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Abstract

We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories 
in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum 
tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and 
simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric 
energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling 
to a gravitational field is also discussed.
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1. Introduction

The role and impact of symmetries in modern physics can hardly be overstated. As H. Weyl [1]
put it: “As far as I see, all a priori statements in physics have their origin in symmetry”. Some 
salient features are the following ones [2]:

• The laws of nature are possible realizations of the symmetries of nature.
• The basic quantities or building blocks of physical theories are often defined and classified 

by virtue of symmetry considerations, e.g. elementary particles and relativistic fields.
• The general structure of physical theories is largely determined by the underlying invari-

ances. In particular, the form of interactions is strongly restricted by geometric symmetries 
(relativistic covariance) and the gauge symmetries essentially fix all fundamental interactions 
(electro-weak, strong and gravitational forces).

A pillar of classical mechanics and field theory is given by the two theorems that E. Noether es-
tablished in 1918 [3]. They describe in quite general terms the consequences of the invariance of 
an action functional under a Lie group of global or local symmetry transformations, respectively, 
extending and generalizing some special cases which had previously been investigated, in partic-
ular by F. Klein in relationship with general relativity, e.g. see [4–7] and references therein. These 
two theorems can be applied to systems with a finite number of degrees of freedom (mechanics) 
as well as to systems with an infinite number of degrees of freedom (field theory), both in their 
relativistic or non-relativistic versions, e.g. see reference [8] for numerous examples. They can 
also be generalized to superspace [9,10] or to non-commutative space (see [11] and references 
therein).

Plan of the paper In the present note we focus, for classical YM (Yang–Mills) theories in 
n-dimensional Minkowski space, on the EMT (energy–momentum tensor, also referred to as 
stress–energy tensor or stress tensor for short): the components T μν of the EMT can be inter-
preted as follows, e.g. see reference [12]. T 00 represents the energy density, T 0i the i-momentum 
density (or energy flux density) and T ij the i-momentum flux density in the j -direction. Regard-
ing the field theoretical system as a collection of particles, we can also interpret T ii ≡ p as the 
pressure and (T ij ) with i �= j as the shear stress. In particular, we will study here the so-called 
canonical EMT whose components T μν

can represent the conserved current densities which are as-
sociated (by virtue of Noether’s first theorem) to the invariance of the action under space–time 
translations. The corresponding conserved charges P ν ≡ ∫

Rn−1 dn−1x T 0ν
can define the total energy 

and momentum of the physical system.
As is well known (for instance for Maxwell’s theory), the tensor T μν

can is neither symmetric 
nor gauge invariant in general and thereby needs to be “improved”. This is traditionally real-
ized by the “symmetrization procedure of Belinfante” [13,14] which relies on the spin angular 
momentum density, but this method does not work straightforwardly in the case where matter 
fields are minimally coupled to a gauge field [15]. After a short introduction to the subject and 
problematics in subsection 2.1, we will show in subsection 2.2 that the improvement can be re-
alized in a simple manner for pure gauge fields or for interacting gauge and matter fields by 
taking into account the local gauge invariance.1 A conceptually quite different approach consists 

1 In the older literature (e.g. see reference [16]), the local, i.e. space–time dependent, gauge transformations are of-
ten referred to as gauge transformations of the second kind as opposed to gauge transformations of the first kind, i.e. 
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of coupling the gauge and matter fields to gravity and deducing the so-called Einstein–Hilbert 
EMT in Minkowski space from the metric EMT on curved space. This approach is outlined for 
YM theories in section 3 and it is readily shown that the different results in Minkowski space 
coincide with each other. Concerning the latter point we should mention that more general and 
abstract approaches have been considered in the literature (we refer in particular to the system-
atic study [17] based on the earlier work [18]), but we hope that the elementary discussion of the 
different aspects presented here is useful both as a short introduction to, and as an overview of, 
the subject. While our paper is devoted to the classical theory, we conclude with some remarks 
on how symmetries impact the quantum theory, i.e. on Ward identities, and more generally on 
the related subjects to which R. Stora made substantial contributions.

General framework of classical Lagrangian field theory in Minkowski space Our conventions 
and general assumptions are as follows. We choose natural units so that c ≡ 1 ≡ h̄. The points 
of n-dimensional Minkowski space are labeled by x ≡ (xμ)μ=0,1,...,n−1 ≡ (t, �x ) ∈ Rn and the 
signature of the Minkowski metric (ημν) is chosen to be (+, −, . . . , −). We will deal only with 
YM theories, i.e. multiplets of complex scalar or Dirac fields which are minimally coupled to 
the YM field Aμ(x) ≡ A

μ
a (x)Ta (see Appendix A for the notation and for a summary of gauge 

theories). Thus, generically we have a collection ϕ ≡ (ϕr)r=1,...,N of classical relativistic fields 
in Minkowski space which are assumed to vanish (together with their derivatives) sufficiently 
fast at spatial infinity. The dynamics of fields is specified by a local, Poincaré invariant action 
functional S[ϕ] ≡ ∫

dnxL(ϕ, ∂μϕ) which involves a Lagrangian density L having the follow-
ing properties. We consider closed systems which means [19] that the Lagrangian L does not 
explicitly depend on the space–time coordinates, i.e. the x-dependence of L is only due to the 
x-dependence of ϕ and ∂μϕ. Moreover, we assume that L depends at most on first-order deriva-
tives: the associated equations of motion

0 = δS

δϕ
= ∂L

∂ϕ
− ∂μ

(
∂L

∂(∂μϕ)

)
, (1.1)

are then at most of second order. We concentrate on the Lagrangian formulation of field theory 
and refer to the work [20,21] for a discussion of the EMT of gauge theories within the Hamil-
tonian framework. Moreover in section 3, we discuss the generalization to curved space–time 
manifolds.

2. EMT’s for gauge theories in Minkowski space

After recalling the definition of the canonical EMT [15,19,22], we consider the example of 
pure YM theories (while referring whenever necessary to the summary of non-Abelian gauge 
theories given in Appendix A). Thereafter, we discuss the general properties of the EMT (local 
conservation law, symmetry, gauge invariance, tracelessness) as well as the addition of superpo-
tential terms to the canonical EMT: The aim of these additions is to “improve” the characteristics 
of the canonical EMT, so that it becomes symmetric and gauge invariant (and traceless for scale 
invariant Lagrangians) if it does not have these properties.

global gauge transformations (labeled by constant parameters). To avoid a topological connotation, some authors also 
use the terminology flexible versus rigid symmetry transformations for transformations involving x-dependent symmetry 
parameters versus constant ones. By gauge invariance we shall always mean local gauge invariance.



D.N. Blaschke et al. / Nuclear Physics B 912 (2016) 192–223 195
2.1. Canonical EMT and its properties

2.1.1. The canonical EMT and the associated conserved charges
Noether’s first theorem By virtue of Noether’s first theorem, the invariance of the action S[ϕ]
under translations xν → x′ν = xν +aν implies the existence of current densities (jμ

can)
ν satisfying 

the conservation law ∂μ(j
μ
can)

ν = 0 for ν ∈ {0, 1, . . . , n − 1}. The conserved second-rank tensor 
T

μν
can ≡ (j

μ
can)

ν is referred to as the canonical EMT field and with the notation δxμ = aμ, δϕ =
−aμ∂μϕ (where |aμ| 	 1) we have

0 = δS

δϕ
δϕ + ∂μjμ with jμ ≡ −T μν

can aν T μν
can ≡ ∂L

∂(∂μϕ)
∂νϕ − ημνL .

(2.1)

In this expression for the tensor field T μν
can and in similar expressions, the sum over all fields is 

implicitly understood (e.g. the sum over φ and φ∗ in the case of a complex scalar field φ). The 
local conservation law ∂μT

μν
can = 0 holds by virtue of the equations of motion of ϕ and its explicit 

verification amounts to a one-line derivation of T μν
can [19]:

∂μ(ημνL) = ∂νL = ∂L
∂ϕ︸︷︷︸

= ∂μ
( ∂L
∂(∂μϕ)

)
∂νϕ + ∂L

∂(∂μϕ)
∂ν(∂μϕ)︸ ︷︷ ︸
= ∂μ(∂νϕ)

= ∂μ

( ∂L
∂(∂μϕ)

∂νϕ
)

.

If we assume as usual that the fields vanish sufficiently fast at spatial infinity, then the bound-
ary term 

∫
dn−1x ∂iT

iν
can vanishes and we have conserved “charges”

P ν ≡
∫

Rn−1

dn−1x T 0ν
can (2.2)

associated with the conserved densities (2.1). The vector (P ν) represents the total energy–
momentum of the fields and generates space–time translations of the fields ϕ in classical and 
in quantum theory. (Some subtleties appear for gauge theories due to the presence of so-
called constraint equations following from the gauge invariance of the Lagrangian, see refer-
ences [20,21].) In particular P 0 coincides with the canonical Hamiltonian function H since 
T 00

can = ∂L
∂ϕ̇

ϕ̇ −L = H. The fact that 
∫
V

dn−1x T 0ν
can represents the components of a Lorentz vec-

tor for any space region V ⊂ Rn−1 (a result which is also known as von Laue’s theorem [23]) 
is not quite obvious, but can be verified [24] by using the assumptions that ∂μT

μν
can = 0 and that 

the functions T μν
can vanish sufficiently fast at the boundary of V . We note that the integral (2.2) is 

performed over a hypersurface of Rn given by x0 constant which can be replaced by a generic 
(n − 1)-dimensional space-like hypersurface � with fields vanishing on its boundary ∂�.

Other derivations We note that the canonical Noether currents associated to geometric symme-
tries can also be obtained [25] by considering local symmetry transformations without coupling 
the fields to a gravitational field (and similarly for internal symmetries without a coupling of mat-
ter fields to a gauge field). This approach may be referred to as Gell-Mann–Lévy procedure [26]
since it goes back to the classic work of Gell-Mann and Lévy on the σ -model [27].
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2.1.2. Superpotential terms
Apart from an overall numerical factor, there are other ambiguities in the definition of a canon-

ical current. In fact, for the canonical EMT we can always add a so-called superpotential term,
i.e. the divergence of an antisymmetric tensor, so as to pass over to a so-called improved EMT
T

μν
imp defined by2

T
μν
imp ≡ T μν

can + ∂ρχμρν , with χμρν = −χρμν . (2.3)

The antisymmetry of χμρν in its first two indices ensures that ∂ρχμρν is identically conserved, 
hence T μν

imp is conserved as well. The derivative in the superpotential term entails that one has the 

same conserved charge as for T
μν
can provided χ0iν decreases for r ≡ |�x | → ∞ faster than 1/rn−2

in n space–time dimensions. The freedom (2.3) may be used to give a different form (eventu-
ally with a greater physical significance) to the EMT, various examples for this “improvement 
procedure” (i.e. judicious choices of superpotentials) being given below.

2.1.3. The canonical EMT for pure YM theory and its general properties
Canonical expression By way of example, for pure YM theory in n dimensions, the translation 
invariance of the YM action (A.9), i.e. Lg(F ) ≡ − 1

4c2
Tr (FμνFμν), yields

T μν
can = 1

c2
Tr (−Fμρ ∂νAρ + 1

4
ημνFρσ Fρσ ) . (2.4)

According to Noether’s first theorem, this EMT is locally conserved, i.e. ∂μT
μν

can = 0, by virtue of 
the field equation 0 = DνF

νμ ≡ ∂νF
νμ + iq

[
Aν,F

νμ
]

where q denotes the non-Abelian charge 
(cf. Appendix A). As for any EMT some other properties are also of interest: one may wonder 
whether it is gauge invariant (since we are dealing with gauge theories), whether it is symmetric
in its indices, whether it is traceless and whether it gives rise to a positive energy density. As a 
matter of fact, the EMT (2.4) enjoys none of these properties. The physical and mathematical 
ideas behind these four properties are the following ones, ignoring for the moment the coupling 
to gravity which we address in the next subsection.

On the gauge invariance of the EMT The lack of gauge invariance of the components of the 
classical EMT is unacceptable since these physical quantities are measurable; and so is the 
energy–momentum 

∫
V

dn−1x T 0ν
can (contained in a domain V ⊂ Rn−1 of finite volume) which 

is not on-shell gauge invariant (i.e. not gauge invariant for fields ϕ satisfying the classical equa-
tions of motion).

On the symmetry of the EMT If the EMT T μν
can is not symmetric on-shell, then the canonical 

angular momentum tensor Mμνρ
can and the EMT T μν

can are not related in the same way as angular 
momentum and momentum are related in classical mechanics, i.e. by a relation of the form “the 
components of M are the moments of T ”,

Mμρσ = xρT μσ − xσ T μρ . (2.5)

Indeed for a tensor Mμρσ of this form, the conservation law ∂μMμρσ = 0 only holds if the tensor 
T μν is symmetric on-shell:

2 One may regret that some monographs (e.g. [16]) refer to (2.3) as “the canonical EMT” since χμρν and thereby T μν
imp

are neither unique nor naturally given.
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0 = ∂μMμρσ = ∂μ(xρT μσ − xσ T μρ) = T ρσ − T σρ , (2.6)

where we used the fact that ∂μT μν = 0 holds for solutions of the equations of motion. Thus, if 
the canonical EMT is not symmetric, then the canonical angular momentum tensor does not have 
the ‘mechanical’ form (2.5), rather we have an extra spin angular momentum term sμρσ ,

Mμρσ
can = xρT μσ

can − xσ T μρ
can + sμρσ , with sμρσ ≡ ∂L

∂(∂μϕ)
(
1

2
�ρσ )ϕ = −sμσρ . (2.7)

Here, i
2 �ρσ ≡ d(Mρσ ) is a N -dimensional representation d of a basis (Mρσ ) of the Lie algebra 

associated to the Lorentz group, e.g. d(Mρσ ) = 0 for a scalar field, d(Mρσ ) ≡ Mρσ for a vector 
field (Aμ) and d(Mρσ ) ≡ 1

8 [γρ, γσ ] for a Dirac field (γ0, . . . , γd−1 denoting matrices satisfying 
the Clifford algebra relation {γρ, γσ } = 2ηρσ 1).

On the tracelessness of the EMT Consider a field theoretic model which is invariant under 
rescalings x � x ′ = eρx (where ρ is a constant real parameter), e.g. pure YM theory in four 
dimensions or the theory of a real massless scalar field φ. For such a model, one expects that the 
canonical EMT can be improved so as to obtain a “new improved” EMT T μν

conf which is conserved, 
symmetric and traceless [28,29]: the dilatation current (jμ) associated to scale invariance is then 
given by the moments of the EMT and its local conservation law (reflecting the scale invariance) 
is tantamount to the tracelessness of the EMT:

jμ = xνT
μν
conf , hence ∂μjμ = T

μ
conf μ = 0 . (2.8)

This tracelessness of the EMT plays an important role in conformal field theories [30]. Here, we 
only note that for a single, real, massless scalar field φ in n-dimensional Minkowski space, the 
new improved or Callan–Coleman–Jackiw EMT [28] reads

T
μν

conf ≡ T μν
can − ξ(n) (∂μ∂ν − ημν�)φ2 with � ≡ ∂μ∂μ and ξ(n) ≡ 1

4

n − 2

n − 1
. (2.9)

On the positivity of the energy density An interesting question is whether or not the total energy 
P 0 is positive or, more importantly (the energy being only determined up to an additive constant 
in the absence of gravity), whether the total energy is bounded from below. In fact, if this is 
not the case, then one can extract an infinite amount of energy from the physical system. If the 
energy density T 00 satisfies the positivity condition T 00 ≥ 0 in all inertial frames, then the energy 
P 0 is positive in all inertial frames if | �P | ≤ P 0, i.e. equivalently if the vector P ≡ (P 0, �P )

is time-like and future-directed3 [31]. The latter condition is satisfied if the EMT satisfies the 
so-called dominant energy condition [32] stipulating that the energy current Eμ ≡ T μ

νu
ν is 

time-like and future-directed for every observer with velocity (uμ) (e.g. consider (uμ) = (1, �0 )). 
The energy conditions reflect the principles of relativity and play an important role in general 
relativity where relations of this type are an essential ingredient for establishing general results 
like the no hair theorem, the laws of black hole thermodynamics or the singularity theorems of 
Penrose and Hawking which predict the occurrence of singularities in the universe [33–36].

3 Under a Lorentz boost with velocity �v, the component P 0 goes over to P ′0 = γ (P 0 − �P · �v ) with γ ≡ (1 − �v 2)−1/2, 
hence P 0 ≥ 0 does not imply P ′0 ≥ 0 without the given assumption.
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2.1.4. Improvements of the canonical EMT and definition of the physical EMT
Improvements of the canonical EMT In view of the unpleasant and problematic properties 
(lack of symmetry and of gauge invariance) of the canonical EMT some improvements of the 
canonical expression (2.1) have been looked for. The first one is due to Belinfante [13] and rep-
resents an astute procedure for constructing a symmetric EMT out of the canonical expression — 
see section 2.2.1. In section 2.2.2 we will show that, for non-Abelian gauge theories, the same 
results can be obtained by taking into account the gauge invariance of the Lagrangian. (Equiv-
alently, one can already exploit this gauge invariance in establishing Noether’s first theorem for 
the translational invariance so as to obtain right away a gauge invariant (and symmetric) EMT, 
see references [37–39] as well as [40]; we also note that a symmetric EMT can be obtained in 
establishing Noether’s theorem if one considers both translations and Lorentz transformations 
in an appropriate way [41].) We mentioned already that for scale invariant theories a further im-
provement, which is due to Callan, Coleman and Jackiw [28], consists of constructing a traceless
EMT out of Belinfante’s symmetric tensor.

Definition of the physical EMT The canonical EMT and its improvements represent different 
localizations for the energy and momentum, and one may wonder whether there is a preferred or 
a correct localization. An answer to this question can be provided by coupling the matter fields 
(including gauge fields) to the gravitational field. In fact, in general relativity the EMT represents 
the local source for the gravitational field in Einstein’s field equations very much like the elec-
tric current density represents the source for the electromagnetic field in Maxwell’s equations. 
Thus, in curved space–time, one defines the so-called metric EMT for the gauge or matter field 
as the functional derivative of the gauge/matter field action S[ϕ, gμν] with respect to the metric 
tensor field (gμν), see section 3 below. Accordingly, this curved space EMT is generally covari-
ant, covariantly conserved, symmetric and gauge invariant. The so-called Einstein–Hilbert EMT
T

μν
EH in Minkowski space which is obtained from the metric EMT by setting gμν = ημν is then 

conserved, symmetric and gauge invariant by construction.
As was pointed out by Rosenfeld [42] and Belinfante [14] (and as we will discuss in subsec-

tion 3.3), this conceptually quite different approach yields, in the flat space limit of the minimal 
coupling to gravity, Belinfante’s symmetric EMT whose construction does not make any refer-
ence to gravity. (In particular one recovers the canonical EMT if this one is already symmetric. 
We note that Belinfante’s symmetric EMT admits a natural geometric formulation if gravity is 
viewed as a gauge theory of the Poincaré group, see references [15,43].) One can also recover 
the traceless Callan–Coleman–Jackiw EMT in the flat space limit of a conformally invariant field 
theory on curved space.

Summary If one takes for granted that Einstein’s general relativity is the correct theory for the 
gravitational field, then the EMT of gauge and/or matter fields in Minkowski space should not 
only be conserved and gauge invariant, but it should also be symmetric and naturally general-
izable to a generally covariant tensor in curved space. Yet, we should note that within certain 
alternative theories of gravity like Einstein–Cartan theory [43–45], the canonical EMT appears 
naturally. In particular, non-symmetric EMT’s which do exist for certain classical spin fluids can 
consistently be coupled to gravity in this framework, see [46] and references therein. Concerning 
the validity of the different theories of gravity we note that Einstein–Cartan theory is considered 
to be a viable alternative to general relativity: both theories can only be distinguished at very high 
densities or at very small distances which are currently beyond experimental reach — see [46]
and references therein.
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The canonical and the improved (or Einstein–Hilbert-) EMT’s only differ by a total derivative 
so that they yield the same conserved charges P ν and it is the latter which play a fundamental 
role in classical and quantum field theories on flat space [20,21]: They appear for instance in the 
defining axioms of Wightman and of Haag and Kastler for quantum field theory [47,48].

2.2. Improvement of the canonical EMT’s in gauge theories

2.2.1. Belinfante’s procedure for constructing a symmetric EMT
General procedure The concern of Belinfante [13,14] was to construct an improved EMT 
which is symmetric in its indices for any relativistically invariant field theory. The resulting ten-
sor T μν

imp which is also referred to as the Belinfante(–Rosenfeld) tensor, is obtained by choosing 
the superpotential appearing in equation (2.3) to be given by

χμρν = −1

2
(sμρν − sνμρ + sρνμ) , (2.10)

where sμρν represents the spin density tensor of the fields which appears in the canonical angular 
momentum tensor (2.7). For a detailed presentation of this approach we refer to the literature, e.g. 
see reference [15]. Here we emphasize that this approach applies to any relativistically invariant 
field theory, but that, for gauge theories, the gauge invariance of the “symmetry improved” EMT 
of Belinfante is not a priori ensured. We will come back to this point in footnotes 4 and 5.

Pure gauge fields For the YM field, the described improvement procedure for the canonical 
EMT (2.4) yields χμρν = F

μρ
a Aν

a . Use of the equation of motion DρFμρ = 0 then leads to the 
tensor

T
μν
imp(F ) = 1

c2
Tr (FμρFρ

ν + 1

4
ημνFρσ Fρσ ) , (2.11)

which is not only conserved and symmetric, but also gauge invariant.4 In n = 4 dimensions it is 
traceless.

Let us briefly consider the particular case of Maxwell’s U(1) theory in four space–time dimen-
sions, for which the tensor (2.11) reduces to T μν

imp(F ) = FμρFρ
ν + 1

4 ημνFρσ Fρσ . This tensor 
encodes the familiar expressions [49] for the energy and momentum densities of the electromag-
netic field (i.e. T 00

imp = 1
2 ( �E 2 + �B 2) and T 0i

imp = ( �E × �B)xi ) as well as for Maxwell’s stress tensor 

density (given by the spatial components T ij

imp). The result for T μν
imp(F ) expresses in a remarkable 

manner the union of space and time, energy and momentum as well as electricity and magnetism
as achieved by the masters of electrodynamics and special relativity (Maxwell, Einstein, Lorentz, 
Poincaré and Minkowski). For ν = 0, the local conservation law ∂μT

μν
imp = 0 is simply Poynting’s 

theorem for the free electromagnetic field. Furthermore, we have T 00
imp(F ) ≥ 0 (and T 00

imp(F ) = 0

if and only if F = 0), as well as | �E × �B | ≤ 1
2 ( �E 2 + �B 2) = T 00

imp: from these relations it follows 

4 As a matter of fact, the canonical expression (2.4) can be rendered gauge invariant in a very direct way by guessing the 
superpotential term ∂ρ(F

μρ
a Aν

a) since this term reduces on-shell (i.e. by virtue of the equation of motion DρFμρ = 0) to 
F

μρ
a (∂ρAν + ig [Aρ, Aν ])a and therefore allows to “gauge covariantize” the factor ∂νAρ in T μν

can , thus ensuring gauge 
invariance of the EMT. This way of proceeding directly yields the result (2.11) without determining the spin density 
sμρν .
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that | �P | ≤ P 0 for the components P ν ≡ ∫
R3 d3x T 0ν

imp of the energy–momentum four-vector, i.e. 
the latter vector is time-like and future directed [31].

Matter fields interacting with a gauge field The improvement procedure of Belinfante is some-
what different and more subtle when matter fields (scalars or fermions) are coupled to a gauge 
field (e.g. see reference [15] for Abelian gauge theory). By way of illustration, let us consider 
a multiplet ψ ≡ [ψ1, . . . , ψN ]t of Dirac fields which is minimally coupled to the YM field, i.e. 

we have the Lagrangian density (A.11): LM(ψ, A) ≡ i ψ̄γ μ
↔
Dμψ − mψ̄ψ . Then, the canonical 

EMT reads

T μν
can(ψ,A) = i

2

[
ψ̄γ μDνψ − (Dνψ̄)γ μψ

]
− ημνLM + Aν

aj
μ
a [ψ,A] , (2.12)

where jμ
a [ψ, A] ≡ qψ̄γ μTaψ . In this case, the standard (“naive”) improvement procedure is not 

sufficient, rather an extra minimal coupling procedure has to be performed at the level of the 
EMT’s so as to discard the last term (i.e. the potential–current term) in expression (2.12). We 
will see in the next section that the improved EMT’s follow straightforwardly from the canonical 
EMT’s if we improve these tensors by taking into account local gauge invariance.

2.2.2. Improvement procedure for constructing a gauge invariant EMT
For pure gauge theories (Abelian or non-Abelian) the standard derivation of the EMT (which 

consists of determining the consequence of the invariance of the action functional under space–
time translations as outlined at the beginning of section 2.1) does not take into account the gauge 
invariance of the Lagrangian. Thus, the lack of gauge invariance of the canonical EMT does not 
come as a surprise. Gauge invariance of the EMT can either be achieved by exploiting this in-
variance of the Lagrangian in the course of the derivation of the EMT or by exploiting it upon 
improving the canonical EMT. The first approach is discussed in detail in reference [39] (see 
also [37,38,40,50]) and we will present here the second procedure which is inspired by the first 
one, but which has not been considered in the literature to the best of our knowledge. As we will 
see, the latter approach can also be used to determine in a neat and straightforward manner the 
improved EMT for massive Abelian vector fields, i.e. Proca theory (this result being inspired by 
the work [40,50]) despite the fact that the complete Lagrangian is not gauge invariant in this case. 
For all of these theories, the improved EMT obtained by exploiting gauge invariance (considering 
either of the two methods that we just outlined) coincides with the one obtained by Belinfante’s 
procedure whose goal is to construct a symmetric EMT out of the canonical one. More generally, 
we will show that our method of exploiting gauge invariance also generalizes to the case where 
matter fields (scalar or spinor fields) are coupled in a gauge invariant manner to gauge fields: 
in this context the improvement follows readily and there is no need to add by hand some extra 
term as it is the case for Belinfante’s procedure applied to this physical system. We will consider 
a general gauge theory, the case of an Abelian theory corresponding to the choice a = 1 for the 
internal symmetry indices and f abc = 0 for the structure constants.

Improvement for pure gauge theories The assumptions concerning the Lagrangian L are as 
follows. As before, we assume that L(x) ≡ L(Aν(x), ∂μAν(x)) is a scalar field depending on Aν

and its first-order derivatives, but not explicitly on x. Moreover, we suppose that L has the form

L ≡ Lg(F ) +Lm(A) , (2.13)

where Lm(A) only depends on Aν (and not on its derivatives) and where Lg is assumed to be 
gauge invariant. The latter assumption implies that Lg only depends on Aν and its derivatives 
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by virtue of the components Fμν of the field strength tensor, this tensor being given by expres-
sion (A.7), i.e. Fμν = ∂μAν − ∂νAμ + iq [Aμ, Aν]. (This result follows for instance explicitly by 
exploiting the so-called Klein–Noether identities [6] which have first been discussed by F. Klein 
for general relativity and which have been rediscovered by R. Utiyama [51] in the context of YM 
theories.) Henceforth we have

∂L
∂(∂μAa

ν)
= ∂F b

ρσ

∂(∂μAa
ν)

∂Lg

∂F b
ρσ

= 2
∂Lg

∂F a
μν

. (2.14)

By definition the canonical EMT (2.1) presently reads

T μν
can = ∂L

∂(∂μAa
ρ)

∂νAa
ρ − ημνL ,

and obviously fails to be gauge invariant (even for Lm = 0) due to the factor ∂νAa
ρ in its first 

term. To obtain a gauge invariant expression, we use relations (2.14) and (A.7):

T μν
can ≡ 2

∂Lg

∂F a
μρ

(
Fν

a ρ + ∂ρAν
a − iq [Aν,Aρ]a

) − ημνL . (2.15)

For the second term we now apply the Leibniz rule:

2
∂Lg

∂F a
μρ

∂ρAν
a = −∂ρχμρν − 2∂ρ

( ∂Lg

∂F a
μρ

)
Aν

a , with χμρν ≡ −2
∂Lg

∂F a
μρ

Aν
a = −χρμν .

(2.16)

Here, the contribution ∂ρχμρν is a superpotential term5 so that we have obtained an improved 
EMT T μν

imp of the form (2.3). The second term on the right hand side of the previous equation can 

be rewritten by using (2.14) and the equation of motion of the gauge field, ∂ρ( ∂L
∂(∂ρAa

μ)
) = ∂L

∂Aa
μ

:

−2∂ρ

( ∂Lg

∂F a
μρ

)
Aν

a = ∂ρ

( ∂L
∂(∂ρAa

μ)

)
Aν

a = ∂L
∂Aa

μ

Aν
a . (2.17)

For the Lagrangian (2.13) we have ∂L
∂Aa

μ
= ∂Lg(F )

∂Aa
μ

+ ∂Lm(A)
∂Aa

μ
with

∂Lg

∂Aa
μ

= ∂F b
ρσ

∂Aa
μ

∂Lg

∂F b
ρσ

= −2qf bcaAc
ρ

∂Lg

∂F b
ρμ

, (2.18)

and thereby (2.17) becomes

−2∂ρ

( ∂L
∂F a

μρ

)
Aν

a = 2iq [Aν,Aρ]a ∂Lg

F a
μρ

+ ∂Lm

∂Aa
μ

Aν
a . (2.19)

Since the first term in this expression compensates the third term in expression (2.15), we are led 
to the final result T μν

imp = T
μν
can + ∂ρχμρν with

T
μν
imp = T

μν
imp(F ) + T

μν
imp(A) ≡

[
2

∂Lg

∂F a
μρ

F ν
a ρ − ημνLg

]
+

[∂Lm

∂Aa
μ

Aν
a − ημνLm

]
. (2.20)

5 We note that for Lg ≡ − 1
4 F

μν
a Fa

μν , we have χμρν = F
μρ
a Aν

a : This superpotential coincides with the one resulting 
from Belinfante’s improvement procedure applied to pure gauge theories.
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For the Lagrangian L ≡ Lg(F ), this EMT only depends on the gauge potential by means of the 
field strength, hence its gauge invariance is ensured by the invariance of Lg(F ).

As a first application we consider pure YM theory, i.e. L = Lg(F ) ≡ − 1
4c2

Tr (FμνFμν), 
thus we recover the result (2.11). By construction, this EMT is conserved and gauge invariant. 
It is also symmetric and it is traceless for n = 4; the result coincides with the one obtained by 
Belinfante’s procedure (see footnote 5) or from the Einstein–Hilbert EMT (section 3).

If we include a mass term for the vector field Aμ into the four dimensional Abelian theory by 
adding Lm(A) ≡ 1

2 m2AμAμ to Lg(F ), then (2.20) yields

T
μν
imp = T

μν
imp(F ) + m2(AμAν − 1

2
ημνAρAρ) . (2.21)

This is the improved EMT for the Proca theory [50] where the mass term is also symmetric, but 
neither gauge nor scale invariant.

Improvement for matter fields interacting with gauge fields Consider charged matter fields ϕ
(complex scalars φ or Dirac spinors ψ ) which are minimally coupled to gauge fields. For nota-
tional clarity, we first discuss the case of a multiplet of complex scalar fields, i.e. ϕ = (φ, φ†), 
for which we have specified the dynamics in equations (A.10)–(A.17). Quite generally, suppose 
that we have a gauge invariant Lagrangian of the form

L ≡ Lg(F ) +LM , with LM ≡ L0(Dμϕ) +L1(ϕ) ,

where L1(ϕ) only depends on the field ϕ and not on its derivatives. By virtue of gauge invariance, 
the kinetic terms for gauge and matter fields, i.e. Lg(F ) and L0(Dμϕ) can only depend on the 
field strength and covariant derivatives, respectively:

Fμν ≡ ∂μAν − ∂νAμ + iq [Aμ,Aν] , Dμφ ≡ ∂μφ + iqAμφ ,

Dμφ† ≡ ∂μφ† − iqφ†Aμ . (2.22)

Here, the generators Ta of the underlying Lie algebra are assumed to be in the adjoint represen-
tation for Fμν and in an N -dimensional representation for the multiplet of matter fields.

As noted in equation (A.14), the variation of the matter field action SM [ϕ, A] ≡ ∫
dnxLM

with respect to the gauge field yields the matter current:

jμ
a [ϕ,A] ≡ −δSM [ϕ,A]

δAa
μ

= −∂LM

∂Aa
μ

= iq
[
φ†Ta

∂L0

∂(Dμφ†)
− ∂L0

∂(Dμφ)
Taφ

]
. (2.23)

By its very definition (2.1), the canonical EMT of the physical system under consideration is 
given by

T μν
can = ∂L

∂(∂μAa
ρ)

∂νAa
ρ + ∂L

∂(∂μφ)
∂νφ + (∂νφ†)

∂L
∂(∂μφ†)

− ημνL . (2.24)

Let us now substitute relation (2.14) and ∂L
∂(∂μϕ)

= ∂L
∂(Dμϕ)

, and let us use (2.22) to express the 
ordinary derivatives ∂νAa

ρ and ∂νϕ appearing in (2.24) in terms of the field strength and the 
covariant derivatives, respectively. After grouping together the different contributions and sub-
stituting relation (2.23), we get the result

T μν
can = T

μν
int (F ) + T

μν
int (ϕ,A) + Aν

aj
μ
a [ϕ,A] + 2

∂Lg

∂F a
μρ

(
∂ρAν

a + iq [Aρ,Aν]a
)

, (2.25)

with
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T
μν
int (F ) ≡ 2

∂Lg

∂F a
μρ

F ν
a ρ − ημνLg = T

μν
imp(F ) (2.26)

and

T
μν
int (ϕ,A) ≡ ∂LM

∂(Dμφ)
Dνφ + (Dνφ†)

∂LM

∂(Dμφ†)
− ημνLM . (2.27)

To conclude, we rewrite the last term in (2.25) following the line of arguments (2.16)–(2.19):

2
∂Lg

∂F a
μρ

∂ρAν
a = −∂ρχμρν + ∂L

∂Aa
μ

Aν
a = −∂ρχμρν − 2iq

∂Lg

∂F a
μρ

[Aρ,Aν]a − Aν
aj

μ
a [ϕ,A] ,

where the last expression follows from ∂L
∂Aa

μ
= ∂Lg

∂Aa
μ

+ ∂LM

∂Aa
μ

and the definition (2.23).

In summary, with the definition

T
μν

int ≡ T μν
can + ∂ρχμρν , where χμρν ≡ −2

∂Lg

∂F a
μρ

Aν
a ,

we have a total EMT T μν
int for the interacting system of fields which is a sum of the improved 

EMT for the gauge field and the EMT of the matter fields interacting with the gauge field:

T
μν
int = T

μν
int (F ) + T

μν
int (ϕ,A) . (2.28)

Upon considering the Lagrangians (A.9), (A.10), i.e. Lg(F ) ≡ −1
4c2

Tr (FμνFμν) and LM(φ, A) ≡
(Dμφ†)(Dμφ) − m2φ†φ, we obtain the explicit expression (2.11) and

T
μν
int (φ,A) = (Dμφ†)(Dνφ) + (Dνφ†)(Dμφ) − ημνLM(φ,A) . (2.29)

Each of the tensors (2.11), (2.29) is gauge invariant (by construction) and symmetric in its in-
dices. The total EMT T μν

int is conserved (by construction), but the different contributions are not: 
their divergence can easily be evaluated by using the field equations (A.12) and (A.13) as well as 
the commutation relations [Dμ, Dν]φ = iqFμνφ and [Dμ, Dν]φ† = −iqφ†Fμν :

∂μT
μν
int (F ) = 1

c2
Tr (jμFμν) = −∂μT

μν
int (φ,A) , hence ∂μT

μν
int = 0 . (2.30)

Thus, we have the standard local conservation law for the total EMT tensor of the interacting sys-
tem. We note that the partial differential equation ∂μT

μν
int (φ, A) = − 1

c2
Tr (jμFμν) can be viewed 

as a continuum version of the Lorentz–Yang–Mills force law, i.e. Wong’s equation [52]. The re-
lation ∂μT

μν
int (F ) = 1

c2
Tr (jμFμν) may be regarded as the balance equation for the gauge field 

energy. Indeed (considering Maxwell’s U(1) theory), from (jμ) ≡ (ρ, �j ) we have the Lorentz 
force density (Fμνjν) = ( �j · �E, ρ �E + �j × �B ), hence we obtain, for ν = 0, the local balance 
equation

−∂tw = div �P + �j · �E ,

where w ≡ 1
2 ( �E 2 + �B 2 ) represents the electromagnetic energy density and �P ≡ �E × �B is the 

Poynting vector. The latter result is nothing else but Poynting’s theorem expressing that the elec-
tromagnetic fields not only radiate, but also do work on the electric charges (currents), thereby 
transforming electromagnetic energy into mechanical or thermal energy.
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The case of a Dirac field is tantamount to considering ϕ = (ψα, ψ̄α) in the previous deriva-
tion. The expression for T μν

int (F ) is unchanged and for T μν
int (ψ, A) one obtains the following 

explicit result from the Lagrangian LM(ψ) ≡ i ψ̄γ μ
↔
Dμψ − mψ̄ψ :

T
μν
int (ψ,A) = i

2

[
ψ̄γ μDνψ − (Dνψ̄)γ μψ

]
− ημνLM . (2.31)

By construction, this expression is gauge invariant, but it is not symmetric in its indices. The 
symmetry can be achieved by hand (T (μν)

int ≡ 1
2 [T μν

int + T
νμ

int ]) without destroying the other char-
acteristics of the tensor:

T
(μν)
int (ψ,A) = i

4

[
ψ̄γ μDνψ − (Dνψ̄)γ μψ + (μ ↔ ν)

]
− ημνLM . (2.32)

Summary We have recovered in a constructive manner the same results as for the modified Be-
linfante procedure. The present approach does not require a determination of the spin densities 
and of the associated superpotential terms, nor does it require to perform specific minimal cou-
plings for each of the tensors under consideration. The only shortcoming is that the symmetry 
of the “gauge improved” EMT is not automatically realized. In fact, the symmetrization of the 
gauge improved EMT for the Dirac field has to be achieved by hand, but this does not raise any 
problem and this feature is actually also encountered for the Einstein–Hilbert EMT of the Dirac 
field, see equation (3.23) below.

2.3. Assessment concerning the improvements

As we discussed in equations (2.5)–(2.7), the symmetry of the EMT in Minkowski space is 
convenient, but by no means mandatory. Moreover it does not become mandatory when matter or 
gauge fields are coupled to gravity if one takes into account the fact that the currently available 
experimental data do not allow us to discriminate between general relativity and alternative the-
ories of Einstein–Cartan-type which allow for torsion and for a non-symmetric EMT of matter 
or gauge fields.

If one considers gauge field theories in Minkowski space as we do in the present article, then 
the EMT necessarily has to be gauge invariant due to its physical interpretation. However, Belin-
fante’s improvement procedure does not yield a priori a gauge invariant EMT when applied to 
gauge theories, and in addition it does not work in the straightforward manner for the physically 
interesting case where matter fields are minimally coupled to a gauge field. The improvement 
procedure that we presented here is devised to obtain an EMT which satisfies the physically 
unavoidable condition of gauge invariance and it readily works for pure gauge theories as well 
as for matter fields interacting with gauge fields (and even for massive Abelian gauge fields). 
For pure gauge fields, the resulting expression for the “gauge-improved” EMT coincides with 
the EMT obtained by Belinfante’s “symmetrization procedure” since the involved superpotential 
terms coincide with each other.

3. Einstein–Hilbert EMT in Minkowski space

3.1. Motivation and procedure

The EMT (T μν) in Minkowski space represents a collection of conserved current densities 
which are associated to space–time translations, i.e. geometric transformations which act on both 
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space–time coordinates and on fields. These transformations being more complex than internal 
symmetries which only act in the space of fields, it is useful to look at the conserved current 
densities associated to internal symmetries so as to address the conceptual and technical issues 
in a simpler setting.

The Lagrangian LM(ϕ) ≡ LM(ϕ, A = 0) for free charged matter fields is invariant un-
der global (rigid) gauge transformations, i.e. at the infinitesimal level under transformations 
parametrized by real constants ωa with a ∈ {1, . . . , nG}. (More generally, one can consider a 
gauge invariant self-interaction of matter fields, e.g. include a self-interaction potential V (φ†φ)

for a multiplet of scalar fields (like the Higgs field) or an invariant Yukawa-type coupling be-
tween scalar and spinor fields. Since these interaction terms do not involve derivatives of fields, 
they lead to the same canonical currents (3.1).) According to Noether’s first theorem, the canon-
ical currents jμ

can,a[ϕ] associated to the global gauge invariance are given by ωaj
μ
can,a[ϕ] =

∂LM(ϕ)
∂(∂μϕ)

δϕ, where δϕ denotes an infinitesimal global gauge transformation. For multiplets of 
free complex scalars or Dirac spinors, one has the respective expressions

jμ
can,a[φ] = iq

[
φ†Ta∂

μφ − (∂μφ†)Taφ
]
, jμ

can,a[ψ] = q ψ̄γ μTaψ . (3.1)

Here, the coupling constant q represents the “non-Abelian” charge of fields which we have fac-
tored out from the parameters ωa so as to have the same overall numerical factor for the canonical 
Noether currents as for the currents resulting from a coupling to a gauge field, see next equation.

Equivalently, the expressions (3.1) can be viewed as the response of the physical system to a 
variation of the (external) gauge field, the latter field mediating the interaction between charge 
carrying matter fields (see equations (A.14), (A.15)):

jμ
can,a[ϕ] = − δS[ϕ;A]

δAa
μ

∣∣∣∣∣
A=0

(A = external gauge field) . (3.2)

The equivalence follows from the fact that for an external gauge field, the action S[ϕ; A] is in 
particular invariant under global gauge transformations and reduces to the free field action for 
A = 0.

In this section, we discuss the generalization of these ideas to geometric symmetries (the 
global differential geometric aspects having been elaborated in detail in reference [17]). More 
precisely, we apply the lines of reasoning described above for internal symmetries to the case of 
the currents T μν

can associated to the invariance of the relativistic field theory in Minkowski space 
under space–time translations, i.e. under the rigid geometric transformations x � x′(x) = x + a

with aμ constant. In this respect we first note that the associated conserved Noether charges 
P ν = ∫

dn−1x T 0ν
can represent the energy–momentum of the fields, these fields being matter fields 

(describing for instance electrons) or gauge fields (gauge bosons mediating the interaction). The 
exchange of energy and momentum is realized by gravity as described by a metric, i.e. a sym-
metric non-degenerate tensor field g(x) ≡ (

gμν(x)
)
. Both matter and gauge fields (or particles 

representing their field quanta) are subject to the gravitational interaction.
In section 3.2, we first consider the case of a dynamical gravitational field, the gravitational 

analogue of the YM equations DμFμν = jν for the gauge field being given by Einstein’s field 
equations Gμν = −κTμν for the gravitational field: instead of gauge transformations (i.e. lo-
cal internal transformations) we now consider diffeomorphisms xμ � x′ μ(x) � xμ + ξμ(x)

(i.e. general coordinate transformations or x-dependent translations). By definition, the EMT 
T μν[ϕ, g] in curved space then represents the response of the physical system to a variation of 
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the (external) gravitational field gμν , and its covariant conservation law in curved space holds 
by virtue of the reparametrization invariance of the action. Finally, in section 3.3 we consider 
the flat (Minkowski) space limit gμν = ημν (representing the analogue of A = 0 for the in-
ternal symmetries) and we argue that the resulting EMT T μν[ϕ, g = η] (to which we refer to 
as the Einstein–Hilbert EMT) coincides with the improved EMT T μν

imp[ϕ] associated to transla-
tional invariance in Minkowski space. For this identification an ambiguity appears since a given 
Minkowski space Lagrangian may represent the flat space limit of different non-equivalent La-
grangians in curved space (involving for instance a minimal or a non-minimal coupling of matter 
to gravity, both cases admitting different invariances): by considering both the diffeomorphism 
invariance and the absence or presence of local Weyl invariance in curved space, one can recover, 
in the flat space limit, the improved and the new improved EMT’s for a scalar field discussed be-
fore. Moreover, one can relate the corresponding symmetries in curved space and in flat space 
(local versus global scale invariance) [28,53].

Since the issues we just raised concern the relationship between results for field theories 
in Minkowski space–time (like (3.2)) and results in general relativity (field theories in curved 
space–time), we mention that general relativity may also be viewed as a solution to the problem 
of constructing a field theory for a massless spin 2 field (symmetric tensor field) interacting with 
matter in Minkowski space–time, i.e. a consistent special relativistic field theory for a massless 
spin 2 particle. More precisely, starting from the free field theory for such a field in Minkowski 
space–time as given by the Lagrangian of Pauli and Fierz (which amounts to a linearization 
of the pure gravitational field equations), one has a local gauge invariance (corresponding to a 
linearization of diffeomorphisms) and a consistent coupling to the EMT of matter then requires 
a back-reaction of the gravitational field on matter: this process, referred to as Noether method, 
has to be re-iterated in principle an infinite number of times. However, by the use of a classically 
equivalent first-order action functional determined by J. Schwinger, S. Deser could promote the 
free field theory to a consistent self-interacting theory in a few steps [54]. The initial flat space 
metric does not appear in the final theory which rather involves a symmetric tensor field (gμν)

representing the dynamics of the gravitational field. This non-geometrical approach to general 
relativity is described in detail in reference [55] (see also [56,57]) and also played a role for 
YM-theories since R. Feynman introduced the notion of ghost fields in this context before it 
has been considered by B. DeWitt and by L.D. Faddeev and V.N. Popov for the quantization of 
YM-theories [58].

3.2. Fields in curved space–time

3.2.1. General framework and dynamics
Curved space–time Let M be a n-dimensional space–time manifold endowed with a metric 
tensor field g ≡ (

gμν

)
of signature6 (+, −, . . . , −). We denote the covariant derivative of a 

tensor field with respect to the Levi-Civita-connection by ∇μ (e.g. ∇μV ρ = ∂μV ρ + �
ρ
μνV

ν

where the coefficients �ρ
μν ≡ 1

2 gρσ
(
∂μgνσ + ∂νgμσ − ∂σ gμν

)
are the Christoffel symbols) and 

6 This signature is common in field theory and is often used in general relativity too (e.g. in references [19,55,59]), 
though a large part of the literature on general relativity uses the opposite signature (−, +, . . . , +). Different conventions 
for the signature in combination with different sign conventions for the Riemann and Einstein tensors imply differences 
of signs in various mathematical expressions. In particular, we choose here the “(−, +, −)” convention for the curvature 
tensor according to the classification of Misner, Thorne and Wheeler [60].
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we write the gauge covariant derivative as before by Dμ, e.g. for a complex scalar field Dμφ ≡
∇μφ + iqAμφ = ∂μφ + iqAμφ.

The commutator of covariant derivatives defines the Riemann curvature tensor, i.e.

[∇μ,∇ν]V ρ = Rρ
σμνV

σ ,

and by a contraction of indices the latter gives rise to the Ricci tensor Rμν ≡ Rρ
μνρ , which yields 

the curvature scalar R ≡ Rμ
μ. The equations of motion for the gravitational field involve the 

Einstein tensor Gμν ≡ Rμν − 1
2 gμνR which is covariantly conserved ∇μGμν = 0 as a conse-

quence of its definition. (Here and in the following, we limit ourselves for simplicity to the case 
where the cosmological constant � vanishes, otherwise an extra �-dependent term appears in 
Gμν and in the action functional for the gravitational field.)

Matter/gauge fields The coupling of fermionic (spinorial) matter fields to gravity requires the 
consideration of vielbein fields and will be addressed in section 3.4. In the sequel we only con-
sider bosonic (tensor) fields, and more precisely scalar matter fields φ and/or gauge vector fields 
A ≡ (Aμ). The YM field strength tensor in curved space is defined by

Fμν ≡ ∇μAν − ∇νAμ + iq [Aμ,Aν] = ∂μAν − ∂νAμ + iq [Aμ,Aν] ,

where the last expression follows from the symmetry of the Christoffel symbols (�ρ
μν = �

ρ
νμ).

The scalar matter fields φ and/or the gauge field A will generically be denoted by ϕ. Their 
dynamics is assumed to be given by an action functional SM[ϕ, g] ≡ ∫

dnx
√|g|LM (involving 

g ≡ det g) which is invariant under diffeomorphisms, as well as under gauge transformations 
Aμ � A′

μ = Aμ + Dμω if a gauge field is present (see equation (A.6)). Thus, LM is a scalar 
density with respect to diffeomorphisms.

Dynamics of fields Following D. Hilbert, the dynamics and interaction of all fields is described 
by the total action

S[ϕ,g] ≡ Sgrav[g] + SM [ϕ,g] ≡
∫

dnx
√|g|Lgrav(R) +

∫
dnx

√|g|LM(ϕ,g) . (3.3)

Here, Lgrav(R) ≡ 1
2κ

R (with κ ≡ 8πG, where G is Newton’s constant), and for the gauge field 
A we have the Lagrangian density

LM(A,g) ≡ − 1

4c2
Tr (FμνFμν) = −1

4
gμρgνσ F a

ρσ F a
μν . (3.4)

For a multiplet φ of complex scalar fields interacting with the gauge field, the minimal coupling 
to gravity is described by the Lagrangian7

LM(φ,A,g) ≡ gμν(Dμφ†)(Dνφ) − m2 φ†φ , with Dμφ ≡ ∂μφ + iqAμφ . (3.5)

Instead of the minimal coupling of the scalar matter field to gravity one may consider

L̃M(φ,g) ≡ LM(φ,g) − 1

2
ξRφ†φ , (3.6)

7 More generally, we can include a gauge invariant self-interaction potential V (φ†φ): this will not change the 
form (3.12) of the resulting EMT.
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where ξ is a real parameter and where the second term represents a non-minimal coupling of the 
matter field φ to gravity: in fact this is the only possible local scalar coupling with the correct 
dimension [35,59].

The action (3.3), which defines the dynamics of fields in general relativity, is invariant under 
general coordinate transformations. The equations of motion for the interacting matter and gauge 
fields following from the functionals (3.3)–(3.5) read 0 = δS[ϕ, g]/δϕ = δSM [ϕ, g]/δϕ which 
yields

0 =DμFμν − jν (YM equation in curved space),

0 = (DμDμ + m2)φ = 0 (Coupled Klein–Gordon equation in curved space). (3.7)

Here, DμFμν = ∇μFμν + iq[Aμ, Fμν] where ∇μFμν = 1√|g| ∂μ

(√|g|Fμν
)

denotes the covari-

ant divergence of the antisymmetric tensor Fμν . The derivative DμDμφ involves the contribution 
�φ ≡ gμν∇μ∇νφ = 1√|g| ∂μ

(√|g|gμν∂νφ
)
, i.e. the Laplace–Beltrami operator acting on scalar 

fields. The equations of motion of the metric field components represent Einstein’s field equa-
tions:

0 = δS

δgμν
= δSgrav

δgμν
+ δSM

δgμν
=

√|g|
2κ

(
Gμν + κTμν

)
, i.e. Gμν = −κTμν (3.8)

with

T μν[ϕ,g] ≡ −2√|g|
δSM [ϕ,g]

δgμν

. (3.9)

For obvious reasons, we will refer to this tensor as the metric EMT (in curved space). By 
reference to its originators [61,62] it is also called the Einstein–Hilbert EMT in curved space.
Concerning the global sign in (3.9) we note that gμνgνλ = δ

μ
λ implies that Tμν = +2√|g|

δSM [ϕ,g]
δgμν .

3.2.2. EMT for matter/gauge fields coupled to a dynamical gravitational field
On the metric EMT From the equations of motion (3.8) one concludes that the local field 
T μν[ϕ, g] plays a fundamental role if matter or gauge fields are coupled to gravity while 
the formulation of field theory in flat space essentially relies on the conserved charges P ν ≡∫

dn−1x T 0ν
can. Since the metric tensor is symmetric in its indices, the metric EMT is identically 

symmetric by construction, i.e. we have a symmetric expression without using the equations of 
motion of ϕ. From ∇μGμν = 0 it follows that the EMT is covariantly conserved in curved space, 
i.e.

∇μT μν = 0 , (3.10)

if g satisfies Einstein’s field equations. Due to the presence of the covariant rather than the or-
dinary derivative in equation (3.10), this relation does not represent a local conservation law. 
This can be understood on physical grounds due to the fictitious forces which appear in arbitrary 
(accelerated) frames [31,62]. However, relation (3.10) can be related to a local conservation law 
and, in certain instances, integral conservation laws for energy and momentum can be derived, 
e.g. see references [19,31,55,63–66].

Explicit expressions From SM [ϕ, g] ≡ ∫
dnx

√|g| LM(ϕ, ∂μϕ; g) and the definition (3.9) we 
can obtain an explicit expression of T μν in terms of the Lagrangian density LM (the latter de-
pending on the first order derivatives ∂μϕ):
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T μν = −2
∂LM

∂gμν

− gμνLM . (3.11)

For our prototype Lagrangians (3.4) and (3.5) we get the results

T μν[A,g] = 1

c2
Tr

(
FμρFρ

ν + 1

4
gμνFρσ Fρσ

)
, (3.12)

T μν[φ,A,g] = (Dμφ†)(Dνφ) + (Dνφ†)(Dμφ) − gμνLM(φ,A,g) .

For the Lagrangian (3.6) the tensor T μν[φ, g] involves additional contributions, see refer-
ences [35,59]. The conservation law ∇μT μν = 0 can be explicitly checked for expressions (3.12)
by using the equations of motion of A and φ as well as the Bianchi identity 0 = DρFμν+ cyclic 
permutations of the indices ρ, μ, ν. The metric EMT T μν[A, g] is gauge invariant as a conse-
quence of the gauge invariance of the Lagrangian density LM(A, g) and of definition (3.11). The 
results concerning the tracelessness of the EMT’s (3.12) are the same as the ones obtained for 
the improved EMT’s in Minkowski space.

Invariance under diffeomorphisms and the metric EMT Let us verify that the covariant con-
servation law ∇μT μν = 0 follows from the diffeomorphism invariance of the total action (3.3). 
To do so, we note that a diffeomorphism xμ � x′ μ(x) � xμ − ξμ(x) is generated by a smooth 
vector field ξ ≡ ξμ∂μ and acts on the metric tensor field as δξgμν = ∇μξν + ∇νξμ. From the in-
variance of the action under infinitesimal diffeomorphisms and the use of the equations of motion 
of matter and gauge fields it follows that

0 = δξS =
∫

dnx

(
δS

δϕ
δξϕ + δS

δgμν

δξ gμν

)
=

∫
dnx

δS

δgμν

2∇μξν , (3.13)

where we took into account the symmetry of gμν for passing to the last expression. By substitut-
ing the explicit form of the functional derivative δS

δgμν
as given in equation (3.8) and performing 

an integration by parts, we obtain

0 = δξS = − 1

κ

∫
dnx

√|g| (Gμν + κT μν)∇μξν = 1

κ

∫
dnx

√|g| ξν(∇μGμν + κ∇μT μν) .

(3.14)

First, we consider the particular case where we have pure gravity, i.e. no matter fields, hence 
T μν = 0. From the arbitrariness of ξν one then concludes that ∇μGμν = 0. In fact [57], this line 
of arguments may be viewed as indirect proof of the relation ∇μGμν = 0 which holds by virtue 
of the definition of Gμν in terms of the metric. The latter relation is referred to as generalized 
Bianchi identity or as Noether identity since it follows from the invariance of the action func-
tional under a group of local symmetry transformations, i.e. an illustration of Noether’s second 
theorem [3].

Next we consider the total action: by using the identity ∇μGμν = 0 and the arbitrariness of ξν , 
it then follows that the relation ∇μT μν = 0 holds for the solutions of the matter field equations.

3.2.3. EMT for matter/gauge fields coupled to an external gravitational field
Generalities If we consider matter and gauge fields coupled to an external (background) metric, 
then we do not have a dynamical term for gravity in the action, i.e. S = SM [ϕ; g]. The EMT now 
represents the variation of the total action with respect to the external gravitational field:
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T μν[ϕ;g] ≡ −2√|g|
δS[ϕ;g]

δgμν

(g= external gravitational field) . (3.15)

The covariant conservation law ∇μT μν = 0 for the solutions of the matter field equations again 
follows from the calculation (3.13), (3.14) in which we now drop the contribution Sgrav[g] to the 
action, which implies that Gμν does not appear in the integral (3.14).

Case of an external gauge field Let us also consider the case where both the metric field g and 
the gauge potential (Aμ) represent external fields. We suppose that the complex scalar field φ
is coupled to the background gauge field A, i.e. we have the gauge invariant total action S ≡
SM [φ; A, g] ≡ ∫

dnx
√|g|LM with LM given by expression (3.5). Then the gauge invariance of 

the total action S and the use of the scalar matter field equations of motion δS/δφ = 0 imply the 
covariant conservation law Dμjμ = 0 for the current density vector (jμ

a ) associated to the scalar 
field; indeed, for an infinitesimal gauge variation (δgAμ = Dμω) we have

0 = δgS =
∫

dnx

(
δS

δφ
δgφ + δS

δAμ

δgAμ

)
=

∫
dnx

δS

δAμ

Dμω

=
∫

dnx
√|g|ωa(Dμjμ)a ,

where

jμ
a ≡ −1√|g|

δS

δAa
μ

(A,g= external fields) .

For the matter field Lagrangian (3.5) we obtain the explicit expression

jμ
a [φ;A,g] = iq

[
φ†TaD

μφ − (Dμφ†)Taφ
]
. (3.16)

The invariance of the total action S under diffeomorphisms then leads to the continuum ver-
sion of the Lorentz–Yang–Mills force law in curved space–time [52],

∇μT μν[φ;A,g] = 1

c2
Tr (F νμjμ) (3.17)

by virtue of

0 = δξS =
∫

dnx

(
δS

δφ
δξφ + δS

δAμ

δξAμ + δS

δgμν

δξgμν

)
,

and δS/δφ = 0, δξgμν = ∇μξν + ∇νξμ as well as

δξAμ = ξν∂νAμ + (∂μξν)Aν = ξνFνμ + Dμ(ξνAν) .

For instance, for the matter field Lagrangian (3.5), we obtain the explicit expression (3.12) for 
T μν[φ; A, g] and (3.16) for jμ[φ; A, g]. Once the external gauge field is promoted to a dy-
namical gauge field by adding the gauge field Lagrangian LM(A; g) of equation (3.4) to the 
interacting matter field Lagrangian (3.5), the total EMT of both matter and gauge fields is covari-
antly conserved as we noted already after equation (3.15). In the flat space limit, expression (3.12)
for T μν[φ; A, g] reduces to expression (2.29) for the EMT T μν

int [φ, A] and equation (3.17) re-
duces to the balance equation (2.30) for the latter EMT.
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3.3. Einstein–Hilbert’s EMT for matter/gauge fields in Minkowski space

Definition The result (3.15) serves as a motivation for defining the Einstein–Hilbert or metric 
EMT for bosonic matter fields ϕ in flat space by the relation

T
μν
EH [ϕ] ≡

( −2√|g|
δS[ϕ;g]

δgμν

)∣∣∣∣
g=η

, where

{
g= external gravitational field
η ≡ (ημν) ≡ diag (1,−1, . . . ,−1) .

(3.18)

By construction, the so-defined EMT is identically symmetric and it admits a natural generaliza-
tion to curved space by its very definition. The flat space conservation law ∂μT

μν
EH = 0 for T μν

EH
follows directly from the covariant conservation law ∇μT μν = 0 in curved space.

The definition (3.18) for the EMT of a physical system in Minkowski space amounts to cou-
pling this system to a gravitational field: then T μν

EH [ϕ] represents the response of the system to 
a variation of the (external) metric to which all (energy and momentum carrying) fields couple 
and which mediates the gravitational interaction of these fields. This definition of the EMT in 
Minkowski space is conceptually and mathematically quite different from the one of T μν

imp[ϕ]
which we presented in section 2 and which follows from Noether’s theorem (eventually supple-
mented by an improvement procedure to render the canonical expression of the EMT symmetric 
in its indices or gauge invariant, or both symmetric and traceless). Before trying to relate the 
different expressions for the EMT’s, we have a look at the explicit expressions for the Einstein–
Hilbert EMT.

Explicit expressions The YM Lagrangian LM(A, g) in curved space, as given by (3.4), reduces 
in the flat space limit to the YM Lagrangian (A.9) in Minkowski space; similarly both of the 
scalar field Lagrangians LM(φ, g) and L̃M(φ, g) given in equations (3.5) and (3.6) reduce in 
the flat space limit to one and the same Minkowski space Lagrangian L(φ). Furthermore, the 
metric EMT’s (3.12) for the YM field and for the scalar field coupled to the former field reduce 
in the flat space limit to the improved EMT’s (2.11) and (2.29). We also mention that for the non-
minimal coupling of a free massless scalar field to gravity as described by the Lagrangian (3.6), 
the corresponding metric EMT reduces in the flat space limit to the new improved EMT (2.9).

Relating the different expressions In the following, we will show that the two definitions for 
the EMT’s of YM-theories in Minkowski space, i.e. (3.18) which results from the coupling to 
gravity, and the improved EMT (2.28) (with the definitions (2.26) and (2.27)) which follows 
from Noether’s first theorem supplemented by the “gauge improvement” procedure, coincide 
with each other. (We refer to the work [17] for general mathematical arguments and results 
relying on differential geometric tools.) The coincidence of results for the EMT’s can readily 
be explained on general grounds by comparing the expression (3.11) for the metric EMT, i.e. 
T μν = −2 ∂LM

∂gμν
− gμνLM , with the general expressions (2.26), (2.27) for the improved EMT’s 

of the YM field A and of a scalar field multiplet φ coupled to the YM field.
First, we note that the second term in T μν reduces directly to the second term in T μν

int as gμν

reduces to ημν . Concerning the first term in T μν , i.e. −2 ∂LM

∂gμν
, we note that the curved space 

Lagrangians LM(A, g) and LM(φ, A, g) (as given by expressions (3.4), (3.5)) are quadratic in 
the field strengths (Fμν and Dμφ, respectively) with coefficients depending on gρσ . Thus the 
relation
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∂gρσ

∂gμν

= −gραgσβδ
(μν)

(αβ) , with δ
(μν)

(αβ) = ∂gρσ

∂gμν

, (3.19)

implies that −2 ∂LM

∂gμν
reduces in the flat space limit to an expression which is again quadratic in 

the field strengths and which is, by construction, Lorentz covariant, gauge invariant and symmet-
ric in the indices. By virtue of Euler’s homogeneous function theorem we have

−2
∂LM

∂gμν

(A,g)
g→η−→ 2

∂Lg

∂F a
μρ

F ν
a ρ , (3.20)

−2
∂LM

∂gμν

(φ,A,g)
g→η−→ ∂LM

∂(Dμφ)
Dνφ + (Dνφ†)

∂LM

∂(Dμφ†)
,

i.e. the results (2.26) and (2.27).

3.4. Case of spinor fields

The coupling of spinor fields to gravity (put forward in Weyl’s seminal paper [67] of 1929) 
requires the consideration of orthonormal vielbein fields ea

μ(x) related to the metric by gμν =
ηabe

a
μeb

ν . The components Eμ
a of the inverse of the matrix (ea

μ) define the frame vector field 
Ea ≡ Eμ

a∂μ: Eμ
ae

a
ν = δν

μ. We have 
√|g| = e with e ≡ | det

(
ea

μ

)|. The vielbein EMT [55] is 
then defined by varying the action for the spinor fields (coupled to an external gravitational field) 
with respect to the vielbein or frame fields:

T a
μ = 1

e

δS

δEμ
a

, or T μ
a = −1

e

δS

δea
μ

. (3.21)

The invariance of the action S[ϕ, ea
μ] under local Lorentz transformations (parametrized at the 

infinitesimal level by δεe
a
μ = εa

be
b
μ with εab = −εba) and the application of the matter field 

equations of motion δS/δϕ = 0 imply that the tensor T ab is symmetric on-shell: from

0 = δεS =
∫

dnx

(
δS

δϕ
δεϕ + δS

δea
μ

δεe
a
μ

)

= −
∫

dnx e T μ
a εa

be
b
μ = 1

2

∫
dnx e T [ab]εab , (3.22)

and from the arbitrariness of εab we conclude that T [ab] = 0, or equivalently T ab = T ba . Then, 
the spinor field EMT T μν ≡ Eμ

aE
ν
bT

ab is also symmetric in the curved space indices for the 
solutions of the matter field equations. Furthermore [68], the matter field equations ensure the 
covariant conservation law ∇μT μν = 0 by virtue of the line of arguments (3.13), (3.14) with 
S ≡ SM .

In summary, the matter field equations for the spinor fields ensure the consistency of Einstein’s 
field equations Gμν = −κT μν involving the Einstein tensor Gμν which is both symmetric and 
covariantly conserved in the absence of torsion [55]. (The latter assumption is generally made 
in Einstein gravity, but we note that a generalization of the theory including torsion is given 
by the so-called Cartan–Sciama–Kibble approach to gravity, see [44,55] and references therein.) 
Accordingly, the EMT with lower indices (which also has to be on-shell symmetric in the absence 
of torsion) is generally written as

Tμν = 1

2
(ea

μηabT
b
ν + (μ ↔ ν)) . (3.23)
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By way of illustration, we consider the Dirac field coupled to a gauge field (Aμ) and to 
gravity. Then we have covariant derivatives involving the spin connection ωμ,

Daψ ≡ Eμ
aDμψ = Eμ

a[∂μψ + ωμψ + iqAμψ] ,
Daψ̄ = Eμ

a[∂μψ̄ − ψ̄ ωμ − iqψ̄Aμ] , (3.24)

and the action functional reads8

S[ψ,A; ea
μ] ≡

∫
dnx e ψ̄

(
iγ a

↔
Da ψ − mψ

)
,

=
∫

dnx e
[ i

2

(
ψ̄γ aDaψ − (Daψ̄)γ aψ

) − mψ̄ψ
]

(3.25)

≡
∫

dnx eLM(ψ,A,Eμ
a) .

Variation of this action with respect to the frame fields Eμ
a and use of the matter field equations 

of motion (which imply that the term in δS which is proportional to δe, i.e. the function LM , 
vanishes) yields

T a
μ = ∂LM

∂Eμ
a

, (3.26)

hence T a
μ = iψ̄γ a

↔
Dμ ψ . The associated symmetric tensor (3.23) now has the form

T μν = i

2

(
ψ̄γ μ

↔
D

νψ + ψ̄γ ν
↔
D

μψ
)

. (3.27)

By virtue of the matter field equations, it is covariantly conserved and coincides in the flat space 
limit with the improved EMT (2.32) for the Dirac field coupled to the YM field (the latter being 
conserved, symmetric and gauge invariant).

3.5. Summary

In this section we recalled the definition of the metric EMT in curved space and, for gauge 
field theories, we showed that the resulting expressions reduce in the flat space limit to gauge 
invariant, symmetric EMT’s which coincide with the improved EMT’s determined in section 2. 
(For the case of a non-minimal coupling of scalar fields to gravity, one recovers the new improved 
EMT in Minkowski space, the local scale invariance reducing to global scale invariance.)

4. On the quantum theory: Noether’s theorem and Ward identities

In the perturbative approach to Lagrangian models in quantum field theory, the first Noether 
theorem, as applied to geometric symmetries (e.g. translational invariance) or to internal sym-
metries (e.g. global U(1) transformations), finds its expression in the so-called Ward (or Ward–
Takahashi) identities. A general formulation and simple derivation of the latter has been put 
forward by R. Stora [69–71] towards 1971. Here, we outline the general ideas which are nicely 

8 We note that the inclusion of an invariant Yukawa-like coupling with scalar fields does not modify the form of the 
resulting EMT.
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summarized in [7] and refer to the monographs [25,30,72] for the technical details and physical 
applications.

We consider the case of a global internal symmetry transformation of a matter multiplet ϕ ≡
[ϕ1, . . . , ϕN ]t , e.g. relations (A.3) with constant infinitesimal symmetry parameters ωa (with 
a = 1, . . . , nG); thus, we have δϕr(x) = ωa�r

a(ϕ(x)) and Noether’s first theorem then reads

�r
a

δS

δϕr
+ ∂μjμ

a = 0 , with jμ
a ≡ ∂L

∂(∂μϕr)
�r

a .

In quantum theory one is interested in the vacuum expectation values 〈T ϕs1(y1) . . . ϕsn(yn)〉 of 
time-ordered field operators ϕs1(y1), . . . , ϕsn(yn) with n = 1, 2, . . . . Use of the conservation law 
∂μj

μ
a = 0 (associated to Noether’s theorem in the classical theory) and of the definition of the 

T -product in terms of Heaviside’s function lead to

∂

∂xμ
〈Tjμ

a (x)ϕs1(y1) . . . ϕsn(yn)〉

=
n∑

j=1

δ(x0 − y0
j ) 〈T ϕs1(y1) . . . [j0

a (x),ϕsj (yj )] . . . ϕsn(yn)〉 .

By virtue of the canonical commutation relations for the field operators, one can evaluate the 
equal-time commutator on the right-hand side: [j0

a (x),ϕsj (yj )]
∣∣
x0=y0

j

= −i�
sj
a (x) δ(�x − �yj ). 

This yields the Ward identities (in configuration space):

∂

∂xμ
〈Tjμ

a (x)ϕs1(y1) . . . ϕsn(yn)〉 = −i
n∑

j=1

δ(x − yj ) 〈T ϕs1(y1) . . .�
sj
a (x) . . . ϕsn(yn)〉 .

(4.1)

By Fourier transformation, these identities can be rewritten in momentum space and in fact it 
is in the latter space that they were originally discovered for a special case in electrodynamics, 
and that they are often encountered in the literature. Their general form (4.1) shows that the 
Ward identities are the reflection of Noether’s first theorem: they represent a collection of im-
portant relations between the correlation functions in quantum field theory which result from the 
underlying classical symmetry group.

One may wonder about the impact of an improvement jμ
a � j

μ
a + ∂ρB

ρμ
a for a given locally 

conserved classical current density (jμ
a ) on the explicit expression of Ward identities. General 

statements require a specification of the class of superpotentials which is considered. If the latter 
depend on the canonical momenta, derivatives of the delta function potentially appear in the 
Ward identities. Here, we only refer to some general recent works devoted to Ward identities [73,
74]. Furthermore, for completeness, we mention some works which deal more specifically with 
the quantum theory related to the EMT (some others being discussed in the next section): [30,
75–80].

5. Ward identities, their “cousins and descendants”: on (the work of) Raymond Stora

The so-called Slavnov (or Slavnov–Taylor) identities can be viewed as a generalization of 
the Ward identities and can be formulated and derived in simple terms using the so-called BRST 
symmetry. This symmetry has been discovered by Becchi, Rouet and Stora (BRS) [81,82] (and 
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shortly thereafter in an unpublished work by Tyutin [83]) and it was shown by BRS [81,82]
that this symmetry allows to prove the renormalizability of non-Abelian gauge theories and 
to characterize the observables as well as the anomalous breakings of classical symmetries in 
quantum theory (see references [84–88] for some early elaborations and the monograph [89]
for an introductory account). The BRST symmetry transformations were originally expressed 
in terms of an anti-commuting (Grassmann) parameter, but BRS could quickly dispense with 
this parameter [82], thus regarding the symmetry operator as an anti-derivation acting on the 
BRS differential algebra. R. Stora always denoted the BRST-transformation of a field ϕ by sϕ
while referring to it as the “Slavnov operation” [85,90]. Due to its nilpotency, this operation 
allows for a cohomological interpretation [82,85] and thereby allows to reformulate the problem 
of perturbative renormalization of Lagrangian field theories with rigid or local symmetries as 
an algebraic problem: this approach is referred to as algebraic renormalization, see [91] for a 
nice summary and references [89,92] for a detailed presentation and various applications. In par-
ticular, the realization of Wess and Zumino [93] that anomalies (which describe an anomalous 
breaking of classical symmetries in quantum theory) are described by a consistency condition
could be neatly reformulated as a cohomological problem [85] (and treated by BRS for YM 
theories [82]). In fact, the issue of determining the anomalous terms can be dealt with by us-
ing a simple algebraic method (referred to as the descent equation method) put forward by 
R. Stora [85] with the help of some mathematical lemmas due to J.A. Dixon (see also [94–96]
as well as the general introduction presented in the monograph [68]). This approach has been 
applied by R. Stora and his collaborators to a wealth of theories like gravity [97], supersym-
metry [98], string theory [99], conformal models [100] or topological theories [101], and has 
been investigated by numerous authors. Quite generally, the method of BRST quantization within 
the Lagrangian or the Hamiltonian [102] framework, and its variants developed by the Russian 
School (Batalin, Fradkin, Tyutin, Vilkovisky), represents a general and powerful approach to 
the quantization of constrained dynamical systems with a finite or infinite number of degrees of 
freedom [102–104].

The life-long interest of R. Stora in the quantization of field theories based on the fundamental 
principle of causality made him also contribute to general approaches as the one of Epstein and 
Glaser (elaborating recently on the problem of the extension of distribution-valued field opera-
tors [105]), and work out what he considered to be the “missing chapters” of the subject [106], 
an endeavor that he could unfortunately not complete despite relentless efforts and various suc-
cesses.

While interested and knowledgeable in a vast spectrum of topics in physics, Raymond was al-
ways particularly concerned with unveiling the underlying mathematical structures or finding the 
appropriate mathematical framework for the formulation of theories or for the solution of prob-
lems, e.g. anomalies, differential algebras, gauge fixing, cohomological field theories, . . . [107]. 
In all instances he was extremely attached to correct and precise statements which generally con-
tributed to clarify the issues, but also retained him from publishing a certain number of his results 
(leaving nicely hand-written manuscripts communicated to friends and colleagues). He shared 
his passion with various long term friends from the international “Feldverein” like C. Itzykson, 
B. Zumino, D. Kastler, A.S. Wightman, J. Wess, H.-J. Borchers, R. Haag, . . . , and it is very sad 
to note that all of these masters left us fairly recently, their deep insights and precious advice 
being greatly missed. As for Raymond, all of those who had the chance to meet him will always 
remember his culture, curiosity, enthusiasm, his brilliant and penetrating insights, as well as his 
great modesty, generosity and humanity.
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Appendix A. Gauge field theories in a nutshell

To set the stage and fix the notation, we briefly recall the basics of non-Abelian gauge theo-
ries.9 in this appendix (e.g. see references [15,71,85,108]).

General set-up Let G be a compact matrix Lie group (e.g. G = SU(N )) and g its Lie algebra 
with basis elements {T a}a=1,...,nG

(with nG ≡ dimG) satisfying

[T a,T b] = if abcT c . (A.1)

Here, the real structure constants f abc are totally antisymmetric in the indices.10 Furthermore, 
we assume that the matrices T a are Hermitian, i.e. (T a)† = T a . By virtue of relation (A.1), they 
are also traceless. For instance, for G = SU(2) we can choose T a = 1

2 σa where σ 1, σ 2, σ 3 are 
the Pauli matrices and the structure constants are then given by εabc. Since the indices a, b, c
are internal indices, they can indifferently be written as upper or lower indices, and Einstein’s 
convention of summing over identical indices is also applied to them.

The element U of the nG-dimensional Lie group G depends smoothly on nG real parameters 
ωa and it can be written (at least in the vicinity of the identity of G) as

U = e−iqω � 1 − iqω , with ω ≡ ωaTa . (A.2)

Here, the real constant q represents the “non-Abelian” or “YM charge” (which could as well be 
absorbed in the parameters ωa in this context) and we have U† = U−1. The finite-dimensional 
structure group G gives rise to the infinite-dimensional gauge group G ≡ {U : Rn → G} whose 
elements describe the gauge transformations of matter and gauge fields which we will outline 
next.

Fields and transformation laws We suppose that the matter content is given by a multiplet 
ϕ ≡ [ϕ1, . . . , ϕN ]t , i.e. a column vector with N components ϕA each of which is a classical 
relativistic field, e.g. we have a collection of complex scalar fields φA or of Dirac fields ψA. 
For global gauge transformations, the multiplet ϕ is assumed to transform with a N -dimensional 

9 Non-Abelian gauge theories have been discovered at about the same time and independently by W. Pauli, by R. Shaw, 
by C. N. Yang and R. Mills and by R. Utiyama who considered right away the case of general Lie groups. However, the 
priority goes to Yang and Mills who were the first to publish their results — see reference [67] for the fascinating history 
of the subject.
10 For semi-simple Lie algebras like SU(N ), the structure constants can be chosen to be totally antisymmetric. Here, 
we recall [109] that a real or complex Lie algebra is called semi-simple if it does not contain any Abelian ideal (i.e. 
invariant Lie subalgebra) except {0}; the Lie algebra g is called simple if it is not Abelian and does not contain any ideals 
other than g and {0}.
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unitary representation Û of the group G: this means that the group element U ∈ G acts on ϕ
by a unitary N × N matrix Û satisfying Û1U2 = Û1Û2. This representation of G is related to a 
N -dimensional representation T̂a of the Lie algebra g (see equation (A.2)):

Û = e−iqω̂ � 1N − iqω̂ , with ω̂ ≡ ωaT̂a and T̂ †
a = T̂a .

For (local) gauge transformations, the symmetry parameters ωa and the matrices Û depend 
smoothly on x ∈Rn.

The transformation law of the matter multiplet ϕ and of its Hermitian conjugate ϕ† read
Uϕ = Û ϕ , i.e. δϕ = −iq ω̂ϕ or δϕA = −iq ω̂ABϕB ,

Uϕ† = ϕ†Û−1 , i.e. δϕ† = iq ϕ†ω̂ or δϕ
†
A = iq ϕ

†
Bω̂BA . (A.3)

Here, we use the notation ϕ†
A ≡ (ϕ†)A and we note that the transformations only act on the 

internal symmetry indices A of the matter fields.
The covariant derivative of the matter multiplet ϕ is defined by

Dμϕ ≡ ∂μϕ + iqÂμϕ , Dμϕ† ≡ (Dμϕ)† = ∂μϕ† − iqϕ†Âμ . (A.4)

Here, Âμ(x) ≡ Aa
μ(x)T̂ a is the N -dimensional representation of the gauge potential: the latter is 

a g-valued vector field Aμ(x) ≡ Aa
μ(x)T a where (Aa

μ)μ∈{0,1,...,n−1} is a real-valued vector field 
for each value of a ∈ {1, . . . , nG}. Under a finite gauge transformation x �→ U(x), the gauge 
potential transforms inhomogeneously with the adjoint representation of the gauge group:

UAμ = UAμU−1 − i

q
U∂μU−1 . (A.5)

For infinitesimal gauge variations UAμ � Aμ + δAμ it follows from (A.5) and (A.2) that Aμ

transforms with the covariant derivative of the g-valued functions x �→ ω(x) ≡ ωa(x)Ta :

δAμ = Dμω ≡ ∂μω + iq [Aμ,ω] . (A.6)

This transformation law involves the non-Abelian charge q (self-coupling constant) which also 
appears in the matter transformation law (A.3). For the Lie group generators Ta appearing in 
ω ≡ ωaTa and Aμ ≡ Aa

μTa , we can consider any representation Ta �→ r(Ta) of the Lie algebra, 

e.g. r(Ta) = T̂a as we did for the discussion of the matter multiplet ϕ.
The commutator of two covariant derivatives determines the YM field strength tensor Fμν ≡

Fa
μνTa :

[Dμ,Dν]ω = iq [Fμν,ω] , with Fμν ≡ ∂μAν − ∂νAμ + iq [Aμ,Aν] . (A.7)

Hence we have the gauge transformation law

UFμν = UFμνU
−1 or δFμν = iq [Fμν,ω] , (A.8)

i.e. Fμν transforms with the adjoint representation. The Jacobi identity for the covariant deriva-
tives implies the Bianchi identity for the field strength: 0 = DλFμν + cyclic permutations of the 
indices. In contrast to the Abelian theory, the field strength presently involves terms which are 
non-linear in the gauge field Aμ and it is not invariant under gauge transformations. Its compo-
nents Fa

0i ≡ Ea
xi , F

a
ij = εijkB

a
xk (for n = 4) may be viewed as the non-Abelian generalization of 

the electric and magnetic fields of Maxwell’s theory.
The theory can be generalized from Minkowski space to an n-dimensional smooth manifold 

M and a global (coordinate free) formulation can be given, e.g. see reference [110]. The latter 
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relies on the introduction of a principal fiber bundle P (with compact Lie group G) over M , 
i.e. a manifold P which has locally the structure U × G where U is an open subset of M . 
The YM potential is then introduced as a g-valued 1-form on P with appropriate transformation 
properties and it is referred to as a connection. The expressions given above for Rn then represent 
local expressions on U �Rn.

Dynamics In the following, we generally drop the hat denoting the representation (of the Lie 
algebra or Lie group) which is considered for the matter multiplets. Concerning the normaliza-
tion of the trace, we note that for a simple Lie algebra one may choose a basis (Ta) such that 
Tr (r(T a) r(T b)) = c2(r) δab for any representation Ta �→ r(Ta), where the constant c2(r) is 
known as the index of the representation r . For instance, for the adjoint representation, Ta is 
represented by (r(Ta))bc = −ifabc and c2(r) = 2.

The dynamics of pure YM-theory is described by the classical action

Sg[A] ≡ − 1

4c2

∫
dnx Tr (FμνFμν) = −1

4

∫
dnx Faμν F a

μν , (A.9)

which is invariant under gauge transformations. Free Maxwell theory represents a particular case 
of pure YM theory for which the gauge group G = U(1) is Abelian: the internal index takes a 
single value a = 1 and the totally antisymmetric structure constants f abc in (A.1) vanish, as does 
the commutator term in the field strength (A.7) and in the covariant derivative (A.6). Thus, in 
this particular case there is no self-interaction of gauge potentials in the action (A.9).

The dynamics of a matter multiplet φ ≡ [φ1, . . . , φN ]t , of N scalar fields or of a multiplet 
ψ ≡ [ψ1, . . . , ψN ]t of N Dirac fields of mass m which are coupled to the gauge field Aμ are 
respectively described by the gauge invariant Lagrangian densities

LM(φ,A) ≡ (Dμφ†)(Dμφ) − m2φ†φ , (A.10)

and

LM(ψ,A) ≡ i ψ̄γ μ
↔
Dμψ − mψ̄ψ ≡ i

2

[
ψ̄γ μDμψ − (Dμψ̄)γ μψ

]
− mψ̄ψ , (A.11)

where ψ̄ ≡ [ψ̄1, . . . , ψ̄N ] and ψ̄γ μ ≡ [ψ̄1γ
μ, . . . , ψ̄Nγ μ]. The equations of motion for inter-

acting matter and gauge fields follow from the gauge invariant action functional S[ϕ, A] ≡
Sg[A] + SM [ϕ, A]: we have

0 = δS

δφ†
= δSM

δφ†
= −(DμDμ + m2)φ , or 0 = δS

δψ̄
= δSM

δψ̄
= (iγ μDμ − m)ψ ,

(A.12)

as well as the Hermitian conjugate expressions, and (for a ∈ {1, . . . , nG})
0 = δS

δAa
μ

= δSg

δAa
μ

+ δSM

δAa
μ

= DνF
νμ
a − jμ

a , i.e. DνF
νμ = jμ , (A.13)

with

jμ
a [ϕ,A] ≡ −δSM [ϕ,A]

δAa
μ

. (A.14)

From (A.14), (A.10) and (A.11), we get the g-valued currents

jμ
a [φ,A] = iq

[
φ†T̂aD

μφ − (Dμφ†)T̂aφ
]

, jμ
a [ψ,A] = q ψ̄γ μT̂aψ , (A.15)
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which transform with the adjoint representation under gauge transformations:
Ujμ = UjμU−1 or δjμ = iq [jμ,ω] with ω ≡ ωaTa . (A.16)

The equation of motion (A.13) for the non-Abelian gauge field is referred to as the Yang–Mills 
equation. In contrast to the Maxwell equation appearing in U(1) gauge theory, the YM equation 
involves the covariant derivative. Hence the matter current jμ[ϕ, A], which appears as a source 
in this equation, is only covariantly conserved:

Dμjμ = DμDνF
νμ = 1

2
[Dμ,Dν]Fνμ = −1

2
iq [Fμν,F

μν] = 0 , i.e. Dμjμ = 0 .

(A.17)

References

[1] H. Weyl, Symmetry, Princeton Univ. Press, 1952.
[2] F. Gieres, About symmetries in physics, in: F. Gieres, M. Kibler, C. Lucchesi, O. Piguet (Eds.), Symmetries 

in Physics, Proceedings of the Fifth Séminaire Rhodanien de Physique, Editions Frontières, Dolomieu, 1998, 
arXiv:hep-th/9712154, 1997.

[3] E. Noether, Invariante Variationsprobleme, Nachr. Ges. Wiss. Gött., Math.-Phys. Kl. 1918 (1918) 235–257, 
arXiv:physics/0503066.

[4] P.J. Olver, Applications of Lie Groups to Differential Equations, second ed., Graduate Texts in Mathematics, 
vol. 107, Springer Verlag, 1993.

[5] Y. Kosmann-Schwarzbach, The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century, 
Sources and Studies in the History of Mathematics and Physical Sciences, Springer Verlag, 2011.

[6] K. Sundermeyer, Symmetries in Fundamental Physics, Fundam. Theor. Phys., vol. 176, Springer Verlag, 2014.
[7] J.B. Zuber, Invariances in physics and group theory, Talk given at the Conference “Lie and Klein: The Erlangen 

Program and Its Impact on Mathematics and Physics”, Strasbourg, Sept. 2012, arXiv:1307.3970 [hep-th].
[8] M. Bañados, I.A. Reyes, A short review on Noether’s theorems, gauge symmetries and boundary terms, for stu-

dents, arXiv:1601.03616 [hep-th].
[9] V. Ogievetsky, E. Sokatchev, Supercurrent, Sov. J. Nucl. Phys. 28 (1978) 423, Yad. Fiz. 28 (1978) 825.

[10] W. Lang, Currents in supersymmetric gauge theories, Nucl. Phys. B 150 (1979) 201–220.
[11] J. Zahn, Wirkungs- und Lokalitätsprinzip für nichtkommutative skalare Feldtheorien, Master’s thesis, Universität 

Hamburg, 2003.
[12] H.C. Ohanian, R. Ruffini, Gravitation and Spacetime, third ed., Cambridge Univ. Press, 2013.
[13] F.J. Belinfante, On the spin angular momentum of mesons, Physica 6 (1939) 887–898.
[14] F.J. Belinfante, On the current and the density of the electric charge, the energy, the linear momentum and the 

angular momentum of arbitrary fields, Physica 7 (1940) 449.
[15] G. Grensing, Structural Aspects of Quantum Field Theory and Noncommutative Geometry, World Scientific Publ., 

2013.
[16] L.H. Ryder, Quantum Field Theory, second ed., Cambridge Univ. Press, 1996.
[17] M. Forger, H. Römer, Currents and the energy momentum tensor in classical field theory: a fresh look at an old 

problem, Ann. Phys. 309 (2004) 306–389, arXiv:hep-th/0307199.
[18] M.J. Gotay, J.E. Marsden, Stress–energy–momentum tensors and the Belinfante–Rosenfeld formula, Contemp. 

Math. 132 (1992) 367–392.
[19] L. Landau, E. Lifshitz, The Classical Theory of Fields, Course of Theoretical Physics, vol. 2, fourth ed., 

Butterworth–Heinemann, 1980.
[20] A.J. Hanson, T. Regge, C. Teitelboim, Constrained Hamiltonian Systems, Accademia Nazionale dei Lincei, Roma, 

1976.
[21] D.N. Blaschke, F. Gieres, M. Reboud, M. Schweda, Poincaré transformations in the Hamiltonian formulation of 

gauge field theories, Talk presented by F. Gieres at the XXIVth International Conference on Integrable Systems 
and Quantum symmetries, ISQS-24, Prague, June 2016, in preparation.

[22] A. Duncan, The Conceptual Framework of Quantum Field Theory, Oxford Univ. Press, 2012.
[23] D.J. Griffiths, Resource letter EM-1: electromagnetic momentum, Am. J. Phys. 80 (2012) 7–18.
[24] U.E. Schröder, Special Relativity, World Sci. Lect. Notes Phys., vol. 33, World Scientific, Singapore, 1990.
[25] C. Itzykson, J.-B. Zuber, Quantum Field Theory, Dover ed., Dover Publ. Inc., New York, 2005.

http://refhub.elsevier.com/S0550-3213(16)30184-5/bib5765796C3A31393532s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4769657265733A313939376977s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4769657265733A313939376977s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4769657265733A313939376977s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4E6F65746865723A313931387A7As1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4E6F65746865723A313931387A7As1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4F6C766572s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4F6C766572s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4B6F736D616E6Es1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4B6F736D616E6Es1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib53756E6465726D657965723A323031346B6861s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib42616E61646F733A323031367A696Ds1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib42616E61646F733A323031367A696Ds1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4F676965766574736B793A313937386A73s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4C616E673A313937387773s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib5A61686E3A323030336274s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib5A61686E3A323030336274s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4F68616E69616E3A32303133s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib42656C696E66616E74653A31393339s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib42656C696E66616E74653A31393430s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib42656C696E66616E74653A31393430s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4772656E73696E673A32303133s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4772656E73696E673A32303133s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib52796465723A31393936s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib466F726765723A323030337574s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib466F726765723A323030337574s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib476F7461794D61727364656Es1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib476F7461794D61727364656Es1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4C616E6461754C696673636869747A32s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4C616E6461754C696673636869747A32s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib48616E736F6E3A31393736636Es1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib48616E736F6E3A31393736636Es1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib44756E63616E3A32303132s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib4772696666697468733A32303132s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib536368726F6465723A313939307269s1
http://refhub.elsevier.com/S0550-3213(16)30184-5/bib49747A796B736F6E3A32303035s1


220 D.N. Blaschke et al. / Nuclear Physics B 912 (2016) 192–223
[26] B.P. Kosyakov, Introduction to the Classical Theory of Particles and Fields, Springer Verlag, 2007.
[27] M. Gell-Mann, M. Lévy, The axial vector current in beta decay, Nuovo Cimento 16 (1960) 705.
[28] C.G. Callan Jr., S.R. Coleman, R. Jackiw, A new improved energy–momentum tensor, Ann. Phys. 59 (1970) 42–73.
[29] R. Jackiw, S.-Y. Pi, Tutorial on scale and conformal symmetries in diverse dimensions, J. Phys. A, Math. Theor. 

44 (2011) 223001, arXiv:1101.4886 [math-ph].
[30] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Graduate Texts in Contemporary Physics, 

Springer, New York, 1997.
[31] W. Thirring, Classical Mathematical Physics: Dynamical Systems and Field Theories, third ed., Springer Verlag, 

1997.
[32] U. Sexl, H.K. Urbantke, Relativity, Groups, Particles: Special Relativity and Relativistic Symmetry in Field and 

Particle Physics, Springer Verlag, 2001.
[33] S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space–Time, Cambridge Monographs on Mathematical 

Physics, Cambridge Univ. Press, 1973.
[34] J.M.M. Senovilla, D. Garfinkle, The 1965 Penrose singularity theorem, Class. Quantum Gravity 32 (2015) 124008, 

arXiv:1410.5226 [gr-qc].
[35] R.M. Wald, General Relativity, Univ. Press, Chicago, 1984.
[36] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, Cambridge Univ. Press, 2008.
[37] E. Eriksen, J.M. Leinaas, Gauge invariance and the transformation properties of the electromagnetic four-potential, 

Phys. Scr. 22 (1980) 199.
[38] Y. Takahashi, Energy–momentum tensors in relativistic and non-relativistic classical field theory, Fortschr. Phys. 

34 (1986) 323–344.
[39] G. Muñoz, Lagrangian field theories and energy–momentum tensors, Am. J. Phys. 64 (1996) 1153–1157.
[40] M. Montesinos, E. Flores, Symmetric energy–momentum tensor in Maxwell, Yang–Mills, and Proca theories 

obtained using only Noether’s theorem, Rev. Mex. Fis. 52 (2006) 29–36, arXiv:hep-th/0602190;
R.E. Gamboa Saravi, On the energy momentum tensor, J. Phys. A, Math. Gen. 37 (2004) 9573–9586, arXiv:math-
ph/0306020.

[41] A.O. Barut, Electrodynamics and Classical Theory of Fields and Particles, Dover Books on Physics, Dover Publ. 
Inc., 1981.

[42] L. Rosenfeld, Sur le tenseur d’impulsion–énergie, Mémoires Acad. Roy. de Belgique 18 (1940) 1–30.
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