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a b s t r a c t

An adaptive discontinuous finite volume method is developed and analyzed in this paper.
We prove that the adaptive procedure achieves guaranteed error reduction in a mesh-
dependent energy norm and has a linear convergence rate. Numerical results are also
presented to illustrate the theoretical analysis.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive procedures combined with finite element methods or finite volume methods have become important tools
for scientific computing and engineering applications; see [1–4] and the references therein. These adaptive procedures
usually rely on a posteriori type error estimates of residuals [3–6] or quantities of interest [7]. Convergence of adaptive finite
elementmethods for elliptic problemshas been investigated for continuous finite elements in [3] and for discontinuous finite
elements in [2,8]. For adaptive finite volume methods, the results in [9] by Lazarov and Tomov represent noticeable early
work on diffusion and convection–diffusion–reaction equations in three dimensions, in which continuous trial functions
are used. A recent work on convergence of an adaptive continuous finite volume method for elliptic problems can be found
in [10].

The discontinuous finite volume method developed in [11] for second order elliptic boundary value problems
incorporates the ideas of the discontinuous Galerkin finite element methods and the control or dual volumes. The
discontinuous finite volumemethod can be applied to elliptic interface problems andDarcy’s flows [12]. It has been observed
that the discontinuous finite volumemethod has easier implementation than the traditional node-oriented or cell-oriented
(continuous) finite volume methods and offers local conservation on sub-triangles [12].

As a continuation of our work on a posterior error estimation for the discontinuous finite volume method, this paper
establishes convergence of an adaptive procedure for the discontinuous finite volume method for second order elliptic
problems. The residual type a posteriori estimator in [6] will be used as an indicator for adaptive mesh refinements. Our
analysis of the adaptive discontinuous finite volume method in this paper is similar to those for adaptive discontinuous
finite element methods in [2,8].
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Fig. 2.1. A triangular element along with its dual volumes.

Fig. 2.2. A triangular element with edge e.

For ease of presentation, we consider the following model homogeneous Dirichlet boundary value problem

Lu := −1u = f in Ω, u = 0 on ∂Ω, (1.1)

where Ω ⊂ R2 is a bounded polygonal domain. However, our adaptive discontinuous finite volume method and
convergence analysis apply to more general boundary value problems, as shown in the numerical results in Section 5.

We will use the standard definitions [13,11] for the Sobolev spaces Hs(D) and their associated inner products (·, ·)s,D,
norms ‖ · ‖s,D, and seminorms | · |s,D, s ≥ 0. The space H0(D) coincides with L2(D), in which case the norm and inner product
are denoted by ‖ · ‖D and (·, ·)D, respectively. When D = Ω , we drop the subscript D.

The rest of this paper is organized as follows. In Section 2, a discontinuous finite volume method is introduced. In
Section 3, an a posteriori error estimator is presented. Convergence of the adaptive procedure is derived in Section 4.
Numerical results are presented in Section 5 to illustrate the error analysis. The paper is concluded with some remarks
in Section 6.

2. A discontinuous finite volume method

Let Th be a quasi-uniform triangulation of Ω . Each triangular element T ∈ Th is divided into three sub-triangles by
connecting the barycenter to the three vertices of the triangle, as shown in Fig. 2.1. All these sub-triangles form a dual
partition of Th, which is denoted as T ∗

h .
We define a finite dimensional space of piecewise linear trial functions on Th as

Vh = {v ∈ L2(Ω) : v|T ∈ P1(T ), ∀T ∈ Th},

and a finite dimensional space

Wh = {q ∈ L2(Ω) : q|T∗ ∈ P0(T ∗), ∀T ∗
∈ T ∗

h }

for piecewise constant test functions on the dual partition T ∗

h .
Let V (h) = Vh + H2(Ω) ∩ H1

0 (Ω). Define a mapping γ : V (h) → Wh as

γ v|T∗ =
1
h e

∫
e
v|T∗ds, T ∗

∈ T ∗

h .

See Fig. 2.2.
Let e be an interior edge common to elements T1 and T2 in Th, and n1 and n2 be the unit normal vectors on e exterior to

T1 and T2, respectively. For a scalar q or a vectorw, we define respectively its average {·} on e and jump [·] across e as

{q} =
1
2
(q|∂T1 + q|∂T2), [q] = q|∂T1n1 + q|∂T2n2,

{w} =
1
2
(w|∂T1 + w|∂T2), [w] = w|∂T1 · n1 + w|∂T2 · n2.
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Note that the jump of a vector is a scalar, whereas the jump of a scalar is a vector. If e is an edge on the boundary of Ω , we
define

{q} = q, [w] = w · n.

The quantities [q] and {w} on boundary edges are defined analogously.
For D ⊂ Ω , let Eh(D) be the set of edge in D and Eh = Eh(Ω). Denote E0

h := Eh \ ∂Ω , the collection of all interior edges
of Th. For convenience, we also define

(v, w)Th =

−
T∈Th

∫
T
v · w dx, (v, w)Eh =

−
e∈Eh

∫
e
v · w ds.

The piecewise gradient operator ∇h on Th is defined as
(∇hv)|T = ∇(v|T ), ∀T ∈ Th.

Testing Eq. (1.1) by γ v for v ∈ Vh gives
(Lu, γ v)T ∗

h
= (f , γ v).

Integrating by parts and using the fact that γ v is a constant on each T ∗
∈ T ∗

h , we obtain

(Lu, γ v)T ∗
h

= −

−
T∗∈T ∗

h

∫
T∗

1uγ v dx = −

−
T∗∈T ∗

h

∫
∂T∗

∇u · nγ v ds

=

−

−
T∗∈T ∗

h

∫
∂T∗

∇u · nγ v ds +

−
T∈Th

∫
∂T

∇u · nγ v ds

−

−
T∈Th

∫
∂T

∇u · nγ v ds,

where we have added and subtracted the last term to bring in the effect of the primal triangulation Th.
Next we define a bilinear form on V (h) × V (h) as

a(u, v) = −

−
T∗∈T ∗

h

∫
∂T∗

∇u · nγ v ds +

−
T∈Th

∫
∂T

∇u · nγ v ds.

Utilizing the facts that [∇u] = 0 and−
T∈Th

∫
∂T

∇u · nγ v ds =

−
e∈Eh

∫
e
[γ v] · {∇u}ds +

−
e∈E0

h

∫
e
{γ v}[∇u · n]ds, (2.1)

we have
(Lu, γ v)T ∗

h
= a(u, v) − ({∇u}, [γ v])Eh = (f , γ v). (2.2)

Since [u] = 0, we can add a penalty term to the above equation and still maintain consistency of the method:
a(u, v) − ({∇u}, [γ v])Eh + α(h−1

e [u], [v])Eh = (f , γ v).

Then we define
Ah(u, v) = a(u, v) − ({∇u}, [γ v])Eh + α(h−1

e [u], [v])Eh . (2.3)
Now our discontinuous finite volume method can be formulated as Seek uh ∈ Vh such that

Ah(uh, v) = (f , γ v) ∀v ∈ Vh. (2.4)
The formulation (2.4) is consistent, i.e., the true solution u satisfies

Ah(u, v) = (f , γ v) ∀v ∈ Vh. (2.5)
Subtracting (2.4) from (2.5), we obtain the Galerkin orthogonality

Ah(u − uh, v) = 0, ∀v ∈ Vh. (2.6)
For v, w ∈ V (h), it has been proved in [11] that

a(v, w) = (∇hv, ∇hw) +

−
T∈Th

∫
∂T

∇v · n(γw − w)ds +

−
T∈Th

(∆v, w − γw)T . (2.7)

Furthermore, we define a mesh-dependent norm

|||v|||
2

= |v|
2
1,h +

−
e∈Eh

he‖{∇v}‖
2
e +

−
e∈Eh

h−1
e ‖[v]‖

2
e .

The following a priori error estimate has been established in [11].

Theorem 2.1. Let u and uh be respectively the solutions of (1.1) and (2.4). Then

|||u − uh||| ≤ C inf
v∈Vh

|||u − v|||,

where C is a constant independent of the mesh size h. �
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3. An a posteriori error estimator

First, we make an assumption as in [8] that f is a piecewise constant, since the data oscillation is essentially a higher
order term. Techniques for handling data oscillations can also be found in [2].

It is clear that

(f , v − γ v)Th = 0. (3.1)

We define

η2
h =

−
T∈Th

η2
T +

−
e∈Eh

η2
e +

−
e∈Eh

η2
e,1, (3.2)

where

ηT = hT‖f ‖T , ∀T ∈ Th,

and

ηe = h1/2
e ‖[∇uh]‖e, ηe,1 = h−1/2

e ‖[uh]‖e, ∀e ∈ Eh.

Let T be an element with edge e. It is well known [14] that there exists a constant C such that for any function g ∈ H1(T ),

‖g‖2
e ≤ C(h−1

T ‖g‖2
T + hT‖∇g‖2

T ). (3.3)

We denote Te = T1 ∪T2 with T1, T2 in Th and T1 ∩T2 = e. The following two theorems established in [6] provide an upper
bound and a lower bound for the error.

Theorem 3.1. Let u and uh be respectively the solutions of (1.1) and (2.4). Then there exists a positive constant C such that

‖∇h(u − uh)‖
2

≤ Cη2
h. � (3.4)

Theorem 3.2. There exists a constant C > 0 such that

h2
T‖f ‖

2
T ≤ C‖∇(u − uh)‖

2
T , ∀T ∈ Th, (3.5)

and

he‖[∇uh]‖
2
e ≤ C(h2

T‖f ‖
2
Te

+ ‖∇h(u − uh)‖
2
Te

), ∀e ∈ Eh. � (3.6)

Now we cite a result in [8] about approximating a discontinuous piecewise polynomial in Vh by a continuous piecewise
polynomial.

Lemma 3.3. Let Th be a conforming triangular mesh. Then for any v ∈ Vh, there exists vI ∈ Vh ∩ H1
0 (Ω) satisfying−

T∈Th

‖∇(v − vI)‖
2
T ≤ C

−
e∈Eh

h−1
e ‖[v]‖

2
e , (3.7)

−
T∈Th

‖v − vI‖
2
T ≤ C

−
e∈Eh

he‖[v]‖
2
e , (3.8)

where C is independent of the mesh size h. �

Since [∇u] = 0 and [∇uh] is a constant, the definition of Ah(·, ·) along with (2.7) and (3.1) imply that for any v ∈ V (h),

Ah(eh, v) = (∇eh, ∇v)Th + ([γ v − v], {∇eh})Eh + ({γ v − v}, [∇eh])Eh

− (f , v − γ v) − ([γ v], {∇eh})Eh − α(h−1
[uh], [v])Eh

= (∇eh, ∇v)Th − ([v], {∇eh})Eh − α(h−1
[uh], [v])Eh . (3.9)

For v ∈ Vh, we have

(∇eh, ∇v)Th − ([v], {∇eh})Eh − α(h−1
[uh], [v])Eh = 0. (3.10)

Lemma 3.4. Let uh be the solution of (2.4). Then we have−
e∈Eh

h−1
e ‖[uh]‖

2
e ≤

C
α2

−
T∈Th

‖∇eh‖2
T . (3.11)
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Proof. Substituting v by uh − uI in (3.10) gives

α
−
e∈Eh

h−1
e ‖[uh]‖

2
e = (∇eh, ∇(uh − uI))Th − ({∇eh}, [uh − uI ])Eh .

Applying Lemma 3.3 and integration by parts, we rewrite the above equation as

α
−
e∈Eh

h−1
‖[uh]‖

2
e = −(∆eh, uh − uI)Th + ({∇eh}, [uh − uI ])Eh + ([∇eh], {uh − uI})Eh − ({∇eh}, [uh − uI ])Eh

= −(∆eh, uh − uI)Th − ([∇uh], {uh − uI})Eh

≤


C
α

−
T∈Th

η2
T +

−
e∈Eh

η2
e

 1
2


α
−
e∈Eh

h−1
e ‖[uh]‖

2
e

1/2

.

Combining the above inequality with Theorem 3.2 gives (3.11). �

Lemma 3.5. There exists a constant C independent of h such that

Ah(eh, eh) ≥ C‖∇heh‖2, (3.12)

Ah(eh, eh) ≤ C(‖∇heh‖2
+ α

−
e∈Eh

h−1
e ‖[uh]‖

2
e ). (3.13)

Proof. It follows from (3.10) that

([uh], {∇eh})Eh = (∇eh, ∇(uh − uI))Th − α(h−1
[uh], [uh])Eh

≤
1
2
‖∇heh‖2

+ (α + C)
−
e∈Eh

h−1
e ‖[uh]‖

2
e .

Using the above inequality and (3.11), we obtain

Ah(eh, eh) = ‖∇heh‖2
+ α

−
e∈Eh

h−1
e ‖[uh]‖

2
e − ([uh], {∇eh})Eh

≥
1
2
‖∇heh‖2

− C
−
e∈Eh

h−1
e ‖[uh]‖

2
e

≥
1
2
‖∇heh‖2

−
C
α2

‖∇heh‖2

≥ C‖∇heh‖2.

Similarly, we can prove (3.13). �

4. Convergence of the adaptive procedure

We adopt the marking strategy in [2]: for a given parameter θ ∈ (0, 1), we mark subsets MT ⊂ TH and ME ⊂ EH such
that −

T∈MT

η2
T ≥ θ

−
T∈TH

η2
T , (4.1)

−
E∈ME

η2
E ≥ θ

−
E∈EH

η2
E . (4.2)

The refinement strategy in [2] that does not require the interior node property is used to refine MT and ME . Any T ∈ MT
will be refined by bisecting the longest edge, whereas the two triangles sharing any E ∈ ME will be refined by bisection. Let
Th be a refined mesh obtained in such a way from TH .

As follows, Lemmas 4.1 and 4.2 respectively state how the errors related to the to-be-refined elements and edges can be
controlled.

Lemma 4.1. The following holds−
T∈MT

η2
T ≤ C‖∇h(uh − uH)‖2

+ Cα
−
e∈Eh

h−1
e ‖[uh]‖

2
e . (4.3)
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Proof. Let T ∈ TH be a triangle refined as T = T1 ∪ T2, T1, T2 ∈ Th. As in [2], let φh ∈ Vh be a Crouzeix–Raviart type linear
shape function such that φh|T ′ = 0 for T ′

∈ Th \ {T } and

2−
i=1

h2
T‖f ‖

2
Ti =

2−
i=1

(f , φh)Ti , (4.4)

‖φh‖
2
Ti ≤ Ch4

T‖f ‖
2
Ti , i = 1, 2, (4.5)∫

E
{φh}ds = 0, E ∈ ∂T . (4.6)

Applying the fact φh ∈ Vh and (4.4)–(4.6), we obtain

Ah(uh, φh) =

2−
i=1

(∇uh, ∇φh)Ti + α
−

e∈Eh(T )

h−1
e ([uh], [φh])e

=

2−
i=1

(f , φh)Ti . (4.7)

Using (4.4), (4.6), (4.7), and integration by parts, we have
2−

i=1

h2
‖f ‖2

Ti =

2−
i=1

(f , φh)Ti +

2−
i=1

(1uH , φh)Ti

=

2−
i=1

(f , φh)Ti −

2−
i=1

(∇uH , ∇φh)Ti

=

2−
i=1

(∇(uh − uH), ∇φh)Ti + α
−

e∈Eh(T )

h−1
e ([uh], [φh])e

≤ C


2−

i=1

‖∇(uh − uH)‖2
Ti

 1
2

+


α
−

e∈Eh(T )

h−1
e ‖[uh]‖

2
e

1/2  2−
i=1

h2
T‖f ‖

2
Ti

1/2

.

Summing the above inequality over all T ∈ MT gives (4.3). �

Lemma 4.2. The following holds with C being a constant independent of the meshes−
E∈ME

η2
E ≤ C‖∇h(uh − uH)‖2

+ Cα
−
E∈EH

h−1
E ‖[uH ]‖

2
E + Cα

−
e∈Eh

h−1
e ‖[uh]‖

2
e . (4.8)

Proof. Let E ∈ ME be an edge with E = T1 ∩ T2, T1, T2 ∈ TH . Let φH ∈ VH be a Crouzeix–Raviart type shape function such
that φH |T = 0 for any T ∈ Th \ {TE} and

hE‖[∇uH ]‖
2
E = ([∇uH ], {φH})E, (4.9)

‖φH‖
2
Ti ≤ Ch

3
2
E ‖[∇uH ]‖E, i = 1, 2, (4.10)∫

E
{φH}ds = 0. (4.11)

Integration by parts yields

0 = −(1uH , φH)TE = (∇uH , ∇φH)TE − ([∇uH ], {φH})E . (4.12)

Since φH ∈ VH , we have

(∇uH , ∇φH)TE + α
−

E∈EH (TE )

h−1
E ([uH ], [φH ])E = (f , φH)TE . (4.13)

It follows from (4.9), (4.12) and (4.13) that

hE‖[∇uH ]‖
2
E = ([∇uH ], {φH})E = (∇uH , ∇φH)TE

= (f , φH)TE − α
−

E∈EH (TE )

h−1
E ([uH ], [φH ])E .
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Applying (4.3), (4.10) and (4.11), we obtain

hE‖[∇uH ]‖
2
E ≤ C

−
T∈TE

h2
T‖f ‖

2
T +

−
E∈EH (TE )

h−1
E ‖[uH ]‖

2
E


.

Summing the above inequality over all E ∈ ME and applying Lemma 4.1 give (4.8) as desired. �

Since Th is a refinement obtained from TH , it is easy to see [8] that

Ah(eH , eH) ≤ AH(eH , eH) + α
−
E∈EH

h−1
E ‖[uH ]‖

2
E . (4.14)

It is also clear from the fact VH ⊂ Vh that

Ah(eh, eh) = Ah(eH , eH) + Ah(uh − uH , uh − uH). (4.15)

A combination of (4.14) and (4.15) leads to the main theoretical result on error reduction stated in the theorem below.

Theorem 4.3. There exists ρ ∈ (0, 1) such that

Ah(eh, eh) ≤ ρAH(eH , eH).

Proof. Applying (3.4) and (3.13), we obtain

AH(eH , eH) ≤ Cη2
H . (4.16)

Combining the coercivity of Ah(·, ·), Lemmas 4.1 and 4.2 gives

Ah(uh − uH , uh − uH) ≥ C‖∇h(uh − uH)‖2

≥ Cθη2
H − Cα

−
E∈EH

h−1
E ‖[uH ]‖

2
E − Cα

−
e∈Eh

h−1
e ‖[uh]‖

2
e . (4.17)

Using (3.4), (3.11), (3.12) and (4.14)–(4.17), we have

Ah(eh, eh) = Ah(eH , eH) − Ah(uh − uH , uh − uH)

≤ AH(eH , eH) + α
−
E∈EH

h−1
E ‖[uH ]‖

2
E − C‖∇h(uh − uH)‖2

≤ AH(eH , eH) −


Cθ −

C
α


η2
H + Cα

−
e∈Eh

h−1
e ‖[uh]‖

2
e

≤ (1 − Cθ)AH(eH , eH) +
C
α
Ah(eh, eh).

Therefore,

Ah(eh, eh) ≤ ρAH(eH , eH).

for some constant ρ ∈ (0, 1). �

Remark. As one can check, the above proof requires the penalty factor α to be large enough. But the theorem implies
guaranteed error reduction and linear convergence of the adaptive procedure.

5. Numerical results

In this section, we validate the adaptive discontinuous finite volume method through numerical results. The algorithms
and Matlab implementation in [1] have been adopted for our numerical experiments.

Example 1. We consider an elliptic boundary value problem on an L-shaped domainΩ = (−1, 1)2 \([0, 1]×[−1, 0])with
a known exact solution

u(r, θ) = r2/3 sin(2θ/3),

where (r, θ) are the polar coordinates. Nonhomogeneous Dirichlet boundary conditions are specified using the values of
the exact solution.
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Table 5.1
Numerical results for Example 1.

Level #Elts #NewElts Error η EffIndex RelErr ηr

1 12 0.5714 0.2255 0.3946 0.4217 0.1664
2 16 3 0.4975 0.2172 0.4366 0.3671 0.1603
3 20 2 0.4337 0.1975 0.4554 0.3201 0.1457
4 23 3 0.3910 0.1848 0.4726 0.2885 0.1364
5 32 6 0.2982 0.1720 0.5768 0.2201 0.1269
6 43 9 0.2691 0.1580 0.5871 0.1986 0.1166
7 70 13 0.2005 0.1273 0.6349 0.1480 0.0939
8 95 14 0.1646 0.1117 0.6786 0.1215 0.0824
9 138 26 0.1396 0.0983 0.7042 0.1030 0.0725

10 188 34 0.1145 0.0864 0.7546 0.0845 0.0638
11 251 48 0.0973 0.0751 0.7718 0.0718 0.0554
12 351 67 0.0787 0.0625 0.7942 0.0581 0.0461
13 478 93 0.0670 0.0543 0.8104 0.0494 0.0401
14 653 134 0.0554 0.0464 0.8375 0.0409 0.0342
15 888 187 0.0460 0.0398 0.8652 0.0339 0.0294
16 1211 254 0.0393 0.0344 0.8753 0.0290 0.0254
17 1660 347 0.0327 0.0293 0.8960 0.0241 0.0216
18 2265 488 0.0277 0.0250 0.9025 0.0204 0.0184
19 3068 674 0.0234 0.0215 0.9188 0.0173 0.0159
20 4178 927 0.0199 0.0184 0.9246 0.0147 0.0136
21 5667 1275 0.0168 0.0158 0.9405 0.0124 0.0117
22 7617 1708 0.0143 0.0136 0.9510 0.0106 0.0100
23 10,258 2351 0.0121 0.0117 0.9669 0.0089 0.0086

This is a widely used test problem on a nonconvex domain for which the exact solution does not have full elliptic
regularity and hence adaptive mesh refinements are needed to resolve the corner singularity. To calibrate the adaptive
discontinuous finite volume method developed in this paper, we compute errors and relative errors as follows

Error = |||u − uh|||, RelErr =
|||u − uh|||

‖∇u‖
, (5.1)

where u, uh are respectively the exact and numerical solutions. The error indicator η = ηh defined in (3.2) will be computed
for all meshes. For convenience, we also compute a relative error indicator

ηr
=

η

‖∇u‖
.

More importantly the effectiveness index is calculated as

EffIndex: =
η

|||u − uh|||
. (5.2)

A stopping criterion RelErr ≤ tol based on the relative error is adopted.
Tabulated in Table 5.1 are our numerical results. We choose tol = 0.01, that is, 1% as a threshold for the relative error.

We start from a regular triangular mesh that has only 12 elements. Shown in Fig. 5.1 is the adaptively refined mesh at level
19. With about 3000 triangular elements, the relative error is smaller than 2%. After 22 adaptive mesh refinements, we end
up with 10,258 triangular elements and a relative error 0.89%. Error reductions in Columns 4 & 5 can be clearly observed.
As meshes are refined, the effectiveness index (Column 6) clearly approaches 1. Our adaptive discontinuous finite volume
method is well validated.

Shown in Fig. 5.1 is the adaptively refined mesh at Level 19. Presented in Fig. 5.2 is a log–log plot of the error of the
adaptive numerical solution versus the number of nodes. The slope −

1
2 indicates that the adaptive discontinuous finite

volumemethod exhibits asymptotical optimality in nonlinear approximation [15,16,8,3], that is, the error is proportional to
N−1/d
dof , d = 2, where Ndof is the degree of freedom.

6. Concluding remarks

In this paper, we have developed and analyzed an adaptive discontinuous finite volume method for solving second
order elliptic boundary value problems. A previously established a posteriori error estimator [6] has been used for adaptive
mesh refinements. The efficiency of the error indicator has been verified by numerical results on a widely tested problem.
Error reduction has been clearly demonstrated by numerical results. The adaptive discontinuous finite volume method is
asymptotically optimal.

A residual type a posteriori error estimator has been used to establish an adaptive procedure for the discontinuous finite
volumemethod. It should be interesting to explore combination of the adjoint-based a posteriori error estimation in [7] and
the discontinuous finite volume method in this paper.
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Fig. 5.1. The adaptively refined mesh at Level 19.
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Fig. 5.2. Convergence of the error of the adaptive solution.

It should also be noticed that the discontinuous finite volume method we have analyzed in this paper is nonsymmetric,
i.e., nonsymmetric interior penalty Galerkin (NIPG), and hence stable for any penalty factorα > 0. It iswell known that there
are other formulations such as symmetric interior penalty Galerkin (SIPG) and incomplete interior penalty Galerkin (IIPG).
Along this line, another interesting formulation is to drop both terms for the averages/jumps of trial and test functions,
but to apply weak penalization in the penalty term. This approach has been investigated for finite elements [17,18]. A
weakly over-penalized discontinuous finite volume method for elliptic problems has been developed in [19]. It is shown
that the weakly over-penalized discontinuous finite volume method offers even easier implementations, especially in the
construction of preconditioners. Establishing a posterior error estimators and adaptive procedures for the weakly over-
penalized finite volume method is currently under our investigation and will be reported in our future work.
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