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Let � be a finite set of nonzero linear forms in several variables with coefficients
in a field K of characteristic zero. Consider the K-algebra C��� of rational functions
generated by �1/α � α ∈ ��. Then the ring ∂�V � of differential operators with
constant coefficients naturally acts on C���. We study the graded ∂�V �-module
structure of C���. We especially find standard systems of minimal generators and
a combinatorial formula for the Poincaré series of C���. Our proofs are based on
a theorem by Brion–Vergne [4] and results by Orlik–Terao [9].  2002 Elsevier Science

(USA)

1. INTRODUCTION AND MAIN RESULTS

Let V be a vector space of dimension � over a field K of characteristic
zero. Let � be a finite subset of the dual space V ∗ of V . We assume that �
does not contain the zero vector and that no two vectors are proportional
throughout this paper. Let S = S�V ∗� be the symmetric algebra of V ∗. It is
regarded as the algebra of polynomial functions on V . Let S�0� be the field
of quotients of S, which is the field of rational functions on V .

Definition 1.1. Let C��� be the K-subalgebra of S�0� generated by the
set {

1
α

� α ∈ �

}
	

Regard C��� as a graded K-algebra with deg�1/α� = 1 for α ∈ �.
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Definition 1.2. Let ∂�V � be the K-algebra of differential operators
with constant coefficients. Agree that the constant multiplications are in
∂�V �	 K ⊂ ∂�V �.

If x1� 	 	 	 � x� are a basis for V ∗, then ∂�V � is isomorphic to the poly-
nomial algebra K�∂/∂x1� 	 	 	 � ∂/∂x��. Regard ∂�V � as a graded K-algebra
with deg�∂/∂xi� = 1 �1 ≤ i ≤ ��. It naturally acts on S�0�. We regard
C��� as a graded ∂�V �-module. In this paper we study the ∂�V �-module
structure of C���. In particular, we find systems of minimal generators
(Theorem 1.1) and a combinatorial formula for the Poincaré (or Hilbert)
series Poin�C���� t� of C��� (Theorem 1.2).

To present our results we need several definitions. Let Ep��� be the
set of all p-tuples composed of elements of �. Let E��� 	= ⋃

p≥0 Ep���.
The union is disjoint. Write

∏
� 	= α1 	 	 	 αp ∈ S when � = �α1� 	 	 	 � αp� ∈

Ep���. Then one can write

C��� = ∑
�∈E���

K
(∏

�
)−1

	

Let

Ei��� = �� ∈ E��� � � is linearly independent��
Ed��� = �� ∈ E��� � � is linearly dependent�	

Note that � ∈ Ed��� if � contains a repetition. In a special lecture at the
Japan Mathematical Society in 1992, K. Aomoto suggested the study of the
finite-dimensional graded K-vector space

AO��� 	= ∑
�∈Ei���

K
(∏

�
)−1

	

Let

���� = �ker�α� � α ∈ ��	
Then ���� is a (central) arrangement of hyperplanes [8] in V. K. Aomoto
conjectured, when K = R, that the dimension of AO��� is equal to the
number of connected components of

M������ 	= V \ ⋃
H∈����

H	

This conjecture was verified in [9]; where explicit K-bases for AO��� were
constructed. This paper can be considered as a sequel to [9]. (It should be
remarked that constructions in [9] were generalized for oriented matroids
by R. Cordovil [5].) We will prove the following

Theorem 1.1. Let � be a K-basis for AO���. Let ∂�V �+ denote the
maximal ideal of ∂�V � generated by the homogeneous elements of degree 1.
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Then

(1) the set � is a system of minimal generators for the ∂�V �-module
C���,

(2) C��� = ∂�V �+C��� ⊕AO���, and
(3) ∂�V �+C��� =

∑
�∈Ed��� K�∏��−1. In particular, ∂�V �+C��� is an

ideal of C���.
Let Poin������ t� be the Poincaré polynomial [8, Definition 2.48] of

����. (It is defined combinatorially and is known to be equal to the
Poincaré polynomial of M������ when K = C [7, 8, Theorem 5.93].) Then
we have

Theorem 1.2. The Poincaré series Poin�C���� t� of the graded module
C��� is equal to Poin������ �1 − t�−1t�.

To prove these theorems we essentially use a theorem by M. Brion and
M. Vergne [4, Theorem 1] and results from [9]. By Theorem 1.2 and the
factorization theorem (Theorem 2.4) in [12], we may easily show the fol-
lowing two corollaries:

Corollary 1.1. If ���� is a free arrangement with exponents �d1� 	 	 	 ,
d�� [12, 8, Definitions 4.15, 4.25], then

Poin�C���� t� = �1 − t�−�
�∏

i=1

�1 + �di − 1�t�	

Example 1.1. Let x1� 	 	 	 � x� be a basis for V ∗. Let � = �xi − xj � 1 ≤
i < j ≤ ��. Then ���� is known to be free arrangement with exponents
�0� 1� 	 	 	 � �− 1� [8, Example 4.32]. So, by Corollary 1.1, we have

Poin�C���� t� = �1 − t�−�+1�1 + t��1 + 2t� · · · �1 + ��− 2�t�	
For example, when � = 3, we have

Poin
(
K
[

1
x1 − x2

�
1

x2 − x3
�

1
x1 − x3

]
� t

)
= �1 + t�/�1 − t�2

= 1 + 3t + 5t2 + 7t3 + 9t4 + · · · �
which can be easily checked by direct computation.

When ���� is the set of reflecting hyperplanes of any (real or complex)
reflection group, Corollary 1.5 can be applied because ���� is known to be
a free arrangement [10, 13].

Corollary 1.2. If ���� is generic (i.e., ��� ≥ �, and any � vectors in �
are linearly independent), then

Poin�C���� t� = �1 − t�−�
�−1∑
i=0

( ��� − �+ i− 1
i

)
ti	
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2. PROOFS

In this section we prove Theorems 1.1 and 1.2. For ε ∈ E���, let V �ε�
denote the set of common zeros of ε	 V �ε� = ⋂p

i=1 ker�αi� when ε =
�α1� 	 	 	 � αp�.
Define

L = L��� = �V �ε� � ε ∈ E����	
Agree that V �ε� = V if ε is the empty tuple. Introduce a partial order ≤
into L by reverse inclusion: X ≤ Y ⇔ X ⊇ Y . Then L is equal to the
intersection lattice of the arrangement ���� [8, Definition 2.1]. For X ∈ L,
define

EX��� 	= �ε ∈ E��� � V �ε� = X�	
Then

E��� = ⋃
X∈L

EX��� (disjoint).

Define

CX��� 	=
∑

ε∈EX���
K
(∏

ε
)−1

	

Then CX��� is a ∂�V �-submodule of C���. The following theorem is equiv-
alent to Lemma 3.2 in [9]. Our proof is a rephrasing of the proof there.

Proposition 2.1.

C��� = ⊕
X∈L

CX���	

Proof. It is obvious that C��� = ∑
X∈L CX���. Suppose that

∑
X∈L

φX = 0 with φX ∈ CX���. We will show that φX = 0 for all X ∈ L. By tak-
ing out the degree p part, we may assume that degφX = p for all X ∈ L.
Let � = �X ∈ L � φX �= 0�. Suppose � is not empty. Then there exists
a minimal element X0 in � (with respect to the partial order by reverse
inclusion). Let X ∈ � \�X0� and write

φX = ∑
ε∈EX���

cε
(∏

ε
)−1

with cε ∈ K. Let ε ∈ EX���. Because of the minimality of X0, one has
X0 �X. Thus there exists α0 ∈ ε such that X0 � ker�α0�. Let I�X0� be the
prime ideal of S generated by the polynomial functions vanishing on X0.
Then α0 /∈ I�X0�. Thus

(∏
�
)p(∏

ε
)−1 ∈ I�X0�p��X0

�−p+1�
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where
∏
� 	= ∏

α∈� α and �X0
= � ∩ I�X0�. Multiply �∏��p to both sides

of

φX0
= − ∑

X∈S
X �=X0

φX

to get
(∏

�
)p
φX0

= − ∑
X∈S
X �=X0

(∏
�
)p
φX

= − ∑
X∈S
X �=X0

∑
ε∈EX���

cε
(∏

�
)p(∏

ε
)−1 ∈ I�X0�p��X0

�−p+1	

Since �∏��/�∏�X0
� ∈ S\I�X0� and I�X0�p��X0

�−p+1 is a primary ideal, one
has

(∏
�X0

)p
φX0

∈ I�X0�p��X0
�−p+1	

This is a contradiction because

deg
(∏

�X0

)p
φX0

= p��X0
� − p	

Therefore � = φ.

Next we will study the structure of CX��� for each X ∈ L. Let AOX���
be the K-subspace of AO��� generated over K by

{(∏
ε
)−1 � ε ∈ E���i ∩ EX���

}
	

Then

AO��� = ⊕
X∈L

AOX���

by Proposition 2.1. Let �X be a K-basis for AOX���. Then we have

Proposition 2.2. The ∂�V �-module CX��� can also be regarded as a free
∂�V/X�-module with a basis �X . In other words, there exists a natural graded
isomorphism

∂�V/X�⊗
K

AOX��� � CX���	

Proof. First assume that � spans V ∗ and X = �0�. Then E���i ∩ E���X
is equal to the set of K-bases for V ∗, which are contained in �. Thus
AOX��� is generated over K by

{(∏
ε
)−1 � ε ∈ E���� is a basis for V

}
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Similarly CX is spanned over K by
{(∏

ε
)−1 � ε ∈ E��� spans V

}
	

Then Theorem 1 of [4] is exactly the desired result. Next let X ∈ L and
�V = V/X. Regard the dual vector space �V ∗ as a subspace of V ∗ and the
symmetric algebra �S 	= S��V ∗� of �V ∗ as a subring of S. Then �X 	= I�X� ∩�
is a subset of �V ∗ and �X spans �V ∗. Consider AO��X� and C��X�, which
are both contained in �S�0�. Note that CX��� can be regarded as a ∂�V/X�-
module because ∂�X� annihilates CX���. Denote the zero vector of �V by
�X. Then it is not difficult to see that

C�X��X� � CX��� �as ∂��V �-modules��
AO�X��X� � AOX��� �as K-vector spaces�	

Since there exists a natural graded isomorphism

C�X��X� � ∂��V �⊗
K

AO�X��X��

one has

CX��� � ∂�V/X�⊗
K

AOX���	

Proof of Theorem 1	3. By Proposition 2.2, CX��� is generated over ∂�V �
by AOX���. Since

C��� = ⊕
X∈L

CX��� (Proposition 2.1),

and

AO��� = ⊕
X∈L

AOX����

the ∂�V �-module C��� is generated by AO���. So � generates C��� over
∂�V �. Define

J��� 	= ∑
ε∈Ed���

K
(∏

ε
)−1

�

which is an ideal of C���. Then it is known by [9, Theorem 4.2] that

C��� = J��� ⊕AO��� (as K-vector spaces).

It is obvious to see that

∂�V �+C��� ⊆ J���	
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On the other hand, we have

C��� = ∂�V �AO��� = ∂�V �+AO��� +AO���
= ∂�V �+C��� +AO���	

Combining these, we have (2) and (3) at the same time. By (2), we know
that � minimally generates C��� over ∂�V �, which is (1).

If M = ⊕
p≥0 Mp is a graded vector space with dimMp < +∞ �p ≥ 0�,

we let

Poin�M� t� =
∞∑
p=0

�dimMp�tp

be its Poincaré (or Hilbert) series. Recall [8, Sect. 2.42] the (one variable)
Möbius function µ	 L��� → Z defined by µ�V � = 1 and for X > V
by

∑
Y≤X µ�Y � = 0. Then the Poincaré polynomial Poin������ t� of the

arrangement ���� is defined by

Poin������ t� = ∑
X∈L

µ�X��−t�codimX	

Proposition 2.3 [9, Theorem 4.3]. For X ∈ L we have

dimAOX��� = �−1�codimXµ�X� and Poin�AO���� t� = Poin������ t�	
Recall that C��� is a graded ∂�V �-module. Since C��� is infinite-

dimensional, Poin�C���� t� is a formal power series. We now prove
Theorem 1.2, which gives a combinatorial formula for Poin�C���� t�.
Proof of Theorem 1	2. We have

Poin�C���� t� = ∑
X∈L

Poin�CX���� t�

= ∑
X∈L

Poin�∂�V/X�� t�Poin�AOX���� t�

by Propositions 2.1 and 2.2. Since the K-algebra ∂�V/X� is isomorphic to
the polynomial algebra with codim X variables, we have

Poin�C���� t� = ∑
X∈L

�1 − t�−codimXPoin�AOX���� t�	

By Proposition 2.3, we have

Poin�AOX���� t� = �−1�codimXµ�X�tcodimX	

Thus

Poin�C���� t� = ∑
X∈L

�−1�codimXµ�X�
(

t

1 − t

)codimX

= Poin������ �1 − t�−1t�	
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Let Der be the S-module of derivations:

Der = �θ � θ	 S → S is a K-linear derivations�	
Then Der is naturally isomorphic to S

⊗
K V . Define

D��� = �θ ∈ Der � θ�α� ∈ αS for any α ∈ ���
which is naturally an S-submodule of Der. We say that the arrangement
���� is free if D��� is a free S-module [8, Definition 4.15]. An element
θ ∈ D��� is said to be homogeneous of degree p if

θ�x� ∈ Sp for all x ∈ V ∗	

When ��V � is a free arrangement, let θ1� 	 	 	 � θ� be a homogeneous basis
for D���. The � nonnegative integers deg θ1� 	 	 	 � deg θ� are called the expo-
nents of ����. Then one has

Proposition 2.4 (Factorization Theorem [12], [8, Theorem 4.137]). If
���� is a free arrangement with exponents d1� 	 	 	 � d�, then

Poin�A���� t� =
�∏

i=1

�1 + dit�	

By Theorem 1.2 and Proposition 2.4, we immediately have Corollary 1.1.
The arrangement ���� is generic if ��� ≥ � and any � vectors in � are

linearly independent. In this case, it is easy to see that [8, Lemma 5.122]

Poin������ t� = �1 + t�
�−1∑
i=0

( ��� − 1
i

)
ti	

Proof of Corollary 1	2. By Theorem 1.2, one has

Poin�C���� t� =
(

1 + t

1 − t

) �−1∑
i=0

( ��� − 1
i

)(
t

1 − t

)i

= �1 − t�−�
�−1∑
i=0

�1 − t��−i−1
( ��� − 1

i

)
ti

= �1 − t�−�
�−1∑
i=0

( ��� − 1
i

)
ti

�−i−1∑
j=0

(
�− i− 1

j

)
�−1�jtj

= �1 − t�−�
�−1∑
k=0

tk
k∑
j=0

�−1�j
( ��� − 1

k− j

)(
�− k+ j − 1

j

)
	

On the other hand, we have
k∑
j=0

�−1�j
( ��� − 1

k− j

)(
�− k+ j − 1

j

)
=

( ��� − �+ k− 1
k

)
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by equating the coefficients of xk in �1 + x����−�+k−1 and �1 + x����−1�1 +
x�−��−k�. This proves the assertion.

We now consider the nbc (no broken circuit) bases [1–3, 6, 9, p. 72].
Suppose that � is linearly ordered: � = �α1� 	 	 	 � αn�. Let X ∈ L with
codim X = p. Define

nbcX��� 	= �ε ∈ EX��� � ε = �αi1
� 	 	 	 � αip

�� i1 < · · · < ip�

contains no broken circuits�	
Let �X = ��∏ ε�−1 � ε ∈ nbcX���� for X ∈ L. Then we have

Proposition 2.5 [9, Theorem 5.2]. Let X ∈ L. The set �X is a K-basis
for AOX���.

Thanks to Propositions 2.1, 2.2, and 2.5 we easily have

Proposition 2.6. Let � = ⋃
X∈L�X = �φ1� 	 	 	 � φm�. Write supp�φi� =

X if φi ∈ �X . Then, for any φ ∈ C��� and j ∈ �1� 	 	 	 �m�, there uniquely
exists θj ∈ ∂�V/supp�φj�� such that

φ =
m∑
j=1

θj�φj�	

Remark 2	1. Suppose that � spans V ∗ and that AO�0���� =
∑q

j=1 Kφj ,
where q = �µ��0���. Then the mapping

φ �→
q∑

j=1

θ
�0�
j �φj� ∈ AO�0����

is the restriction to C��� of the Jeffrey–Kirwan residue [4, Definition 6,
11]. Here θ

�0�
j is the degree zero part of θj �j = 1� 	 	 	 � q�.
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