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Abstract

The simulation of electronic circuits involves the numerical solution of very large-scale, sparse, in general nonlinear,
systems of di�erential-algebraic equations. Often, the size of these systems can be reduced considerably by replacing the
equations corresponding to linear subcircuits by approximate models of much smaller state-space dimension. In this paper,
we describe the use of Krylov-subspace methods for generating such reduced-order models of linear subcircuits. Particular
emphasis is on reduced-order modeling techniques that preserve the passivity of linear RLC subcircuits. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Today’s integrated electronic circuits are extremely complex, with up to tens of millions of devices.
Prototyping of such circuits is no longer possible, and instead, computational methods are used to
simulate and analyze the behavior of the electronic circuit at the design stage. This allows to correct
the design before the circuit is actually fabricated in silicon.
The simulation of electronic circuits involves the numerical solution of very large-scale, sparse,

in general nonlinear, systems of time-dependent di�erential-algebraic equations (DAEs); see, e.g.
[10,29,30] and the references given there. These systems can be so large that time integration
becomes ine�cient or even prohibitive. On the other hand, electronic circuits often contain large
linear subcircuits of passive components that contribute only linear equations to the system of DAEs
describing the whole circuit. In particular, such linear subcircuits may result from extracted RLC
models of the circuit’s wiring, the so-called interconnect, models of the circuit’s package, or models
of wireless propagation channels. By replacing the equations corresponding to linear subcircuits
by approximate models of much smaller state-space dimension, the size of the system of DAEs
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describing the whole circuit can be reduced signi�cantly, so that time integration of the resulting
system becomes feasible; see, e.g. [11,20,24,26] and the references given there. In recent years, there
has been a lot of interest in generating suitable reduced-order models of linear subcircuits by means
of Krylov-subspace methods, such as the Lanczos algorithm and the Arnoldi process. For a survey
of these recent developments, we refer the reader to [13].
In this paper, we describe the use of Krylov-subspace methods for generating reduced-order models

of systems of linear DAEs, such as the ones arising in circuit simulation. Particular emphasis is on
projection techniques that, when applied to a passive circuit, preserve the passivity of the circuit.
We stress that the methods discussed in this paper are not restricted to systems of DAEs arising in
circuit simulation and that they can be applied to general time-invariant linear dynamical systems.
However, the development of these methods was mostly motivated by the need for reduced-order
modeling in circuit simulation.
The remainder of the paper is organized as follows. In Section 2, we briey review the sys-

tems of DAEs that arise in circuit simulation, and we describe how reduced-order models of linear
subcircuits can be employed to reduce the dimension of these systems. In Section 3, we introduce
our notion of block Krylov subspaces and review the construction of basis vectors via Lanczos and
Arnoldi algorithms. In Section 4, we de�ne reduced-order models based on projection and describe
their computation via Krylov-subspace methods. In Section 5, we discuss connections with Pad�e
and Pad�e-type approximants. In Section 6, we establish results on the stability and passivity of
reduced-order models obtained via projection. In Section 7, numerical results for two circuit exam-
ples are reported. Finally, in Section 8, we make some concluding remarks and mention a few open
problems.
Throughout this article, we use boldface letters to denote vectors and matrices. Unless stated

otherwise, vectors and matrices are allowed to have complex entries. As usual, M = [mjk]; MT =
[mkj], and MH =M

T
= [mkj] denote the complex conjugate, transpose, and the conjugate transpose,

respectively, of the matrix M = [mjk], and M¿0 means that M is Hermitian positive semi-de�nite.
The vector norm ‖x‖ :=√

xH x is always the Euclidean norm, and ‖M‖ :=max‖x‖=1‖Mx‖ is the
corresponding induced matrix norm. We use In to denote the n × n identity matrix and 0n×m to
denote the n× m zero matrix; we will omit these indices whenever the actual dimensions of I and
0 are apparent from the context. The sets of real and complex numbers are denoted by R and C,
respectively. For s ∈ C; Re(s) is the real part of s. Finally, C+ := {s ∈ C |Re(s)¿ 0} is the open
right-half of the complex plane.

2. Circuit equations

In this section, we briey describe the systems of DAEs that arise in circuit simulation and
review how reduced-order modeling of linear subcircuits is employed in the numerical solution of
such systems. For introductions to circuit simulation and overviews of typical simulation tasks, we
refer the reader to [10,29,30].

2.1. General circuit equations

Electronic circuits are usually modeled as networks whose branches correspond to the circuit
elements and whose nodes correspond to the interconnections of the circuit elements; see, e.g.
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[10,29,30]. Such networks are characterized by three types of equations: Kirchho� ’s current law
(KCL), Kirchho� ’s voltage law (KVL), and branch constitutive relations (BCRs). The unknowns
in these equations are the currents through the branches of the network, the voltage drops along the
branches, and the voltages at the nodes of the network. The KCLs and KVLs are linear algebraic
equations that only depend on the topology of the circuit. The KCLs state that, at each node N of
the network, the currents owing in and out of N sum up to zero. The KVLs state that, for each
closed loop L of the network, the voltage drops along L sum up to zero. The BCRs are equations
that characterize the actual circuit elements. For example, the BCR of a linear resistor is Ohm’s
law. The BCRs are linear equations for simple devices, such as linear resistors, capacitors, and in-
ductors, and they are nonlinear equations for more complex devices, such as diodes and transistors.
Furthermore, in general, the BCRs involve �rst time derivatives of the unknowns, and thus they are
�rst-order DAEs.
All the KCLs, KVLs, and BCRs characterizing a given circuit can be summarized as a system of

�rst-order, in general nonlinear, DAEs of the form

f (x̂; t) +
d
dt
q(x̂; t) = 0; (1)

together with suitable initial conditions. Here, x̂= x̂(t) is the unknown vector of circuit variables at
time t, the vector-valued function f (x̂; t) represents the contributions of nonreactive elements such
as resistors, sources, etc., and the vector-valued function (d=dt)q(x̂; t) represents the contributions
of reactive elements such as capacitors and inductors. There are a number of established methods,
such as sparse tableau, nodal formulation, and modi�ed nodal analysis, for writing down the system
(1); see, e.g. [30]. The vector functions x̂; f ; q in (1), as well as their dimension, N̂ , depend on
the chosen formulation method. The most general method is sparse tableau, which consists of just
listing all the KCLs, KVLs, and BCRs. The other formulation methods can be interpreted as starting
from sparse tableau and eliminating some of the unknowns by using some of the KCL or KVL
equations. For all the standard formulation methods, the dimension N̂ is of the order of the number
of devices in the circuit.

2.2. Linear subcircuits

Traditional circuit simulators are based on the numerical solution of the system of DAEs (1); see,
e.g. [30]. However, the dimension of (1) can be so large that time integration of (1) is ine�cient or
even prohibitive. On the other hand, circuits often contain large linear subcircuits that can be well
approximated by reduced-order models of much smaller dimension. By replacing the equations in
(1) corresponding to such linear subcircuits by their respective reduced-order models, one obtains
an approximate system of DAEs of much smaller dimension that can then be solved numerically by
time integration. We now describe this process in more detail.
Let Cl be a large linear subcircuit of a given circuit, and denote by Cr the, in general nonlinear,

remainder of the circuit. After a suitable reordering, the vector x̂ of circuit variables in (1) can be
partitioned as follows:

x̂=


 x̂ry
x̂l


 : (2)
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Here, x̂r and x̂l denote the circuit variables exclusive to Cr and Cl, respectively, and y represents
the variables shared by Cr and Cl. Using the partitioning (2) and setting

x0 :=
[
x̂r
y

]
and x :=

[
y
x̂l

]
; (3)

the functions f and q in (1), after a suitable reordering of the equations in (1), can be expressed
as follows:

f (x̂; t) =
[
f0(x0; t)
0k×1

]
+

[
0N̂−N×1
Gx

]
; q(x̂; t) =

[
q0(x0; t)
0k×1

]
+

[
0N̂−N×1
Cx

]
: (4)

Here, f0 and q0 represent the contributions of resistive and reactive elements from the subcircuit Cr,
and the matrices G and C represent the contributions of resistive and reactive elements in the linear
subcircuit Cl. In (4), without loss of generality, we have assumed that the vector-valued functions f0
and q0 have the same number of components, that the zero vectors below f0 and q0 have the same
length, k, and that the matrices G and C are square and of the same size, N ×N ; this can always be
achieved by padding f0; q0; G , and C with additional zeros, if necessary. Unless the subcircuit Cl
is completely decoupled form the remainder circuit Cr, we have m :=N −k ¿ 0. This means that, in
(4), the last m components of the, in general nonlinear, functions f0 and q0 are connected with the
�rst m components of the linear functions Gx and Cx. By introducing an additional m-dimensional
vector, u = u(t), of circuit variables, these m connecting equations can be decoupled. Indeed, using
(4), one readily veri�es that the original system (1) is equivalent to the following system:

f0(x0; t) +
d
dt
q0(x0; t) +

[
0
Im

]
u = 0; (5)

C
dx
dt
+ Gx=

[
Im
0

]
u: (6)

We remark that the additional variables u in (5) and (6) can be interpreted as interface signals
between the subcircuits Cr and Cl.
Let p denote the length of the vector y in the partitioning (2) of x̂, and set

B :=
[

Im
0N−m×m

]
and L :=

[
Ip

0N−p×p

]
:

Note that, by (3), the matrix LH = LT selects the subvector y from x, i.e.

y= LHx: (7)

Eqs. (6) and (7) constitute a linear dynamical system of the form

C
dx
dt
=−Gx+ Bu(t);

y(t) = LHx(t): (8)

In (8), in general, C ; G ∈ CN×N ; B ∈ CN×m, and L ∈ CN×p are given matrices, m and p denote
the number of inputs and outputs, respectively, the components of the given vector-valued function
u : [0;∞) 7→ Cm are the inputs, and y : [0;∞) 7→ Cp is the unknown function of outputs. The
components of the unknown vector-valued function x : [0;∞) 7→ CN are the state variables, and N
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is the state-space dimension. In general, the matrices C and G in (8) are allowed to be singular.
However, we assume that G+sC is a regular matrix pencil, i.e., G+sC is singular only for �nitely
many values of s ∈ C. This condition is always satis�ed for linear dynamical systems (8) arising in
circuit simulation.
A reduced-order model of (8) is a linear dynamical system of the same form as (8), but of smaller

state-space dimension n¡N . More precisely, a reduced-order model of state-space dimension n is
of the form

Cn
dz
dt
=−Gnz + Bnu(t);

y(t) = LHn z(t): (9)

Here, Cn; Gn ∈ Cn×n; Bn ∈ Cn×m, and Ln ∈ Cn×p are matrices that should be chosen such that the
input–output mapping u(t) 7→ y(t) of (9) somehow approximates the input–output mapping of the
original system (8); see Section 2.3 below.
After a suitable reduced-order model (9) for systems (6) and (7) has been determined, the linear

part (6) of the circuit equations is replaced by the �rst set of equations in (9). The result is a
reduced-order system of DAEs that represents an approximation to the original system (1); see, e.g.
[9,26]. Provided that the size of Cl dominates that of Cr, the approximate system has a much smaller
state-space dimension than (1), and thus time integration by means of standard circuit simulators
becomes feasible.

2.3. Transfer functions

Next, we introduce the so-called transfer function, which describes the input–output behavior of
a linear dynamical system (9) in frequency domain.
For vector-valued functions g(t); t ∈ [0;∞), with g(0) = 0, we denote by

ĝ(s) =
∫ ∞

0
g(t)e−st dt; s ∈ C; (10)

the (frequency-domain) Laplace transform of g. We remark that in (10), the purely imaginary
values s= i!; !¿0, correspond to the frequency !; these are the physically meaningful values of
the complex variable s.
We now assume, for simplicity, zero initial conditions x(0) = 0 and u(0) = 0 in (8). By applying

(10) to the linear dynamical system (8), we obtain its frequency-domain formulation

sCx̂=−Gx̂+ Bû(s);
ŷ(s) = LHx̂(s): (11)

Eliminating x̂ in (11) results in the frequency-domain input–output relation ŷ(s) =H(s)û(s), where
H , the transfer function of (8), is given by

H(s) :=LH(G + sC)−1B; s ∈ C: (12)

Note that H : C 7→ (C ∪ {∞})p×m is a matrix-valued rational function.
Similarly, the transfer function Hn : C 7→ (C ∪ {∞})p×m of the reduced-order model (9) is given

by

Hn(s) :=LHn (Gn + sCn)
−1Bn; s ∈ C: (13)
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In terms of transfer functions, the problem of constructing a reduced-order model (9) of size n
that approximates the input–output behavior of (8) can be stated as follows: Determine the matrices
Cn; Gn; Bn, and Ln in (9) such that the reduced-order transfer function (13), Hn, in some sense
approximates the transfer function (12), H , of the original linear dynamical system (8).
For systems (8) of small-to-moderate state-space dimension N , there is a variety of techniques

to construct reduced-order models such that, in some appropriate norm, Hn approximates H over a
whole range of values of s; see the references given in [13]. However, these techniques are usually
not applicable to large-scale systems (8), such as the ones arising in circuit simulation. In the latter
case, the matrices C and G in (8) are large and sparse. Note that, in view of (12), the evaluation
of H(s0) at even a single point s0 ∈ C requires the solution of systems of linear equations with the
large sparse coe�cient matrix G + s0C . Fortunately, the circuit matrices C and G are usually such
that sparse Gaussian elimination can be employed to compute an LU factorization

G + s0C = P1L0U0P2 (14)

of the matrix G + s0C . In (14), P1 and P2 are permutation matrices that record pivoting for sparsity
and numerical stability, L0 is a lower triangular matrix, and U0 is an upper triangular matrix. Pivoting
for sparsity means that the original ordering of the rows and columns of G + s0C is changed so
that potential �ll-in in the factors L0 and U0 is reduced. For circuit matrices, typically very little
�ll-in occurs in L0 and U0, although this cannot be guaranteed in general. Once the factorization
(14) is computed, the solution of the linear systems needed to evaluate H(s0) is obtained by sparse
backsolves.
Note that evaluating H(s0) at several points s0 would require the computation of a new fac-

torization (14) for each new point s0. Despite the limited �ll-in for circuit matrices, the cost for
factoring G + s0C is high enough that one tries to get away with computing a single factorization
(14). This is the case for reduced-order models that are characterized by a matching of the leading
terms in Taylor expansions of H and Hn about a given expansion point s0. More precisely, such a
reduced-order model of given size n is de�ned by

Hn(s) =H(s) + O(s− s0)q(n): (15)

If q(n) in (15) is as large as possible, then Hn is an nth matrix-Pad�e approximant of H ; see, e.g.
[5]. In Section 5, we will also discuss certain matrix-Pad�e-type approximants for which q(n) is not
maximal.

2.4. Linear RLC subcircuits

In circuit simulation, an important special case is linear subcircuits that consist of only resistors,
inductors, and capacitors. Such linear RLC subcircuits arise in the modeling of a circuit’s interconnect
and package; see, e.g. [16,17,20,24].
The equations describing linear RLC subcircuits are of the form (8). Furthermore, the equations can

be formulated such that the matrices in (8) exhibit certain symmetries; see [15,17]. More precisely,
the N × N matrices G and C are real and symmetric, and have the following block structure:

G = GT =
[
G11 G12
GT
12 0

]
and C = CT =

[
C11 0
0 −C22

]
: (16)
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Here, the submatrices G11;C11 ∈ RN1×N1 and C22 ∈ RN2×N2 are symmetric positive semi-de�nite, and
N = N1 + N2. Note that, except for the special case N2 = 0, the matrices G and C are inde�nite.
The special case N2 = 0 arises for RC subcircuits that contain only resistors and capacitors, but no
inductors.
If the RLC subcircuit is viewed as an m-terminal component with m=p inputs and outputs, then

the matrices B and L in (8) are identical and of the form

B = L=
[
B1
0N2×m

]
with B1 ∈ RN1×m: (17)

For such an m-terminal RLC subcircuit, in view of (16) and (17), the transfer function (12) reduces
to

H(s) = BT(G + sC)−1B where G = GT; C = CT: (18)

We call a transfer function H symmetric if it is of the form (18) with real matrices G , C , and
B. For symmetric transfer functions, we will always assume that the expansion point s0 in (15) is
chosen to be real:

s0 ∈ R if H is symmetric: (19)

The condition (19) is necessary in order to generate passive reduced-order models of symmetric
transfer functions.
We will also use the following nonsymmetric formulation of (18). Let J be the block matrix

J =
[
IN1 0
0 −IN2

]
: (20)

Note that, by (17) and (20), we have B = JB. Using this relation, as well as (16), we can rewrite
(18) as follows:

H(s) = BT(JG + sJC)−1B; (21)

where

JG =
[
G11 G12
−GT

12 0

]
and JC =

[
C11 0
0 C22

]
:

In this formulation, the matrix JG is no longer symmetric, but now

JG + (JG)T¿0 and JC¿0: (22)

3. Basis vectors for block Krylov subspaces

In this section, we introduce our notion of block Krylov subspaces for multiple starting vectors.
We also review variants of the Arnoldi and Lanczos algorithms for generating basis vectors for
block Krylov subspaces.

3.1. Reduction to one matrix

Let s0 ∈ C be the expansion point that is to be used in the characterization (15) of the reduced-order
transfer function Hn. The only assumption on s0 is that the matrix G + s0C be nonsingular; this
guarantees that s0 is not a pole of the original transfer function (12), H .
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An approximate transfer function Hn satisfying (15) could be obtained by �rst explicitly computing
the leading q(n) Taylor coe�cients of the expansion of H about s0 and then generating Hn from
these coe�cients; see, e.g. [25]. However, any approach based on explicitly computing the Taylor
coe�cients of H is inherently numerically unstable; see [8]. A much better alternative is to use
block Krylov-subspace methods that obtain the same information as contained in the leading q(n)
Taylor coe�cients of H , but in a more stable manner.
Before block Krylov-subspace methods can be employed, the two matrices G and C in the

de�nition (12) of H have to be reduced to a single matrix, denoted by A in the sequel. This can
be done by rewriting (12) as follows:

H(s) = LH(I + (s− s0)A)−1R; (23)

where

A := (G + s0C)−1C and R := (G + s0C)−1B:

Although G and C are sparse matrices, in general, the matrix A in (23) is a dense matrix. However,
block Krylov-subspace methods involve A only in the form of matrix-vector products AC and possibly
AHw. To e�ciently compute these products, one never needs to form A explicitly. Instead, one
uses the sparse factorization (14) of G + s0C . Each matrix–vector product AC then requires one
multiplication with the sparse matrix C and two backsolves with the sparse triangular matrices L0
and U0 from (14). Similarly, AHw requires one multiplication with CH and two backsolves with the
sparse triangular matrices LH0 and U

H
0 .

3.2. Block Krylov subspaces

Next, we introduce block Krylov subspaces. The proper de�nition of these subspaces is necessarily
quite involved, and the reader may ask if block Krylov subspaces could not be avoided altogether by
using standard Krylov subspaces induced by single vectors instead. For example, one can generate
scalar approximations for all the p · m coe�cient functions of the p × m-matrix-valued transfer
function H via suitable basis vectors for m+ p standard Krylov subspaces. However, the resulting
approximation is not a matrix-Pad�e approximant of H , and in fact, one can show that, in order to
obtain an approximation of the same quality as the matrix-Pad�e approximant, at least b(m + p)=2c
times more computational work is required compared to computing a matrix-Pad�e approximant.
Therefore, the use of block Krylov subspaces results in much more e�cient reduced-order modeling
techniques than those based on standard Krylov subspaces.
Let A ∈ CN×N be a given N × N matrix and

R= [r1 r2 · · · rm] ∈ CN×m (24)

be a given matrix of m right starting vectors, r1; r2; : : : ; rm. Before we introduce block Krylov
subspaces induced by A and R, we briey review the standard case m=1 of a single starting vector
r = r1. In this case, the usual nth Krylov subspace (induced by A and r) is given by

Kn(A; r) := span{r;Ar;A2r; : : : ;An−1r}: (25)

Let n0 be de�ned as the largest possible integer n such that in (25), all the Krylov vectors, A j−1r,
16j6n − 1, are linearly independent. Note that n06N . By the de�nition of n0, the nth Krylov
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subspace (25) has dimension n if 16n6n0 and dimension n0 if n¿n0. Moreover, Kn(A; r) =
Kn0 (A; r) for all n¿n0. Thus, Kn0 (A; r) is the largest possible Krylov subspace (induced by A and
r), and we call the Krylov sequence r;Ar;A2r; : : : ;An−1r exhausted if n¿n0.
In the general case of m¿1 starting vectors (24), the situation is more complicated; we refer

the reader to the discussion in [1]. The main di�culty is that in contrast to the case m = 1, linear
independence of the columns in the block Krylov sequence,

R;AR;A2R; : : : ;A j−1R; : : : ; (26)

is lost only gradually in general. More precisely, if the jth block, A j−1R, contains a column that
is linearly dependent on columns to its left in (26), then, in general, not all the columns of A j−1R
are linear dependent on columns to their left. Hence, the occurrence of a linear-dependent column
does not necessarily imply that the block Krylov sequence R;AR;A2R; : : : ;A j−1R is exhausted. As
a result, in general, the construction of suitable basis vectors for the subspaces spanned by the
columns of (26) needs to be continued even after a linear-dependent column has been found in
(26). However, a proper handling of such linear-dependent columns requires that the column itself
and all its successive A-multiples need to be deleted. Formally, this can be done as follows. By
scanning the columns of the matrices in (26) from left to right and deleting each column that is
linearly dependent on earlier columns, we obtain the deated block Krylov sequence

R1;AR2;A2R3; : : : ;A jmax−1Rjmax : (27)

This process of deleting linearly dependent vectors is referred to as exact deation in the following.
In (27), for each j=1; 2; : : : ; jmax, Rj is a submatrix of Rj−1, with Rj 6= Rj−1 if, and only if, deation
occurred within the jth Krylov block A j−1R in (26). Here, for j = 1, we set R0 = R. Denoting by
mj the number of columns of Rj, we thus have

m¿m1¿m2¿ · · ·¿mjmax¿1: (28)

By construction, the columns of the matrices (27) are linearly independent, and for each n, the
subspace spanned by the �rst n of these columns is called the nth block Krylov subspace (induced
by A and R). In the following, we denote the nth block Krylov subspace by Kn(A;R). For later
use, we remark that for

n= m1 + m2 + · · ·+ mj where 16j6jmax; (29)

the nth block Krylov subspace is given by

Kn(A;R) = Colspan{R1;AR2;A2R3; : : : ;A j−1Rj}: (30)

For Lanczos-based reduced-order modeling techniques, we will also need the block Krylov subspaces
induced by AH and a given matrix of p left starting vectors,

L= [l1 l2 · · · lp] ∈ CN×p: (31)

Applying the above construction to AH and L, the nth block Krylov subspace (induced by AH and
L), Kn(AH;L), is de�ned as the subspace spanned by the �rst n columns of the deated block
Krylov sequence

L1;AHL2; (AH)2L3; : : : ; (AH)kmax−1Lkmax : (32)
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Denoting by pk the number of columns of Lk , we have

p¿p1¿p2¿ · · ·¿pkmax¿1: (33)

Note that for

n= p1 + p2 + · · ·+ pk where 16k6kmax;

we have

Kn(AH;L) = Colspan{L1;AHL2; (AH)2L3; : : : ; (AH)k−1Lk}:
We stress that in our construction of block Krylov subspaces, we only have used exact deation of
columns that are linearly dependent. In an actual algorithm for constructing basis vectors forKn(A;R)
and Kn(AH;L) in �nite-precision arithmetic, one also needs to delete vectors that are in some sense
“almost” linearly dependent on earlier vectors. We will refer to the deletion of such almost linearly
dependent vectors as inexact deation. In Sections 3.4 and 3.5 below, we describe how exact and
inexact deation can be built easily into Arnoldi- and Lanczos-type algorithms for multiple starting
vectors. While inexact deation is crucial in practice, concise statements of theoretical results are
much simpler if only exact deation is performed. Throughout this paper, theoretical results are thus
formulated for exact deation only.
For later use, we note the following invariance property of the block Krylov subspaces Kn(A;R)

induced by the matrices A and R de�ned in (23).

Lemma 1. Let G ; C ; B be the matrix triplet used in the de�nition of the matrices A and R in
(23); and let J be any nonsingular matrix of the same size as A. Then the matrix triplets G ; C ; B
and JG ; JC ; JB lead to the same nth block Krylov subspace Kn(A;R).

Proof. By (23), we have

A= (G + s0C)−1C = (JG + s0JC)−1JC ;

R= (G + s0C)−1B = (JG + s0JC)−1JB:

Thus both matrix triplets result in the same matrices A and R and the associated block Krylov
subspaces are identical.

3.3. Basis vectors

The columns of the deated block Krylov sequences (27) and (32), which are used in the above
de�nitions of Kn(A;R) and Kn(AH;L), respectively, tend to be almost linearly dependent even for
moderate values of n. Therefore, they should not be used in numerical computations. Instead, we
construct other suitable basis vectors.
In the following,

C1; C2; : : : ; Cn ∈ CN (34)

denotes a set of basis vectors for Kn(A;R), i.e.,

span{C1; C2; : : : ; Cn}=Kn(A;R):
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The N × n matrix
Vn := [C1 C2 · · · Cn] (35)

whose columns are the basis vectors (34) is called a basis matrix for Kn(A;R).
Similarly,

w1;w2; : : : ;wn ∈ CN (36)

denotes a set of basis vectors for Kn(AH;L), i.e.,

span{w1;w2; : : : ;wn}=Kn(AH;L):

The N × n matrix
Wn := [w1 w2 · · · wn] (37)

is called a basis matrix for Kn(AH;L).
We stress that even though (34) and (36) are basis vectors of block Krylov subspaces, the

algorithms discussed in this paper generate (34) and (36) in a vector-wise fashion, as opposed
to the block-wise construction employed in more traditional block Krylov-subspace methods; see,
e.g. the references given in [1]. There are two main reasons why the vector-wise construction is
preferable to a block-wise construction. First, it greatly simpli�es both the detection of necessary
deation and the actual deation itself. In fact, all that is required is checking if a suitable candidate
vector for the next basis vector is the zero vector (for exact deation) or close to the zero vector (for
inexact deation). Second, for Lanczos-type methods, which simultaneously construct basis vectors
(34) and (36) for Kn(A;R) and Kn(AH;L), respectively, only the vector-wise construction allows
the treatment of the general case where the block sizes (28) and (33) of the deated block Krylov
sequences (27) and (32) are not necessarily the same; for a detailed discussion, we refer the reader
to [1].

3.4. Arnoldi basis

The classical Arnoldi process [3] generates orthonormal basis vectors for the sequence of Krylov
subspaces Kn(A; r), n¿1, induced by A and a single starting vector r. In this subsection, we state
an Arnoldi-type algorithm that extends the classical algorithm to block-Krylov subspaces Kn(A;R),
n¿1.
Like the classical Arnoldi process, the algorithm constructs the basis vectors (34) to be orthonor-

mal. In terms of the basis matrix (35), this orthonormality can be expressed as follows:

VH
n Vn = I :

In addition to (34), the algorithm produces the so-called candidate vectors,

Ĉn+1; Ĉn+2; : : : ; Ĉn+mc ; (38)

for the next mc basis vectors Cn+1; Cn+2; : : : ; Cn+mc . Here, mc = mc(n) is the number m of columns in
the starting block (24), R, reduced by the number of exact and inexact deations that have occurred
so far. The candidate vectors (38) satisfy the orthogonality relation

VH
n [Ĉn+1 Ĉn+2 · · · Ĉn+mc ] = 0:
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Due to the vector-wise construction of (34) and (38), detection of necessary deation and the
actual deation becomes trivial. In fact, essentially the same proof as given in [1] for the case of
a Lanczos-type algorithm can be used to show that exact deation at step n of the Arnoldi-type
process occurs if, and only if, Ĉn = 0. Similarly, inexact deation occurs if, and only if, ‖Ĉn‖ ≈ 0,
but Ĉn 6= 0. Therefore, in the algorithm, one checks if

‖Ĉn‖6dtol; (39)

where dtol¿0 is a suitably chosen deation tolerance. If (39) is satis�ed, then Ĉn is deated by
deleting Ĉn, shifting the indices of all remaining candidate vectors by −1, and setting mc = mc − 1.
If this results in mc = 0, then the block-Krylov subspace is exhausted and the algorithm is stopped.
Otherwise, the deation procedure is repeated until a vector Ĉn with ‖Ĉn‖¿ dtol is found. This
vector is then turned into Cn by normalizing it to have Euclidean norm 1.
A complete statement of the resulting Arnoldi-type algorithm is as follows.

Algorithm 1 (Construction of Arnoldi basis for Kn(A;R).).

(0) Set Ĉi = ri for i = 1; 2; : : : ; m.
Set mc = m.

For n= 1; 2; : : : ; do:
(1) Compute ‖Ĉn‖ and check if the deation criterion (39) is ful�lled.

If yes; Ĉn is deated by doing the following:
Set mc = mc − 1. If mc = 0; set n= n− 1 and stop.
Set Ĉi = Ĉi+1 for i = n; n+ 1; : : : ; n+ mc − 1.
Return to Step (1).

(2) Set tn;n−mc = ‖Ĉn‖ and Cn = Ĉn=tn;n−mc .
(3) Compute Ĉn+mc = ACn.
(4) For i = 1; 2; : : : ; n do:

Set ti; n = CHi Ĉn+mc and Ĉn+mc = Ĉn+mc − Citi; n.
(5) For i = n− mc + 1; n− mc + 2; : : : ; n− 1 do:

Set tn; i = CHn Ĉi+mc and Ĉi+mc = Ĉi+mc − Cntn; i.

Remark 2. If dtol= 0 in (39), then Algorithm 1 performs only exact deation.

Remark 3. Other block-Arnoldi algorithms (all without deation though) can be found in [28,
Section 6:12].

After n passes through the main loop, Algorithm 1 has constructed the �rst n basis vectors (34)
and the candidate vectors (38) for the next mc basis vectors. In terms of the basis matrix (35), Vn,
the recurrences used to generate all these vectors can be written compactly in matrix format. To this
end, we collect the recurrence coe�cients computed during the �rst n=m1 and n¿1 passes through
the main loop of Algorithm 1 in the matrices

� := [ti; l−m]i=1;2; :::;m1
l=1;2; :::;m

and Tn := [ti; l]i=1;2; :::; n
l=1;2; :::; n

; (40)
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respectively. Here, m1 is the integer given by (27) and (28). Moreover, in (40), all elements ti; l−m
and ti; l that are not explicitly de�ned in Algorithm 1 are set to be zero. The compact statement of
the recurrences used in Algorithm 1 is now as follows. For n¿1, we have

AVn = VnTn + [0 · · · 0 Ĉn+1 Ĉn+2 · · · Ĉn+mc ]: (41)

Furthermore, for n= m1, we have the relation

R= Vm1�; (42)

which reects the fact that the �rst m1 basis vectors are obtained by orthonormalizing the columns
of the matrix (24), R. In (41) and (42), we assumed that only exact deations are performed. If

both exact and inexact deations are performed, then an additional matrix term, say V̂
de

n , appears

on the right-hand side of (41), respectively (42). The only non-zero columns of V̂
de

n are those
non-zero vectors that satis�ed the deation check (39). Since at any stage of Algorithm 1, at most
m−mc =m−mc(n) vectors have been deated, the additional matrix term is small in the sense that

‖V̂ de

n ‖6dtol
√
m− mc(n):

3.5. Lanczos basis

The classical Lanczos process [21] generates two sequences of basis vectors (34) and (36) that
span the Krylov subspaces Kn(A; r) and Kn(AH; l), respectively, where r and l are single start-
ing vectors. In [1], a Lanczos-type method was presented that extends the classical algorithm to
block-Krylov subspaces Kn(A;R) and Kn(AH;L) with blocks R and L of multiple right and left
starting vectors (24) and (31). Such a Lanczos-type method is necessarily quite involved, and in
order to keep this paper reasonably short, here we only state the governing equations that underlie
the algorithm. For a complete listing of the actual algorithm, we refer the reader to [13, Algorithm
9:2].
Like the classical Lanczos process, the extended algorithm constructs the basis vectors (34) and

(36) to be biorthogonal. In terms of the associated basis matrices (35) and (37), the biorthogonality
can be expressed as follows:

WH
n Vn = �n := diag(�1; �2; : : : �n): (43)

Here, for simplicity, we have assumed that no look-ahead steps are necessary. This implies that �n
is a diagonal matrix, as stated in (43), and that all diagonal entries of �n are nonzero. If look-ahead
steps occur, then �n is a block-diagonal matrix; see [1] for further details. In addition to (34) and
(36), the algorithm constructs the candidate vectors

Ĉn+1; Ĉn+2; : : : ; Ĉn+mc and ŵn+1; ŵn+2; : : : ; ŵn+pc (44)

for the next mc basis vectors Cn+1; Cn+2; : : : ; Cn+mc and the next pc basis vectors wn+1;wn+2; : : : ;wn+pc ,
respectively. Here, as in Section 3.4, mc = mc(n) is the number m of columns in the right starting
block (24), R, reduced by the number of exact and inexact deations of candidate vectors Ĉn that
have occurred so far. Analogously, pc =pc(n) is the number p of columns in the left starting block
(31), L, reduced by the number of exact and inexact deations of candidate vectors ŵn that have
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occurred so far. Similar to (39) a deation of the candidate vector Ĉn, respectively ŵn, is performed
if, and only if,

‖Ĉn‖6dtol; respectively ‖ŵn‖6dtol; (45)

where dtol¿0 is a suitably chosen deation tolerance. If dtol=0, then (45) only checks for exact
deation.
The candidate vectors (44) are constructed to satisfy the following biorthogonality relations:

WH
n [Ĉn+1 Ĉn+2 · · · Ĉn+mc ] = 0;

VH
n [ŵn+1 ŵn+2 · · · ŵn+pc ] = 0:

(46)

The actual recurrences used to generate the basis vectors (34) and (36) and the candidate vectors
(44) can be summarized compactly in matrix form. For simplicity, we again assume that only exact
deation is performed. Then, for n¿1, we have

AVn = VnTn + [0 · · · 0 Ĉn+1 Ĉn+2 · · · Ĉn+mc ];
AHWn =WnT̃ n + [0 · · · 0 ŵn+1 ŵn+2 · · · ŵn+pc ]: (47)

Moreover, for n= m1, respectively n= p1, we have the relations

Vm1�= R; respectively Wp1�= L; (48)

which summarize the recurrences for processing the starting blocks R and L. We note that the
matrices Tn and T̃ n in (47) essentially encode the same information. In fact, by pre-multiplying the
�rst and second relation in (47) by Wn and Vn and by using (43) and (46), it follows that

WH
n AVn = �nTn = T̃

H

n�n: (49)

In particular, (49) implies that T̃
H

n = �nTn�
−1
n .

Finally, we note that for symmetric transfer functions (18), such as the ones describing RLC
subcircuits, the Lanczos-type method sketched in this section can exploit the symmetry inherent in
(18). Indeed, in this case, the Lanczos basis vectors (34) and (36) are connected as follows:

wn = n(G + s0C)Cn for all n: (50)

Here, n 6= 0 are suitable normalization factors. In view of (50), only the vectors (34) need to be
generated. This results in a symmetric variant of the Lanczos-type method that requires only half the
computational work and storage of the general case; see [15–17] for further details. For later use,
we note that for symmetric transfer functions (18), the coe�cient matrices in (48) can be chosen
to be identical:

�= � ∈ Rm1×m: (51)

In fact, by (23), (18), and (19), (G + s0C)R = B = L and all these matrices are real. In view of
(48) and (50), this implies (51).

4. Reduced-order models based on projection

In this section, we introduce two reduced-order models based on a one-sided projection onto
Kn(A;R), respectively a two-sided projection onto Kn(A;R) and Kn(AH;L).
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4.1. Projection onto Kn(A;R)

Let Vn ∈ CN×n be a given matrix with full column rank n. By simply projecting the matrices G ,
C , B, and L in the original linear dynamical system (8) onto the subspace spanned by the columns
of Vn, we obtain a reduced-order model (9) with matrices Gn, Cn, Bn, and Ln given by

Gn :=VH
n GVn; Cn :=VH

n CVn; Bn :=VH
n B; Ln :=VH

n L: (52)

In particular, we now assume that Vn is a basis matrix (35) forKn(A;R). In this case, the reduced-order
model de�ned by (9) and (35) represents a (one-sided) projection of the original system (8) onto the
nth block-Krylov subspace Kn(A;R). In the sequel, we denote the associated reduced-order transfer
function by

H (1)
n (s) :=L

H
n (Gn + sCn)

−1Bn; (53)

where the superscript (1) indicates the one-sided projection. In Section 5.1 below, we show that H (1)
n

is a certain Pad�e-type approximant of the original transfer function H .
The following proposition shows that H (1)

n is independent of the actual choice of the basis matrix
Vn for Kn(A;R).

Proposition 4. The reduced-order transfer function H (1)
n given by (52) and (53) does not depend

on the particular choice of the basis matrix (35); Vn; for the nth block Krylov subspace Kn(A;R).

Proof. Let Vn be the basis matrix for Kn(A;R) that is used in (52). Let Ṽn be any other basis
matrix for Kn(A;R). In analogy to (52) and (53), Ṽn induces the reduced-order transfer function

H̃ n(s) = L̃
H

n (G̃ n + sC̃ n)−1B̃n; (54)

where

G̃ n = Ṽ
H

n GṼn; C̃ n = Ṽ
H

n CṼn; B̃n = Ṽ
H

n B; L̃n = Ṽ
H

n L:

Since Vn and Ṽn are basis matrices for the same subspace, there exists a nonsingular n × n matrix
M such that Ṽn = VnM . Using this relation, we obtain from (54) and (52) that

G̃ n =MHGnM ; C̃ n =MHCnM ; B̃n =MHBn; L̃n =MHLn: (55)

Inserting (55) into (54), we get

H̃ n(s) =LHnM(M
H(Gn + sCn)M)−1MHBn

=LHn (Gn + sCn)
−1Bn =H (1)

n (s):

Thus, the reduced-order transfer functions H (1)
n and H̃ n are identical.

4.2. Two-sided projection onto Kn(A;R) and Kn(AH;L)

Let Vn and Wn be any two basis matrices of Kn(A;R) and Kn(AH;L), and consider the represen-
tation (23) of the transfer function H of (8). By projecting the matrices in (23) from the right and
left onto the columns of Vn and Wn, respectively, we obtain the reduced-order transfer function

H (2)
n (s) := (V

H
n L)

H(WH
n Vn + (s− s0)WH

n AVn)
−1(WH

n R): (56)

In analogy to Proposition 4, we have the following result.
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Proposition 5. The reduced-order transfer function H (2)
n given by (56) does not depend on the

particular choice of the basis matrices Vn and Wn for the nth block Krylov subspaces Kn(A;R)
and Kn(AH;L).

Proof. Analogous to the proof of Proposition 4.

4.3. Computation via Krylov-subspace algorithms

In view of Proposition 5, the reduced-order transfer function (56), H (2)
n , can be generated from

any two basis matrices Vn and Wn. However, there is one distinguished choice of Vn and Wn that
eliminates the need to explicitly compute the projections in (56). This choice is the Lanczos basis
described in Section 3.5.
Indeed, let n¿max{m1; p1}, and assume that the Lanczos-type algorithm is run for n steps. Let �n

be the diagonal matrix de�ned in (43), and let Tn, �, and � be the matrices of recurrence coe�cients
given by (47) and (48). Then, from (43) and (48), it readily follows that

WH
n R= �n�n and VH

n L= �
H
n �n; (57)

where

�n :=
[

�
0n−m1×m

]
and �n :=

[
�

0n−p1×p

]
: (58)

Furthermore, by multiplying the �rst relation in (47) from the left by WH
n and using the �rst relation

in (46), as well as (43), we get

WH
n AVn = �nTn and WH

n Vn = �n: (59)

Inserting (57) and (59) into (56), it readily follows that

H (2)
n (s) = �

H
n (�

−1
n + (s− s0)Tn�−1

n )
−1�n: (60)

The MPVL (matrix-Pad�e via Lanczos) algorithm, which was �rst proposed in [9], is a numerical
procedure for computing H (2)

n via the formula (60).
For symmetric transfer functions (18), by (51) and (58), the reduced-order transfer function (60)

is also symmetric:

H (2)
n (s) = �

T
n (�

−1
n + (s− s0)Tn�−1

n )
−1�n; (61)

where �−1
n and Tn�

−1
n are real symmetric matrices. The SyMPVL algorithm [16,17] is a special

symmetric variant of the general MPVL algorithm that computes symmetric reduced-order transfer
functions (61).
Furthermore, recall from Section 2.4 that RLC subcircuits are described by special symmetric

transfer functions (18) with matrices G , C , and B of the form (16) and (17). In this case, as
we will discuss in Section 6, the reduced-order transfer function (60) in general does not preserve
the passivity of the RLC subcircuit. However, one can easily augment the SyMPVL algorithm to
generate a second projected reduced-order model that, by Corollary 14 below, is always passive.
To this end, let J be the matrix de�ned in (20), and consider the nonsymmetric formulation (21)
of the symmetric transfer function (18). Note that by Lemma 1, both formulations (18) and (21)
result in the same nth block Krylov subspace Kn(A;R). In particular, the Lanczos basis matrix Vn
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generated by SyMPVL is also a basis matrix for the nth block Krylov subspace associated with
the nonsymmetric formulation (21). Hence we can also use Vn to apply the one-sided projection of
Section 4.1 to (21). By (21), (52), and (53), the resulting projected reduced-order transfer function
is given by

H (1)
n (s) := (V

T
n B)

T(VT
n (JG)Vn + sV

T
n (JC)Vn)

−1(VT
n B): (62)

5. Connections with Pad�e-type and Pad�e approximants

In this section, we show that the one-sided projection H (1)
n is actually a matrix-Pad�e-type approx-

imant of H , and we review the matrix-Pad�e property of H (2)
n .

5.1. H (1)
n is a matrix-Pad�e-type approximant

Although the reduced-order transfer function (53), H (1)
n , is de�ned via the simple one-sided pro-

jection (52), it satis�es an approximation property of the form (15), where, however, q(n) is not
maximal in general. This means that H (1)

n is a matrix-Pad�e-type approximant of H . For the special
case of expansion point s0 = 0 and a basis matrix Vn generated by a simple block Arnoldi proce-
dure without deation, it was �rst observed in [22,23] that H (1)

n satis�es an approximation property
(15). Here, we extend this result to the most general case of arbitrary expansion points s0 and ar-
bitrary basis matrices Vn for the properly de�ned block Krylov subspaces Kn(A;R) that allow for
necessary deation of linearly dependent vectors. The only further assumption we need is that the
matrix

Gn + s0Cn is nonsingular: (63)

This guarantees that s0 is not a pole of H (1)
n . Since, by (52),

Gn + s0Cn = VH
n (G + s0C)Vn;

the condition (63) also ensures that the matrix G + s0C is nonsingular.
Expanding the transfer function H in (23) about s0, we get

H(s) =
∞∑
i=0

(−1)iMi(s− s0)i ; where Mi :=LHAiR: (64)

On the other hand, expanding the reduced-order transfer function H (1)
n in (52) about s0 gives

H (1)
n (s) =

∞∑
i=0

(−1)iM (1)
i (s− s0)i ; (65)

where

M (1)
i :=LHn ((Gn + s0Cn)

−1Cn)i(Gn + s0Cn)−1Bn:

We now show that for any n of the form (29), the �rst j terms in the expansions (64) and (65)
are identical. To this end, we �rst establish the following proposition.
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Proposition 6. Let n= m1 + m2 + · · ·+ mj; where 16j6jmax. Then; the matrix
Fn :=Vn(Gn + s0Cn)−1VH

n C (66)

satis�es the following relations:

M (1)
i = LHF inR for all i = 0; 1; : : : ; (67)

F inR= A
iR for all i = 0; 1; : : : ; j − 1: (68)

Proof. By (29) and (30), for each i = 1; 2; : : : ; j, the columns of the matrix AiR are all contained
in Kn(A;R). Since Vn is a basis matrix for Kn(A;R), for each i = 1; 2; : : : ; j, there exists an n× m
matrix Ei such that

Ai−1R= VnEi : (69)

We now prove (67). From (23) and (69) (for i = 1), we get

B = (G + s0C)R= (GVn + s0CVn)E1: (70)

Multiplying (70) from the left by VH
n and using (52), it follows that

(Gn + s0Cn)−1Bn = E1: (71)

Moreover, from (66), we obtain the relation FnVn = Vn(Gn + s0Cn)−1Cn, which, by induction on i,
implies that

F inVn = Vn((Gn + s0Cn)
−1Cn)i for all i = 0; 1; : : : : (72)

Note that, by (52), LHn =L
HVn. Using this relation, as well as (65), (71), (72), and (69) (for i=1),

it follows that, for all i = 0; 1; : : : ;

M (1)
i =LH(Vn((Gn + s0Cn)−1Cn)i)((Gn + s0Cn)−1Bn)

=LH(F inVn)E1 = L
HF inR:

This is just the desired relation (67).
Next, we prove (68) using induction on i. For i = 0, (68) is trivially satis�ed. Now assume that

(68) is true for some 06i¡ j − 1. We show that (68) then also holds true for i + 1, i.e.,
F i+1n R= Ai+1R: (73)

Using (23), (68), and (69) (with i replaced by i + 1), we get

((G + s0C)−1C)(F inR) = A(A
iR) = Ai+1R= VnEi+1: (74)

Multiplying (74) from the left by VH
n (G + s0C), it follows that

(VH
n C)(F

i
nR) = (V

H
n (G + s0C)Vn)Ei+1 = (Gn + s0Cn)Ei+1: (75)

Using (66) and (69) (with i replaced by i + 1), we obtain from (75) that

F i+1n R= Fn(F inR) = Vn((Gn + s0Cn)
−1VH

n C)(F
i
nR)

=VnEi+1 = Ai+1R;

which is just the desired relation (73).
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Theorem 7. Let n=m1+m2+ · · ·+mj; where 16j6jmax; and let H (1)
n be the reduced-order transfer

function given by (52) and (53). Let s0 ∈ C be an expansion point such that (63) is satis�ed.
Then; H (1)

n satis�es

H (1)
n (s) =H(s) + O(s− s0) j; (76)

i.e.; H (1)
n is a matrix-Pad�e-type approximant of the transfer function (12); H .

Proof. By (64) and (65), the assertion (76) is equivalent to

M (1)
i =Mi for all i = 0; 1; : : : ; j − 1: (77)

By Proposition 6, the matrix Fn de�ned in (66) satis�es relations (67) and (68). Inserting (68) into
(67) gives

M (1)
i = LHF inR= L

HAiR=Mi for all i = 0; 1; : : : ; j − 1;
which is just the desired property (77).

Remark 8. By (28) and (29), we have j¿bn=mc. Therefore, by Theorem 7, the Taylor expansions
of H (1)

n and H about s0 match in at least the �rst bn=mc coe�cient matrices.

Remark 9. If p¡m, then a matrix-Pad�e-type approximant that matches at least the �rst bn=pc
Taylor coe�cient matrices of H about s0 can be obtained by performing the one-sided projection
described in Section 4.1 onto Kn(AH;L), instead of Kn(A;R).

5.2. H (2)
n is a matrix-Pad�e approximant

It turns out that, in general, the reduced-order transfer function H (2)
n de�ned in (56) is even a

better approximation to H than H (1)
n . To properly state this result, we �rst de�ne the integers

nmin :=max{m1; p1} and nmax :=min




jmax∑
j=1

mj;
kmax∑
k=1

pk


 ;

where the mj’s and pk’s are the integers given by (27), (28) and (32), (33), respectively. The main
result of this section is then as follows.

Theorem 10. Let nmin6n6nmax; and let j = j(n) and k = k(n) be the maximal integers such that

m1 + m2 + · · ·+ mj6n and p1 + p2 + · · ·+ pk6n; (78)

respectively. Let s0 ∈ C be an expansion point such that (63) is satis�ed; and let H (2)
n be the

reduced-order transfer function given by the two-sided projection (56). Then; H (2)
n satis�es

H (2)
n (s) =H(s) + O(s− s0)q(n); where q(n) = j(n) + k(n): (79)

Moreover; in (79); the exponent q(n) is as large as possible; and hence H (2)
n is a matrix-Pad�e

approximant of the transfer function (12); H .
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Proof. In [12], we studied the reduced-order transfer function H (2)
n given by (60), where �n, �n,

�n, and Tn are the matrices generated by n steps of the Lanczos-type method sketched in Section
3.5. In particular, in [12, Theorem 1], we showed that H (2)

n satis�es the properties listed in Theorem
10 above. Recall from Section 4.2 that the reduced-order transfer functions de�ned in (56) via a
two-sided projection and the one given by (60) in terms of the Lanczos-type method are identical.
Therefore, the assertions in Theorem 10 follow from [12, Theorem 1].

Remark 11. In view of (28), (33), and (78), we have j(n)¿bn=mc and k(n)¿bn=pc. Therefore, by
Theorem 10, the Taylor expansions of H (2)

n and H about s0 match in at least the �rst bn=mc+bn=pc
coe�cient matrices.

6. Passivity and stability

As we discussed in Section 2, in circuit simulation, reduced-order modeling is mostly applied
to large passive linear subcircuits, such as RLC networks consisting of only resistors, inductors,
and capacitors. When reduced-order models of such subcircuits are used within a simulation of the
whole circuit, stability of the overall simulation can only be guaranteed if the reduced-order models
preserve the passivity of the original subcircuits; see, e.g. [6,27]. Unfortunately, except for special
cases such as RC subcircuits consisting of only resistors and capacitors, the Pad�e model given by
H (2)
n is not passive in general; see, e.g. [4,7,14,15,19]. In this section, we derive a su�cient criterion

for passivity of general transfer functions, and then apply the criterion to establish passivity of the
particular projected model given by (62).
Roughly speaking, a (linear or nonlinear) dynamical system is passive if it does not generate

energy. The concept was �rst used in circuit theory; see, e.g. [2,18]. For example, networks consisting
of only resistors, inductors, and capacitors are passive.
The following well-known theorem (see, e.g. [2,31]) relates the passivity of the linear dynamical

system (8) to the positive realness of its transfer function. Here and in the sequel, we assume that
m= p in (8).

Theorem A. The linear dynamical system (8) is passive if; and only if; the associated transfer
function (12); H , is positive real.

The de�nition of a positive real matrix-valued function is as follows; see, e.g. [2].

De�nition 12. A function H : C 7→ (C ∪ {∞})m×m is called positive real if
(i) H has no poles in C+;
(ii) H( �s) =H(s) for all s ∈ C;
(iii) Re(xHH(s)x)¿0 for all s ∈ C+ and x ∈ Cm.

Recall that a function H : C 7→ (C ∪ {∞})m×m is stable if H has no poles in C+ and if all
possible purely imaginary poles of H are simple. It is well known that any positive real function is
necessary stable.
Next, we prove the following su�cient condition for positive realness.
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Theorem 13. Let G ;C ∈ RN×N ; and B ∈ RN×m. Assume that G + GT¿0; C = CT¿0; and that
G + sC is a regular matrix pencil. Then; the transfer function

H(s) :=BT(G + sC)−1B; s ∈ C; (80)

is positive real.

Proof. We need to show that H satis�es the conditions (i)–(iii) given in De�nition 12.
Condition (ii) follows directly from the fact that the matrices G , C , and B in (80) are real.
Next, we verify condition (iii). Let s=s1+ is2 ∈ C+ be arbitrary, but �xed. Here i :=

√−1 denotes
the purely imaginary unit. Note that

(G + sC)H = S − K ; (81)

where

S := 1
2(G + G

T) + s1C ; K := 1
2(G − GT) + is2C :

Recall that G + GT¿0, C = CT¿0, and s1 = Re s¿ 0. This guarantees that S¿0 and K =−KH.
These properties imply that yHSy¿0 and Re(yHKy)=0 for all y ∈ CN . Therefore, by (81), we have

Re(yH(G + sC)Hy) = yHSy¿0 for all y ∈ CN : (82)

We now assume that s ∈ C+ is such that the matrix G + sC is nonsingular. Furthermore, let x ∈ Cm
be arbitrary, and set

y := (G + sC)−1Bx: (83)

Then, by (80) and (83), we have

xHH(s)x= xHBT(G + sC)−1Bx

= xHBT(G + sC)−H(G + sC)H(G + sC)−1Bx

= yH(G + sC)Hy: (84)

Combining (82) and (84), it follows that

Re(xHH(s)x) = Re(yH(G + sC)Hy)¿0 for all x ∈ Cm (85)

and for all s ∈ C+ for which G + sC is nonsingular. Now let ŝ ∈ C+ be such that G + ŝC is
singular. Note that there are at most N such “singular” points ŝ, since G + sC is assumed to be a
regular matrix pencil. Therefore, each ŝ is an isolated point in C+, i.e., there exists an �= �(ŝ)¿ 0
and a (punctured) neighborhood

D� := {s ∈ C | 0¡ |s− ŝ|6�}
of ŝ such that D�⊂C+ and the matrix G + sC is nonsingular for all s ∈ D�. Thus (85) holds
true for all s ∈ D�. If ŝ is not a pole of the rational function H , then H(ŝ) = lims→ŝH(s) is a
�nite m × m matrix. In this case, by taking limits s → ŝ in (85), it follows that (85) also holds
true for s = ŝ. Now suppose that ŝ is a pole of H . Then at least one of the components hjk(s) of
H(s) = [hjk(s)]16j; k6m has a pole at ŝ. Such an hjk(s) maps D� onto a suitable neighborhood of ∞
in the complex plane and, in particular, attains large negative numbers in D�. By selecting a suitable
component hjk of H and an associated vector x ∈ CN , it is thus possible to �nd a point s ∈ D� such
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that Re(xHH(s)x)¡ 0. However, this is a contradiction to (85), and therefore, ŝ cannot be a pole
of H . This concludes the proof of (iii).
It remains to verify condition (i). By (80), if ŝ is a pole of H , then the matrix G + ŝC is

necessarily singular, i.e., ŝ is a singular point. However, we have just shown that there are no such
singular points ŝ ∈ C+. Consequently, H cannot have poles in C+.
The matrix function H satis�es all three conditions (i)–(iii), and hence H is positive real.

Finally, we apply Theorem 13 to the reduced-order transfer function (62).

Corollary 14. Let H be the transfer function given by (21) with matrices that satisfy (22). Let
Vn ∈ RN×n have rank n and assume that the matrix pencil

Gn + sCn :=VT
n (JG)Vn + sV

T
n (JC)Vn (86)

is regular. Then; the reduced-order transfer function

H (1)
n (s) := (V

T
n B)

T(Gn + sCn)−1(VT
n B) (87)

is positive real; and thus the reduced-order model given by (87) is passive.

Proof. By (22) and (86), it follows that Gn + GT
n¿0 and Cn = C

T
n¿0. The transfer function (87),

H (1)
n , is thus positive real by Theorem 13.

7. Numerical examples

In this section, we present two circuit examples.

7.1. A package model

The �rst example arises in the analysis of a 64-pin package model used for an RF integrated
circuit. Only eight of the package pins carry signals, the rest being either unused or carrying supply
voltages. The package is characterized as a passive linear dynamical system with m=p=16 inputs
and outputs, representing eight exterior and eight interior terminals. The package model is described
by approximately 4000 circuit elements, resistors, capacitors, inductors, and inductive couplings,
resulting in a linear dynamical system with a state-space dimension of about 2000.
In [16], SyMPVL was used to compute a Pad�e-based reduced-order model (61) of the package,

and it was found that a model H (2)
n of order n = 80 is su�cient to match the transfer-function

components of interest. However, the model H (2)
n has a few poles in the right half of the complex

plane, and therefore, it is not passive.
In order to obtain a passive reduced-order model, we ran SyMPVL again on the package example,

and this time, also generated the projected reduced-order model H (1)
n given by (62). The expansion

point s0=5�×109 was used. Recall that H (1)
n is only a Pad�e-type approximant and thus less accurate

than the Pad�e approximant H (2)
n . Therefore, one now has to go to order n=112 to obtain a projected

reduced-order model H (1)
n that matches the transfer-function components of interest. Figs. 1 and

2 show the voltage-to-voltage transfer function between the external terminal of pin no. 1 and the
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Fig. 1. Package: Pin no. 1 external to Pin no. 1 internal, exact, projected model, and Pad�e model.

Fig. 2. Package: Pin no. 1 external to Pin no. 2 internal, exact, projected model, and Pad�e model.
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Fig. 3. Relative error of projected model and Pad�e model.

internal terminals of the same pin and the neighboring pin no. 2, respectively. The plots show results
with the projected model H (1)

n and the Pad�e model H (2)
n , both of order n= 112, compared with an

exact analysis.
In Fig. 3, we compare the relative error of the projected model H (1)

112 and the Pad�e model H
(2)
112 of

the same size. Clearly, the Pad�e model is more accurate. However, out of the 112 poles of H (2)
112,

22 have positive real part, violating the passivity of the Pad�e model. On the other hand, the projected
model is passive.

7.2. An extracted RC circuit

This is an extracted RC circuit with about 4000 elements and m= 20 ports. The expansion point
s0 = 0 was used. Since the projected model and the Pad�e model are identical for RC circuits, we
only computed the Pad�e model via SyMPVL.
The point of this example is to illustrate the usefulness of the deation procedure built into SyM-

PVL. It turned out that sweeps through the �rst two Krylov blocks, R and AR, of the block Krylov
sequence (26) were su�cient to obtain a reduced-order model that matches the transfer function
in the frequency range of interest. During the sweep through the second block, 6 almost linearly
dependent vectors were discovered and deated. As a result, the reduced-order model obtained with
deation is only of size n=2m− 6= 34. When SyMPVL was rerun on this example, with deation
turned o�, a reduced-order model of size n = 40 was needed to match the transfer function. In
Fig. 4, we show the H1;11 component of the reduced-order model obtained with deation and
without deation, compared to the exact transfer function. Clearly, deation leads to a signi�cantly
smaller reduced-order model that is as accurate as the bigger one generated without deation.
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Fig. 4. Impedance H1;11.

8. Concluding remarks

In the last few years, reduced-order modeling techniques based on Krylov subspaces have become
indispensable tools for tackling the large linear subcircuits that arise in the simulation of electronic
circuits. Much of this development was and continues to be driven by the emerging need to accurately
simulate the interconnect of electronic circuits. Today, circuit interconnect is typically modeled as
large linear passive subcircuits that are generated by automatic parasitics-extraction programs. Using
reduced-order modeling techniques has become crucial in order to reduce these subcircuits to a size
that is manageable for circuit simulators.
To guarantee stability of the overall simulation, it is crucial that passive subcircuits are approxi-

mated by passive reduced-order models. While reduced-order models based on projection are passive,
they are – in terms of number of matched Taylor coe�cients – only half as accurate as the cor-
responding, in general non-passive, Pad�e models of the same size. It remains an open problem to
describe and construct reduced-order models of a given size that are both passive and of maximal
possible accuracy.
Finally, today’s circuit simulation is based on the paradigm of lumped circuit elements, which

leads to systems of DAEs. As circuit feature sizes continue to decrease and circuit speeds continue
to increase, feature sizes are becoming comparable in size with signal wavelengths. As a result, at
least parts of a circuit must be modeled as distributed elements, such as transmission lines. Includ-
ing distributed elements in the simulation paradigm requires a fusion of traditional lumped circuit
simulation and electromagnetic simulation. Electromagnetic simulation, however, involves systems
of partial di�erential equations (PDEs). Combining lumped circuit simulation with electromagnetic
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simulation will thus require e�cient techniques for the solution of very large systems of DAEs
coupled with PDEs. One of the challenges then is to develop reduced-order modeling techniques
that allow to replace parts of such coupled systems with much smaller models. Research into and
development of such techniques have hardly begun.
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