biased random walk strategy con-

tributes to positive chemotaxis. In isotropic environments,

periods of forward movement (runs) are interrupted by rapid

reorientations (turns and reversals). During chemotaxis up

NaCl gradients, transient increases (or decreases) in local salt

concentration will lengthen (or shorten) runs, increasing the

time spent crawling toward higher NaCl concentrations. Iino

and Yoshida (2009) showed that C. elegans also augments

chemotaxis by actively orienting forward movement toward

higher salt concentrations. Active orientation toward preferred

environments is called a klinotaxis or ‘‘weathervaning’’ strategy.

Thus, chemotaxis involves two strategies, a biased randomwalk

and klinotaxis.

The physiological responses of the ASE neurons have been

proposed to encode the preference for higher salt concentra-

tions (Suzuki et al., 2008; Thiele et al., 2009). ASEL and ASER

are activated by upsteps and downsteps in NaCl concentration,

respectively. Binary patterns of step-evoked activity inspired

circuit models that reflexively translate the ON/OFF activity

patterns of sensory neurons to downstream interneurons to drive

movements up salt gradients. A biased random walk up salt

gradient would arise when runs are lengthened (i.e., reorientation

frequency is lowered) in response to ASEL activity but runs are

shortened (i.e., reorientation frequency is raised) in response to

ASER activity. The ADF and ASH sensory neurons also have

similar step-evoked physiological responses as ASE but are

less significant for chemotactic behavior.

However, positive chemotaxis is one product of a more flex-

ible chemotaxis circuit. On smooth gradients of salt concentra-

tion, C. elegans will navigate up or down salt gradients toward

salt concentrations corresponding to previous growth conditions

(Kunitomo et al., 2013), suggesting a more sophisticated encod-

ing of perception, memory, and motor behaviors in the chemo-

tactic circuit. The valence of a given salt gradient —whether

the worm prefers to move up or down the gradient toward higher

or lower salt concentrations —depends on comparison between

the current conditions and the remembered set point. Mapping

perception, memory, and motor performance from sensory

neurons to downstream interneuron pathways is critical for

understanding how the nervous system encodes behavioral flex-

ibility. Here, we combine quantitative behavioral analysis, opto-

genetics, targeted cell inactivation, and calcium imaging from

sensory neurons to interneurons in restrained and freely moving

worms to illuminate how the chemotaxis circuit generates expe-

rience-dependent navigation.
(C) Average horizontal position of worms grown at specific salt concentrations a

gradients as shown in (B). Solid lines and shading indicate the mean ±1 STD of

jectories of individual worms. Positive horizontal displacement is toward higher s

(D) Upshift (dark gray) and downshift (light gray) of navigational indexes for wild-ty

respectively) and then shifted to a new salt concentration (100 mM or 50 mM NaC

linear NaCl gradient at 75 mM (n > 40 animals for each measurement). The chem

direction divided by the crawling speed along each trajectory,hvgi=hsi, was com

squares fits to exponential time courses. The time constant of each exponential

(E) Chemotactic indexes of wild-type, mutant, ASE laser-killed animals, and ASEm

post hoc was used to compare wild-type andmutants. Student’s t test was used t

0.005. n > 20 animals for each measurement. Data points represent mean ±SEM
We found that C. elegans ascends or descends salt gradients

in an experience-dependent way by using strikingly symmetric

behavioral strategies. In both cases, the single ASER sensory

neuron is essential. While ASER calcium transients are

activated or suppressed by decreasing or increasing NaCl

concentration during positive chemotaxis below the set point

or negative chemotaxis above the set point, the temporal pro-

files of ASER activities differ between each condition. Thus,

both the perception of the ambient salt gradient and the mem-

ory of the chemotactic set point can be inferred from ASER

neuronal dynamics. Downstream of ASER, the pathways for

positive versus negative chemotaxis and pathways for regu-

lating the frequency versus the direction of reorientation

movements are distributed and rapidly segregated at the first

interneuron layer. Divergence generates a circuit layout that is

flexible and robust to perturbation, supporting experience-

dependent chemotaxis as well as distinct components of navi-

gational strategy. We also discovered multiple encoding

schemes for navigational movement among interneurons. The

temporal dynamics of individual interneurons are direct repre-

sentations of chemotactic movement but not sensory input or

memory, revealing a surprisingly rapid transformation from sen-

sory representation to motor representation in the first relay of

the navigational circuit. Multiple mechanisms, such as modula-

tion of synaptic strength or alternative engagement of distinct

circuits, can contribute to flexibility of neural circuits and to

generation of optimal behavior in response to environmental

conditions (Ha et al., 2010; Herry et al., 2008; Jing and Gillette,

2000; Kerchner and Nicoll, 2008). Our results provide insights

into how a complex experience-dependent behavior can be

compactly encoded in the small anatomical connectome of

C. elegans.

RESULTS

C. elegans Performs Experience-Dependent Salt
Chemotaxis
We use high-pixel density cameras to record the movements of

individual young adult worms performing chemotaxis across

25 cm 3 25 cm agar plates. Large space for chemotaxis allows

us to study many worms at once. Because the worms are placed

on the plates at low density, they rarely collide with one another

or with the plate boundaries, generating many uninterrupted

trajectories of individual worms performing chemotaxis in each

experiment. We also use a simple method to generate stable,

precise linear NaCl gradients on these agar plates without osmo-

larity gradients (Figure S1 available online).
nd started at different salt concentrations on 2 mM/cM NaCl steepness linear

horizontal displacement from the start point over time measured over the tra-

alt concentrations in all panels. n > 280 animals for each measurement.

pe N2 animals grown overnight at one salt concentration (50 or 100 mM NaCl,

l, respectively) for a specified time interval before being placed on a 2 mM/cm

otactic index, the ratio between the velocity of each trajectory in the horizontal

puted. Each data point represents mean ±SEM. Solid lines represent least-

fit ±SD is shown.

ock surgical controls in linear 2mM/cmNaCl gradients. ANOVA Tukey-Kramer

o compare laser-killed animals with mock surgical controls. ***p < 0.0005; **p <

.
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When C. elegans is cultivated at 50 mM NaCl and placed on

linear salt gradients (2 mM/cm), worms crawl toward higher

NaCl concentrations when started at 25 mM NaCl but toward

lower concentrations when started at 75 mM NaCl (Figure 1B).

Thus, positive chemotaxis up salt gradients is one component

of a more versatile chemotaxis circuit. We also asked how

chemotaxis is modulated by experience. Worms grown at

100 mM NaCl and started at 75 mM NaCl crawl toward higher

NaCl concentrations; worms grown at 25 mM NaCl and started

at 50 mM NaCl crawl toward lower NaCl concentrations

(Figure 1C). These observations indicate that the set point is

experience dependent. When worms reach the salt concentra-

tion corresponding to previous growth, they move randomly,

without drifting up or down the gradient (data not shown).

To determine whether chemotactic preference retains adult

stage plasticity, we grewworms at 100mMNaCl and transferred

them as young adults to cultivation plates with 50 mM NaCl with

food before starting them at 75mMNaCl on linear gradients (Fig-

ure 1D). To quantify chemotactic rate and direction, we use a

nondimensional index based on individual trajectories: the

mean velocity of the trajectories along the gradient direction,

hvgi, divided by the mean crawling speed along the trajectory,

hsi. Thus, if all worms crawled straight up or down gradients,

the index would be +1 or �1, respectively. If worms moved

randomly, the index would be near 0. With no retraining at

50 mM, worms crawled up NaCl gradients. After several hours’

retraining, worms crawled down gradients with nearly the

same index as worms grown overnight at 50 mM NaCl (Fig-

ure 1D). Similarly, by growing worms overnight at 50 mM NaCl

and transferring them to plates with 100 mM NaCl and food,

the set point gradually shifted to 100 mM. The learning curves

for raising or lowering the set point exhibit similar exponential

time courses (Figure 1D).

The ASER Neuron Is Required for Both Positive and
Negative Salt Chemotaxis
The ASE neurons have been shown to contribute to positive

chemotaxis (Bargmann and Horvitz, 1991; Suzuki et al., 2008).

The loss-of-function mutation in the che-1 transcription factor,

che-1(p679), specifically disrupts the development of both ASE

neurons and abolishes positive salt chemotaxis (Uchida et al.,

2003).We found that theche-1(p679)mutation abolished chemo-

taxis toward different set points (25 mM, 50 mM, and 100 mM)

from higher or lower salt concentrations (Figure 1E). Laser abla-

tion of both ASE neurons disrupted salt chemotaxis (Figure 1E).

The ASEL and ASER neurons show asymmetries in gene

expression and physiological properties (Chang et al., 2003;

Johnston and Hobert, 2003; Suzuki et al., 2008). We found that

killing the ASER neuron disrupted both positive and negative

chemotaxis, whereas killing the ASEL neuron had nomeasurable

effect (Figure 1E). Thus, ASER plays the critical role in both

positive and negative chemotaxis. We further explored the

requirement of ASER using the lsy-6(ot71) mutant where both

ASE neurons adopt the ASER cell fate and the otIs204 transgenic

line where both ASE neurons adopt the ASEL cell fate (Johnston

and Hobert, 2003). Animals with two ASER neurons (i.e., no

ASEL neuron) were capable of exhibiting both positive and nega-

tive chemotaxis toward different set points, whereas animals
1118 Neuron 82, 1115–1128, June 4, 2014 ª2014 Elsevier Inc.
with two ASEL neurons (i.e., no ASER neuron) were not capable

of oriented movement toward the salt concentration of previous

growth (Figure 1E). These results further support ASER’s role in

encoding the chemotactic set point as well as responding to the

salt gradient during both positive and negative chemotaxis.

The Same Behavior Strategies Underlie Positive and
Negative Chemotaxis
C. elegans navigation involves successive forward movements

(runs) interrupted at random by reorientation movements (sharp

turns or reversal-turns) (Figure 2A). Previous studies on positive

chemotaxis have shown that the worm extends runs up gradi-

ents and shortens runs down gradients, thereby biasing a

random walk toward higher salt concentrations (Pierce-Shimo-

mura et al., 1999). In addition, worms actively orient themselves

up salt gradients, a strategy called klinotaxis or weathervaning

(Iino and Yoshida, 2009). Linear gradients allowed us to easily

identify runs and reorientation movements along each trajectory

that were directed up, down, or orthogonal to the gradient. We

used this setup to dissect movement patterns during positive

and negative chemotaxis.

First, we examined the statistics of run durations, the time

intervals between successive reorientation movements. During

positive and negative chemotaxis, we found that the worm

biases its random walk with mirror symmetry in response to

gradient direction (Figures 2B and 2D). Runs pointed toward

the preferred direction (up gradients during positive chemotaxis

or down gradients during negative chemotaxis) are longer than

runs orthogonal to the gradient. Runs pointed away from the

preferred direction are shorter than orthogonal runs (Figures

2B and 2D). Our results confirm reports that the worm both

extends runs up gradients and shortens runs down gradients

during positive chemotaxis. The worm also extends runs down

gradients and shortens runs up gradients during negative

chemotaxis. These analyses demonstrate that the neural circuit

for chemotaxis must encode whether the worm is moving up or

down a salt gradient as well as whether it is above or below its

chemotactic set point.

Next, we sought the types of reorientation movement contrib-

uting to klinotaxis. We looked for biases in directional changes

during runs or after sharp turns or reversal-turns during chemo-

taxis. During runs orthogonal to the gradient, we found that

worms gradually veer toward the preferred and nonpreferred

directions by similar amounts (Figures 2C and 2E). However,

sharp turns after these orthogonal runs are more likely to point

toward the preferred direction (Figures 2C and 2E). Reversal-

turns after orthogonal runs are not more likely to reorient the

worm toward preferred directions. The tendency to turn toward

preferred chemical environments has been observed in micro-

fluidic devices with step gradients of chemoattractants in fluid

streams (Albrecht and Bargmann, 2011; McCormick et al.,

2011). Klinotaxis in linear spatial gradients arises from sharp

turns during both positive and negative salt chemotaxis.

ASER Neuronal Dynamics Encode Both Gradient
Perception and Set Point Memory
To further characterize ASER function, we performed intracel-

lular calcium imaging. The physiological properties of the ASE
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Figure 2. A Biased RandomWalk Underlies Both Positive and Nega-

tive Chemotaxis
(A) Navigation trajectories of 50 wild-type N2 animals in isotropic environment

of 50 mM NaCl. Worms were grown with 50mM of NaCl and trajectories were

aligned to have the same starting point (circle with S). Two series of video

frames show a flagged sharp turn and a reversal-turn.

(B and D) Run durations for navigation in linear 2 mM/cm NaCl gradients for

worms exhibiting positive chemotaxis below the set point (B) or negative

chemotaxis above the set point (D). The direction up the gradient is 0�. Runs
up: runs with mean headings between �22.5� and +22.5�. Runs down: runs

with mean headings <�157.5� or >+157.50�. Runs orthogonal: runs with

headings between �112.5� and �67.5� or between +67.5� and +112.5�. Run
durations are compared using ANOVA Tukey-Kramer post hoc; ***p < 0.0005.

Error bars denote SEM; n = 280 animals.

(C and E) Probabilities of reorientation up or down the gradient after orthogonal

runs during positive chemotaxis ([C], n = 280 animals grown at 50 mM) or

negative chemotaxis ([E], n = 300 animals grown at 50mM). Two-sample z test;

***p < 0.0005; error bars denote SEM.
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neurons have been explored using step changes in salt concen-

tration (Kunitomo et al., 2013; Suzuki et al., 2008). ASER was

shown to be an ‘‘OFF’’ neuron that is activated by downsteps

in NaCl concentration. ASEL was shown to be an ‘‘ON’’ neuron
that is activated by upsteps in NaCl concentration. These results

suggested amodel where binary ASE activity patterns are reflex-

ively mapped to downstream neurons to either stimulate or

suppress turning movements, driving a biased random walk up

gradients.

We quantified calcium dynamics in ASEL and ASER in worms

that were grown at 50 mM NaCl and subjected to small step

changes in NaCl concentration (±5 mM) above or below the set

point (Figures S2A–S2D). We measured the calcium transients

in transgenic animals that expressed the calcium-sensitive

protein GCaMP3.3 (Tian et al., 2009) specifically in ASE. Consis-

tent with prior reports, intracellular calcium levels in ASEL and

ASER increased after upsteps and downsteps in NaCl concen-

tration, respectively, whether above or below the set point (Fig-

ures S2A–S2D). The fixed calcium dynamics of ASER neurons

to step stimuli, combined with the fact that ASER drives both

positive and negative chemotaxis, suggests flexible coupling

between ASER activity and behavioral output. To determine

whether ASER can generate flexible behavioral outputs, we ex-

pressed channelrhodopsin specifically in the ASER neurons of

worms that carried a mutation in the lite-1 gene that eliminated

the endogenous turning response to blue light (Boyden et al.,

2005; Edwards et al., 2008; Liu et al., 2010). We subjected freely

moving worms raised at 50 mMNaCl to short pulses of blue light

in environments both above (75mM) and below (25mM) their set

point. We found that optogenetic activation of the ASER neuron

triggered a transient increase in reorientation rate for animals

below the set point but a transient decrease when above the

set point (Figure S2E). Thus, ASER activity is connected to an in-

crease in reorientation rate during positive chemotaxis but is

connected to a decrease in reorientation rate during negative

chemotaxis. Thus, ASER must encode both the perception of

salt gradients and the memory of the chemotactic set point.

We reasoned that step stimuli might saturate ASER calcium

levels, making it difficult to resolve stimulus- or memory-depen-

dent contrasts in ASER neuronal dynamics; 5 mM step changes

in salt concentration (the smallest steps that we could reliably

deliver with our microfluidic setup) are much larger than the

salt gradients encountered by moving worms in our behavioral

setup and also lack the property of smoothly varying salt

concentrations of our behavioral assay. To see whether ASER

activity patterns might reflect both perception and memory

with behaviorally relevant stimuli, we analyzed ASER calcium

dynamics in response to linear temporal gradients of salt

concentrations that were comparable (83 ± 5 mM/s) to gradients

experienced in our behavioral setup. Thus, we designed amixing

chamber for our microfluidic imaging device that allowed us to

subject worms to linearly varying salt concentrations (Figure S3).

Using linear salt gradients, we found that ASER’s detailed

temporal dynamics jointly depend on the sign of the stimulus

gradient (increasing or decreasing NaCl concentration) and

whether the animal is above or below the chemotactic set point.

We cultivated animals to generate a 50mMNaCl set point. When

animals were exposed to a linear decrease in salt concentration

below the set point, ASER exhibited large, sustained calcium

waves that persisted for as long as the gradient was applied (Fig-

ure 3A). When these animals were exposed to a linear increase in

salt concentration below the set point, ASER activity was
Neuron 82, 1115–1128, June 4, 2014 ª2014 Elsevier Inc. 1119
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Figure 3. ASER Calcium Imaging in Response to Salt Gradients Delivered by Microfluidic Device

(A–E) Sample traces of GCaMP3 in ASER in one animal and the heatmaps of GCaMP3 in ASER in multiple animals that raised at 50 mM NaCl responding to a

decreasing gradient of NaCl starting at 25 mM (A), raised at 50 mM responding to an increasing salt gradient starting at 25 mM NaCl (B), raised at 50 mM re-

sponding to a decreasing salt gradient starting at 75 mMNaCl (C), raised at 50 mM responding to an increasing salt gradient starting at 75 mMNaCl (D), or raised

at 100 mM NaCl responding to a decreasing salt gradient starting at 75 mM NaCl (E).

To calculate DF/DFmax ([A]–[E]), we subtracted the calcium intensity of each time point (F) by the minimal calcium intensity of the time series (Fmin) and divided the

difference by the difference between the maximal (Fmax) and minimal (Fmin) calcium intensity of the time series (DF/DFmax = (F�Fmin)/(Fmax�Fmin)).

(F) Cumulative GCaMP3 signal in ASER neurons as shown in (A)–(D). Solid lines and shadings are mean ±SEM. n > 15 animals under each condition. To calculate

the cumulative calcium intensity for each time point, we divided the sum of the calcium intensity from time zero to the current time point by the average calcium

intensity during the baseline period (i.e., the first 30 s).
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Figure 4. ASER Calcium Imaging in Freely

Navigating Worms

(A) Representative ASER motion trajectory as well

as its ratiometric calcium signal (R) in a worm freely

navigating a linear salt gradient. ASER exhibited

higher level of calcium activity when the worm

moved down the gradient (toward left).

(B and C) Heatmap and mean values of ASER

calcium dynamics when C. elegans navigates

below (B) or above (C) the set point (50 mM NaCl).

Left and middle panels: temporal salt gradient

experienced by worms during reversals and/or

turns (left panels, rows) and the corresponding

calcium signals in ASER (middle panels). Right

panels: mean values of ASER ratiometric calcium

signals during transitions from moving up the

gradient (dC/dt > 0) to moving down the gradient

(dC/dt < 0) and vice versa. A total of 24 events from

n = 10 animals (B) and 28 events from n = 10 ani-

mals (C) are shown; mean ±SEM.
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completely suppressed (Figure 3B). In contrast, when worms

were exposed to the same decreasing or increasing gradients

above the set point, ASER exhibited different activity patterns.

Decreasing salt concentration evoked sustained as well as short

and discrete calcium transients that were separated by periods

of inactivity (Figure 3C). Increasing salt concentration evoked

short and discrete calcium transients at a lower frequency (Fig-

ure 3D). These results indicate that both set point memory and

gradient perception can be inferred from ASER activity patterns.

Whether above or below the set point, decreasing salt concen-

tration generates more overall activity than increasing salt con-

centration (Figure 3F). Set point memory can be inferred from

the distinct pattern of fast calcium transients that occur with

greater frequency above the set point than below the set point.

To further test whether ASER temporal dynamics is a function

of both gradient perception and set point memory, we compared

ASER activity pattern in worms with different set points. We re-
Neuron 82, 1115–11
corded ASER in animals that were raised

at 100 mM NaCl and subjected to a linear

decrease of NaCl concentration at 75mM

(below the set point). The ASER activity

pattern in these animals closely resem-

bled those in animals grown at 50 mM

and subjected to the same change at

25 mM NaCl concentration (below the

set point) by displaying more sustained

calcium transients (Figure 3E), which

were less frequent in animals grown at

50mMand subjected to the same change

at 75 mM (above the set point). The rich-

ness of ASER calcium dynamics revealed

by linear gradients reveals a dual role in

encoding perception and memory.

We also asked whether ASER activity

patterns are derived from neural circuit

function. We addressed this question by

examining ASER calcium transients in
unc-13(e51) and unc-31(e928) mutants defective in the release

of neurotransmitters and peptides, respectively (Ann et al.,

1997; Avery et al., 1993; Richmond et al., 1999). We found that

the perception- and memory-dependent ASER calcium dy-

namics were not strongly altered by missing signaling between

neurons in either unc-13 or unc-31 mutants (Figures S4A–

S4D). Thus, the temporal profiles of the ASER calcium transients

that reflect both gradient perception and set point memory are

largely cell autonomous.

Rapid Transformation of Sensory Representation to
Motor Representation in the Salt Chemotaxis Circuit
To better understand how sensory inputs are translated into

motor outputs during chemotaxis, we turned to calcium imaging

in freely behaving animals. First, we used a tracking microscope

to simultaneously measure ASER calcium signals and loco-

motion in individual animals (Figure 4A). The salt gradient
28, June 4, 2014 ª2014 Elsevier Inc. 1121
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experienced by each animal was calculated based on the direc-

tion and speed of the head with respect to the direction and

steepness of the ambient linear spatial salt gradient. Measuring

ASER activity patterns in freely moving animals recapitulated our

results using linear salt gradients with microfluidics (Figures 4B

and 4C). In freely moving animals, ASER is activated by

decreasing salt concentrations and inhibited by increasing salt

concentrations whether above or below the set point. Sharp,

discrete calcium transients appear when navigating above the

set point. Signatures of both perception and memory can be

inferred from ASER activity patterns in freely moving worms.

We examined ASER activity patterns at all reversal points during

overall trajectories and found that whereas ASER activity

patterns were directly correlated with the gradient of NaCl con-

centration, they were not directly correlated with the direction

of worm movement. ASER activity can either increase or

decrease during a reversal (Figures 4B and 4C; traces are

aligned such that t = 0 indicates when a reversal-turn is initiated).

Thus, ASER activity patterns are a direct representation of sen-

sory input and memory but are not a direct representation of

chemotactic movement. The transformation of sensory repre-

sentation tomotor representation during chemotaxis must occur

downstream of ASER.

Next, we turned our tracking microscope to postsynaptic

interneurons. Several interneurons that are postsynaptic of

ASER play important roles in C. elegans navigation, including

AIB, AIY, and AIZ (Figure 1A) (White et al., 1986). Ablations of

these neurons modulate the turning rates of worms in isotropic

environments (Gray et al., 2005; Tsalik and Hobert, 2003), sug-

gesting that they might regulate reorientation movements during

navigation. We used cell-specific promoters to label two major

postsynaptic interneurons, AIB and AIY, with the improved

calcium indicator GCaMP6 (Chen et al., 2013), which enabled

us to track calcium dynamics in unrestrained animals during

chemotaxis (Figure 5). We also examined the command inter-

neuron AVA, which is postsynaptic to AIB. AVA activity is directly

correlated with reversals (Chronis et al., 2007; Faumont et al.,

2011).

Interestingly, we found that these interneurons exhibited

activity patterns that were directly correlated with reorientation

movements. Each interneuron exhibited distinct temporal

dynamics, suggesting multiple encoding schemes for chemo-

tactic movements. Consistent with other studies of AVA in freely

moving animals (Faumont et al., 2011), we found that the onset of

a reversal was correlated with a rapid step-like rise in AVA cal-

cium activity. AVA activity was sustained throughout the reversal

and began to decline to baseline levels at the resumption of for-

ward movement (Figure 5D). We found that AIB also encoded

reorientation maneuvers during chemotaxis, but with different

temporal dynamics. At the onset of a reversal, AIB calcium levels

increased linearly until reaching a peak at the resumption of

forward movement (Figures 5A and 5B). With the resumption of

forward movement, AIB calcium levels gradually returned to

baseline (Figure 5C). Whereas AVA activity rapidly peaked near

the beginning of each reorientation maneuver, AIB activity

peaked at the end (Figures 5B and 5C). Comparing AIB activity

patterns in worms moving up or down salt gradients above or

below the set point, we found that AIB activity patterns were
1122 Neuron 82, 1115–1128, June 4, 2014 ª2014 Elsevier Inc.
not a direct representation of sensory input or memory (i.e., not

a direct representation of ASER activity). AIB activity patterns

represent motor output.

AIY activity patterns are also correlated with reorientation

movements, but in a manner that is distinct from AIB or AVA.

AIY calcium levels decreased at the onset of each reversal (Fig-

ures 5E and 5F). Along each chemotactic trajectory, low AIY

activity was correlated with frequent reversals and slow

dispersal whereas high AIY activity was correlated with long

runs and rapid dispersal (Figure 5G). Our discovery that high

and low levels of AIY activity in freely behaving animals is corre-

lated with runs and reorientation movements, respectively, is

consistent with laser killing analyses of AIY (Gray et al., 2005;

Tsalik and Hobert, 2003). Killing AIY shortens runs and increases

the reorientation rate of freely behaving animals.

Taken together, our results reveal surprisingly complex intra-

cellular calcium dynamics of the salt chemotactic circuit. We

show that within the circuit, varying temporal patterns of the

ASER calcium transients represent both the current sensory

stimuli as well as the memory of the sensory experience. At

downstream levels, different interneurons encode distinct

chemotactic maneuvers with distinct profiles of calcium activity.

These results suggest rapid transformation of sensory represen-

tation to motor representation in the circuits for navigation,

revealing functional strategies that a small neural circuit uses

to encode perception, memory, and chemotactic movements.

Segregation of Sensorimotor Pathways for Positive and
Negative Chemotaxis
Our discovery that different interneurons are correlated with

motor outputs in different ways suggests a highly divergent orga-

nizational pattern in the circuits for navigation. To investigate this

hypothesis, we examined behavioral effects of systematic inac-

tivation of downstream interneurons. First, we used laser abla-

tion to kill the main ASER postsynaptic interneurons individually

or in different combinations and assessed chemotaxis in linear

gradients (Figure 6). We tested worms in which sets of interneu-

rons were ablated along with mock surgical controls for chemo-

taxis toward 50mMNaCl. We found that individually ablating the

AIZ or AIY interneurons had essentially no effect on chemotaxis

toward the set point (Figure 6). We also examined the ttx-3(ks5)

mutants, in which AIY fails to develop properly (Hobert et al.,

1997). The ttx-3mutants exhibitedwild-type chemotaxis, pheno-

copying the result of laser ablating AIY. We found that laser

ablating AIB significantly weakened negative chemotaxis but

not positive chemotaxis (Figure 6). Consistently, genetic ablation

of AIB by ectopically expressing the cell-death-inducing mole-

cule caspase generated similar effects on the chemotaxis.

Another postsynaptic interneuron AIA has been recently shown

to modulate the activity dynamics of the olfactory sensory

neuron AWC (Chalasani et al., 2010). Ablating AIA did not signif-

icantly affect salt chemotaxis in either direction.

Although ablating single neuron types had modest effects on

chemotaxis, ablating combinations of interneuron types had

extensive effects (Figure 6). Ablating both AIY and AIZ disrupted

both positive and negative chemotaxis, whereas ablation of AIY

or AIZ alone did not disrupt either positive or negative chemo-

taxis. AIB ablation by itself disrupted negative chemotaxis but,
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Figure 5. Calcium Imaging of Downstream Interneurons in Freely Navigating Worms

(A) Representative AIB motion trajectory and its GCaMP6 calcium signal in a worm freely navigating a linear salt gradient. AIB calcium activity increases during

reversals.

(B) Heatmap of AIB calcium dynamics when C. elegans navigates below or above the set point (50 mM NaCl). Left and middle panels: temporal salt gradient

experienced by worms during reversals (left panel, rows) and the corresponding calcium signal in AIB (middle panel). Right panel: mean values of AIB calcium

signals during the onset of reversals (28 events from n = 10 animals; mean ±SEM).

(C and D) AIB (C) and AVA (D) exhibit distinct temporal calcium dynamics during reversals. Solid lines and shading represent mean ±SEM (n = 7 animals).

(E) Representative AIY motion trajectory and its ratiometric calcium signal (R) in a freely crawling worm. Inset plots the average AIY calcium signal during a 20 s

course as a function of dispersion speed, defined as h½rðt + tÞ � rðtÞ�=ti, where h.i is the average over all t and t within a 20 s movie.

(F) Mean values of AIY calcium signal during the onset of reversals (30 events from n = 8 animals; mean ±SEM).

(G) AIY calcium signal as a function of dispersion speed (mean ±SEM; n = 8 animals totaling�80min of recording). Wormswith faster dispersion speed (>80 mm/s)

exhibit higher AIY calcium signal (Wilcoxon rank sum test; p < 0.000005).
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Figure 6. Downstream Interneurons Differentially Regulate Positive and Negative Chemotaxis

Chemotactic indexes of wild-type N2, mutant, and interneuron-killed animals with correspondingmock surgical controls grown at 50mM in linear 2 mM/cmNaCl

gradients starting at 25mM (blue) or 75mM (orange). Significant differences in the chemotactic indexes were calculated using ANOVA Tukey-Kramer post hoc for

comparisons between wild-type and mutant animals. Student’s t test was used to compare laser-killed animals with mock surgical controls, ***p < 0.0005; **p <

0.005; *p < 0.05. n > 20 animals for each measurement. Data points represent mean ±SEM.
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when combined with AIZ ablation, also disrupted positive

chemotaxis. Ablation of AIB and AIY had a similar effect as

ablating AIB by itself. Taken together, these results reveal

partially overlapping but different interneuron requirements for

positive versus negative chemotaxis. While both AIB alone and

the combination of AIY and AIZ are needed for negative chemo-

taxis, only the combinations of AIZ with either AIY or AIB appear

critical for positive chemotaxis. As we observed from calcium

dynamics in freely moving worms, the distinct activity patterns

of different interneurons represent different features of naviga-

tional movement (Figure 5). Different combinations of interneu-

rons downstream of ASER are differentially needed to regulate

positive and negative chemotaxis, revealing segregation in the

sensorimotor pathways for chemotactic movement in different

directions at the first layer of interneurons.

We also quantified the effect of inactivating neurons by hyper-

polarization caused by ectopically expressing a constitutively

activated potassium channel, twk-18(gf) (Kunkel et al., 2000).

We found strong consistency between our results from laser

ablation and genetic inactivation of interneurons (Figure 7A). In-

hibiting AIB by selective expression of twk-18(gf) disrupted

negative, but not positive, chemotaxis toward a chemotactic

set point at 50 mM NaCl. Inhibiting only AIY had no effect on

positive or negative chemotaxis. Inhibiting both AIB and AIY

disrupted negative, but not positive, chemotaxis. Inhibiting

both AIB and AIZ disrupted both negative and positive chemo-

taxis. Inhibiting AIB, AIY, and AIZ disrupted both positive and

negative chemotaxis.

Transgenic lines provided us with larger numbers of animals

than laser ablation, so we could use quantitative tracking

methods to assess changes in navigational strategy. We found

that the klinotaxis and biased random walk strategies were

differentially sensitive to interneuron ablation (Figures 7B and

7C; Experimental Procedures). Inhibiting different combinations

of AIB, AIY, and AIZ essentially abolished the biased random

walk strategy during positive chemotaxis (i.e., eliminating modu-

lation of run length) and reduced the contrast in run length

between movement up gradients and down gradients during

negative chemotaxis, but it had no effect on the klinotaxis strat-
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egy using sharp turns. These results reveal another aspect of

segregation in the sensorimotor pathways for chemotactic

behavior. Interneurons immediately downstream of ASER are

needed to implement the biased random walk toward the

chemotactic set point. Klinotaxis is mediated by separate down-

stream pathways from ASER that are not directly represented in

the wiring diagram.

DISCUSSION

C. elegans Exhibits Experience-Dependent Salt
Chemotaxis
Sensorimotor circuits use different operational rules to decode

sensory stimuli and organize motor outputs to generate behavior

with adaptive values. For sensory stimuli with fixed valence, such

as noxious mechanical stimuli, simple reflex arcs like those in

spinal cord motor circuits allow rapid and highly stereotyped

responses. TheC. eleganswiring diagram also encodes reflexive

behavioral responses, such as rapid withdrawal from mechani-

cal stimuli (Chalfie et al., 1985). Specialized mechanosensory

neurons detect gentle touch stimuli and directly regulate com-

mand neurons for forward or backward locomotion. While

different temporal patterns of mechanical stimulation at different

frequencies (e.g., slow poke versus buzz) appear to induce intra-

cellular calcium changes in mechanosensory neurons with

different amplitudes, they all induce calcium transients with

similar temporal patterns (Suzuki et al., 2003). In the touch cir-

cuit, the activity patterns of sensory neurons and motor neurons

appear to be directly coupled in reflexive responses and

invariant circuit pathways (Chalfie et al., 1985). In comparison,

behavioral responses to sensory inputs with context- or experi-

ence-dependent valence must be flexible. In small animals

with fixed connectomes like C. elegans, mechanisms like neuro-

modulation have been shown to modulate neural circuits to

generate behavioral flexibility (Bargmann and Marder, 2013).

Here, we characterize a new type of behavioral flexibility in

C. elegans for which compact representations of perception

and memory are encoded in a single sensory neuron, various

locomotory patterns are encoded in the downstream
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Figure 7. Downstream Interneurons Differentially Regulate the

Biased Random Walk and Klinotaxis

(A–C) Chemotactic index (A), biased random walk index (B), and klinotaxis

index (C) for wild-type animals and transgenic animals in which different in-

terneurons are inhibited by ectopic expression of a constitutively active

potassium channel twk-18(gf). The biased random walk index was calculated

as the fractional difference in the relative run durations up or down gradients

ðhrupi � hrdowniÞ=ðhrupi+ hrdowniÞ based on the trajectories of individual animals

(see Figures 2B and 2D). The klinotaxis index was calculated as the fractional

difference in the relative probabilities of sharp turns reorienting the animal up or

down the gradient ðhpupi � hpdowniÞ=ðhpupi+ hpdowniÞ as calculated based on

the trajectories of individual animals (see Figures 2C and 2E). Significant

differences between salient comparisons were calculated using ANOVA

Tukey-Kramer post hoc; ***p < 0.0005; **p < 0.005; *p < 0.05; n > 60 animals for

each measurement. Data points represent mean ±SEM.
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interneurons, and rapid transformation of sensory representa-

tions to motor representations along these pathways regulate

the behavioral outputs.

Previously, it was demonstrated that higher NaCl concentra-

tions attracted C. elegans via a biased random walk mecha-

nism (Pierce-Shimomura et al., 1999). Because activation of

ASER is induced by downstep of NaCl and correlates with

increased turning rate and activation of ASEL is induced by up-

step of NaCl and correlates with decreased turning rate, the
attractive response to step-increase of NaCl concentration

was proposed to be a simple reflex that mapped sensory pat-

terns to motor patterns to drive a biased random walk toward

higher salt concentrations (Suzuki et al., 2008; Thiele et al.,

2009). However, C. elegans will move either up or down smooth

gradients of NaCl concentration to pursue a remembered con-

centration set point. Experience-dependent chemotaxis cannot

be the product of fixed reflexes and requires more sophisti-

cated information processing. As the worm navigates a

gradient, it must (a) determine whether it is above or below

the set point, (b) determine whether it should move up or

down those gradients, and (c) select and pattern its sensori-

motor responses accordingly.

ASER Encodes Sensory Stimuli and Experience with
Complex Intracellular Calcium Dynamics
At the sensory level, we have shown that the ASER neuron is

required for navigation up or down salt gradients as well as stor-

ing the memory of the chemotactic set point. We have also un-

covered complex temporal dynamics in ASER that are both a

function of gradient perception and set point memory (Figures

3 and 4). When below the set point, decreasing salt concentra-

tions generate sustained, large-amplitude calcium waves in

ASER; increasing NaCl concentration strongly suppresses

ASER activity. In comparison, when above the set point, the

same gradients cause ASER to exhibit sharp, discrete calcium

transients; decreasing NaCl concentration evokes these sharp,

discrete calcium transients with a higher frequency than

increasing NaCl concentration. The richness in ASER neuronal

dynamics surpasses the ‘‘ON’’ and ‘‘OFF’’ responses evoked

by the step changes in NaCl concentration (Kunitomo et al.,

2013; Suzuki et al., 2008). Previous studies in the visual, auditory,

olfactory and somatosensory systems have shown that temporal

structure of sensory activity patterns can augment information

content in describing time-varying sensory inputs (Borst and

Theunissen, 1999; Cury and Uchida, 2010; de Ruyter van Ste-

veninck et al., 1997; Lu and Wang, 2004; Nagel and Wilson,

2011; Panzeri et al., 2001). The complexity of ASER neuronal

dynamics may arise from its dual role in encoding perception

and memory. While it is challenging to mimic the complex

ASER activity patterns by manipulating neuronal activities,

further investigation on causality will reveal behavioral conse-

quence of these temporal activity patterns. By examining

ASER calcium transients in freelymovingworms, wewere further

able to show that ASER activities are not a direct representation

of chemotactic movement. The sensorimotor circuit does not

map ASER activity to motor activity by simple reflexes. Instead,

downstream circuits must perform a more sophisticated decod-

ing of ASER activity patterns to guide movement toward the

remembered set point.

Divergent Downstream Circuits Encode Locomotory
Outputs in Bidirectional Chemotaxis
To understand how experience-dependent navigation in salt

chemotaxis is regulated, we asked how ASER sensory informa-

tion might flow through downstream interneurons. Using laser

ablation and genetic killing to remove major postsynaptic

neurons of ASER—AIB, AIY and AIZ—individually and in
Neuron 82, 1115–1128, June 4, 2014 ª2014 Elsevier Inc. 1125
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combination, we identified different postsynaptic neurons

required for movement above or below the chemotactic set

point. We found that while killing AIB or the combination of AIY

and AIZ together disrupts the movement down the gradient,

killing AIY and AIZ together or AIB and AIZ together is sufficient

to disrupt the movement up the gradient (Figure 6). These results

show that the postsynaptic interneuronal network diverges

downstream of ASER, with different sets of overlapping path-

ways for generating positive and negative chemotaxis. Inactivat-

ing different sets of downstream interneurons in the first synaptic

relay after ASER had a differential effect on the biased random

walk strategy versus the klinotaxis strategy of chemotactic

movement (Figure 7), highlighting another aspect of divergence

in the sensorimotor pathways for chemotaxis. Thus, different

memory- and perception-dependent activities of the ASER neu-

rons must be differentially decoded by postsynaptic

interneurons.

In contrast to ASER, the neuronal dynamics of major down-

stream interneurons—AIB, AIY, and AVA—are directly corre-

lated with chemotactic movement but not with perception or

memory (Figure 5). Interestingly, the calcium activity of each

interneuron is correlated with movement, but in distinct temporal

patterns. AVA activity rises to its peak near the beginning of a

reorientation maneuver. AIB activity peaks at the end of each

reorientation maneuver (Figures 5C and 5D). AIY calcium levels

increase with forward movement, decrease with backward

movement, and are thus positively correlated with dispersal

rate and inversely correlated with reorientation rate (Figures

5E–5G). Thus, combinations of motor-correlated activity pat-

terns in groups of interneurons could flexibly drive positive or

negative chemotaxis. Taken together, these results suggest a

highly nonlinear transformation from sensory inputs to interneu-

rons in a condensed C. elegans chemotaxis circuit (Figure 1A).

Furthermore, these results suggest surprisingly rapid segrega-

tion from sensory to motor representation at the first relay down-

stream of the principal sensory neurons.

Modeling the circuits for C. elegans navigation has largely

involved evoking fixed sets of reflexive sensorimotor transforma-

tions, where the binary activities of sensory neurons are directly

transmitted to downstream motor circuits by intervening inter-

neurons. Mounting evidence suggests greater sophistication in

the circuits for navigation than a bundle of reflexes. First, our

study suggests that both perception and memory are dually rep-

resented in the complex activity patterns of the ASER sensory

neuron (Figures 3 and 4). Complex temporal dynamics have

been reported in other C. elegans sensory neurons, notably the

AWC olfactory neuron, which can be activated by the sudden

removal of olfactory attractants but also exhibits fast sub-

second response to fluctuations in odor concentration (Kato

et al., 2014) as well as spontaneous calcium activities that are

both odor and temperature dependent (Biron et al., 2008; Chala-

sani et al., 2007). Second, our study reveals divergent sensori-

motor pathways for positive versus negative chemotaxis and

for regulating the frequency versus direction of reorientation

movements at the first synaptic relay. Third, different interneu-

rons in the first relay encode chemotactic movements with

distinct activity patterns, suggesting rapid transformation of

sensory representation to motor representation in the naviga-
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tional circuit. Our results reveal that far more sophistication is

compactly encoded in the navigational circuits of C. elegans

than previously recognized.

EXPERIMENTAL PROCEDURES

Strains

Expression of G-CaMP3 (a gift from L. Tian and L. Looger at Jenelia Farm,

Ashburn) in ASE was driven by the flp-6 promoter. All worms were cultivated

on nematode growth medium (NGM) plates with different NaCl concentrations

and OP50 bacterial food at 20�C using standard techniques (Brenner, 1974).

Other than NaCl, the composition of NGMplates is as follows: 0.25% Tryptone

(w/v), 1.5% Agar (w/v), 1 mM CaCl2, 1mM MgSO4, 25 mM KPO4 (pH 6.0), and

5 mg/mL cholesterol.

Behavioral Assay

Each linear gradient of NaCl was generated on a 25 cm 3 25 cm plate as

described in Figure S1. Osmolarity was balanced with sorbitol. Behavioral

assays were performed 18–32 hr after the gradients were established. In

each assay, 15–20 young adult worms were washed in NGM buffer (identical

ingredients as NGM plates but without agar) for about 1 min before starting

in the NaCl gradient. The assay plate was illuminated by superbright LED

bars. Video was captured using a 5 megapixel USB camera (Mightex) for

15 min at 2 frames per second using Mightex Camera Demo (V1.2.0). Data

was analyzed using customized particle-tracking and shape analysis algo-

rithms written in Labview (National Instruments, Austin) and MATLAB (Math-

works, Natick). Please refer to the Supplemental Experimental Procedures

for the details on data analysis.

Calcium Imaging

Calcium imaging was performed in a microfluidic device as previously

described with small modifications (Chronis et al., 2007; Ha et al., 2010; Hen-

dricks et al., 2012). Fluorescence time lapse imaging (100 ms exposures at 5

frame per second for step response or 2 frame per second for gradient

response) was performed on a Nikon Eclipse Ti-U inverted microscope with

a 403 oil immersion objective (NA 1.3) and a Photometrics CoolSnap EZ

camera. Mean fluorescence intensities were measured with ImageJ. Animals

were subjected to streams of NGMbuffer containing different NaCl concentra-

tions. Within each experiment, osmolarity was balanced with sorbitol. For

gradient stimuli, a small (�400 ml) active mixing chamber driven by a magnetic

stirrer was inserted inline upstream of the microfluidic device. Calibration with

fluorescent dyes allowed us to adjust flow rates to achieve the desired tempo-

ral gradients, which were found to be stable and essentially linear over the

imaging period. Animals were placed in the chip and exposed to either

25 mM or 75 mM NaCl for about 1 min, then exposed to either an increasing

or decreasing gradient (83 ± 5 mM/s). Details on data analysis are included in

the Supplemental Experimental Procedures.

Calcium imaging of freely behaving animals was performed on a Nikon

Eclipse LV100 upright microscope with a 43 objective (Nikon Plan Apo NA

0.2) and an Andor iXon 885 EMCCD camera. Worms were placed on a

10 cm linear salt gradient agar plate as described in Figure S1. Ratiometric

imaging was performed by splitting the red (mcherry) and green (GCaMP3 or

GCaMP6) florescence signals via a dual view system (DV2, photometrics). A

custom-written Labview program was used to record stage position (Ludl Bio-

Precision2 XY motorized stage). Fluorescence signals and worm position on

the plate were analyzed using customized particle-tracking algorithms written

in MATLAB.

Optogenetic Stimulation

We used our custom-built Colbert system (Leifer et al., 2011) to activate ASER

neuron in a freely moving worm. Adult worms raised in 50 mM NaCl environ-

ment were transferred and immersed in 20% dextran solution (wt/vol) with

25 mM NaCl (below set point) or 75 mM NaCl (above set point). ASER neuron

expressing ChR2was activatedwith blue laser light (473 nm) for 6 s at a 1.5min

interval. Custom-written MATLAB scripts were used to score turning events

based on how close the head and the tail of a worm are. Turning rate was
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calculated by using a standard smoothing algorithm similar to the firing rate

estimation in a spiking neuron (Dayan and Abbott, 2005).
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