Algebras Generated by Reciprocals of Linear Forms

Hiroaki Terao¹

Mathematics Department, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan E-mail: hterao@comp.metro-u.ac.jp

Communicated by Efim Zelmanov

Received May 30, 2001

Let Δ be a finite set of nonzero linear forms in several variables with coefficients in a field **K** of characteristic zero. Consider the **K**-algebra $C(\Delta)$ of rational functions generated by $\{1/\alpha \mid \alpha \in \Delta\}$. Then the ring $\partial(V)$ of differential operators with constant coefficients naturally acts on $C(\Delta)$. We study the graded $\partial(V)$ -module structure of $C(\Delta)$. We especially find standard systems of minimal generators and a combinatorial formula for the Poincaré series of $C(\Delta)$. Our proofs are based on a theorem by Brion–Vergne [4] and results by Orlik–Terao [9]. © 2002 Elsevier Science (USA)

1. INTRODUCTION AND MAIN RESULTS

Let V be a vector space of dimension ℓ over a field **K** of characteristic zero. Let Δ be a finite subset of the dual space V^* of V. We assume that Δ does not contain the zero vector and that no two vectors are proportional throughout this paper. Let $S = S(V^*)$ be the symmetric algebra of V^* . It is regarded as the algebra of polynomial functions on V. Let $S_{(0)}$ be the field of quotients of S, which is the field of rational functions on V.

DEFINITION 1.1. Let $C(\Delta)$ be the **K**-subalgebra of $S_{(0)}$ generated by the set

$$\bigg\{\frac{1}{\alpha} \mid \alpha \in \Delta\bigg\}.$$

Regard $C(\Delta)$ as a graded K-algebra with $deg(1/\alpha) = 1$ for $\alpha \in \Delta$.

¹Partially supported by the Grant-in-Aid for Scientific Research (No. 11440012), the Ministry of Education, Sports, Science and Technology, Japan.

0021-8693/02 \$35.00 © 2002 Elsevier Science (USA) All rights reserved. DEFINITION 1.2. Let $\partial(V)$ be the **K**-algebra of differential operators with constant coefficients. Agree that the constant multiplications are in $\partial(V)$: $\mathbf{K} \subset \partial(V)$.

If x_1, \ldots, x_ℓ are a basis for V^* , then $\partial(V)$ is isomorphic to the polynomial algebra $\mathbf{K}[\partial/\partial x_1, \ldots, \partial/\partial x_\ell]$. Regard $\partial(V)$ as a graded \mathbf{K} -algebra with $\deg(\partial/\partial x_i) = 1$ $(1 \le i \le \ell)$. It naturally acts on $S_{(0)}$. We regard $C(\Delta)$ as a graded $\partial(V)$ -module. In this paper we study the $\partial(V)$ -module structure of $C(\Delta)$. In particular, we find systems of minimal generators (Theorem 1.1) and a combinatorial formula for the Poincaré (or Hilbert) series Poin($C(\Delta)$, t) of $C(\Delta)$ (Theorem 1.2).

To present our results we need several definitions. Let $\mathbf{E}_p(\Delta)$ be the set of all *p*-tuples composed of elements of Δ . Let $\mathbf{E}(\Delta) := \bigcup_{p \ge 0} \mathbf{E}_p(\Delta)$. The union is disjoint. Write $\prod \mathcal{C} := \alpha_1 \dots \alpha_p \in S$ when $\mathcal{C} = (\alpha_1, \dots, \alpha_p) \in \mathbf{E}_p(\Delta)$. Then one can write

$$C(\Delta) = \sum_{\mathscr{C} \in \mathbf{E}(\Delta)} \mathbf{K} \left(\prod \mathscr{C} \right)^{-1}$$

Let

 $\mathbf{E}^{i}(\Delta) = \{ \mathscr{C} \in \mathbf{E}(\Delta) \mid \mathscr{C} \text{ is linearly independent} \},\$

 $\mathbf{E}^{d}(\Delta) = \{ \mathscr{C} \in \mathbf{E}(\Delta) \mid \mathscr{C} \text{ is linearly dependent} \}.$

Note that $\mathscr{C} \in \mathbf{E}^{d}(\Delta)$ if \mathscr{C} contains a repetition. In a special lecture at the Japan Mathematical Society in 1992, K. Aomoto suggested the study of the finite-dimensional graded **K**-vector space

$$AO(\Delta) \coloneqq \sum_{{}^{{}_{{ {igs \in {f E}}^i}}}(\Delta)} {f K} \Big(\prod {}^{{}_{{ {igs C}}}}\Big)^{-1}.$$

Let

 $\mathscr{A}(\Delta) = \{ \ker(\alpha) \mid \alpha \in \Delta \}.$

Then $\mathcal{A}(\Delta)$ is a (central) arrangement of hyperplanes [8] in V. K. Aomoto conjectured, when $\mathbf{K} = \mathbf{R}$, that the dimension of $AO(\Delta)$ is equal to the number of connected components of

$$M(\mathscr{A}(\Delta)) := V \setminus \bigcup_{H \in \mathscr{A}(\Delta)} H.$$

This conjecture was verified in [9]; where explicit **K**-bases for $AO(\Delta)$ were constructed. This paper can be considered as a sequel to [9]. (It should be remarked that constructions in [9] were generalized for oriented matroids by R. Cordovil [5].) We will prove the following

THEOREM 1.1. Let \mathscr{B} be a **K**-basis for $AO(\Delta)$. Let $\partial(V)_+$ denote the maximal ideal of $\partial(V)$ generated by the homogeneous elements of degree 1.

Then

(1) the set \mathscr{B} is a system of minimal generators for the $\partial(V)$ -module $C(\Delta)$,

(2)
$$C(\Delta) = \partial(V)_+ C(\Delta) \oplus AO(\Delta)$$
, and

(3) $\partial(V)_+C(\Delta) = \sum_{\mathscr{C} \in \mathbf{E}^d(\Delta)} \mathbf{K}(\prod \mathscr{C})^{-1}$. In particular, $\partial(V)_+C(\Delta)$ is an ideal of $C(\Delta)$.

Let Poin($\mathscr{A}(\Delta)$, t) be the Poincaré polynomial [8, Definition 2.48] of $\mathscr{A}(\Delta)$. (It is defined combinatorially and is known to be equal to the Poincaré polynomial of $M(\mathscr{A}(\Delta))$ when $\mathbf{K} = \mathbf{C}$ [7, 8, Theorem 5.93].) Then we have

THEOREM 1.2. The Poincaré series $Poin(C(\Delta), t)$ of the graded module $C(\Delta)$ is equal to $Poin(\mathscr{A}(\Delta), (1-t)^{-1}t)$.

To prove these theorems we essentially use a theorem by M. Brion and M. Vergne [4, Theorem 1] and results from [9]. By Theorem 1.2 and the factorization theorem (Theorem 2.4) in [12], we may easily show the following two corollaries:

COROLLARY 1.1. If $\mathcal{A}(\Delta)$ is a free arrangement with exponents (d_1, \ldots, d_ℓ) [12, 8, Definitions 4.15, 4.25], then

Poin(C(
$$\Delta$$
), t) = $(1 - t)^{-\ell} \prod_{i=1}^{\ell} \{1 + (d_i - 1)t\}.$

EXAMPLE 1.1. Let x_1, \ldots, x_ℓ be a basis for V^* . Let $\Delta = \{x_i - x_j \mid 1 \le i < j \le \ell\}$. Then $\mathcal{A}(\Delta)$ is known to be free arrangement with exponents $(0, 1, \ldots, \ell - 1)$ [8, Example 4.32]. So, by Corollary 1.1, we have

Poin($C(\Delta), t$) = $(1 - t)^{-\ell + 1}(1 + t)(1 + 2t) \cdots (1 + (\ell - 2)t)$.

For example, when $\ell = 3$, we have

$$\operatorname{Poin}\left(\mathbf{K}\left[\frac{1}{x_1 - x_2}, \frac{1}{x_2 - x_3}, \frac{1}{x_1 - x_3}\right], t\right) = (1 + t)/(1 - t)^2$$
$$= 1 + 3t + 5t^2 + 7t^3 + 9t^4 + \cdots,$$

which can be easily checked by direct computation.

When $\mathscr{A}(\Delta)$ is the set of reflecting hyperplanes of any (real or complex) reflection group, Corollary 1.5 can be applied because $\mathscr{A}(\Delta)$ is known to be a free arrangement [10, 13].

COROLLARY 1.2. If $\mathcal{A}(\Delta)$ is generic (i.e., $|\Delta| \ge \ell$, and any ℓ vectors in Δ are linearly independent), then

2. PROOFS

In this section we prove Theorems 1.1 and 1.2. For $\varepsilon \in \mathbf{E}(\Delta)$, let $V(\varepsilon)$ denote the set of common zeros of ε : $V(\varepsilon) = \bigcap_{i=1}^{p} \ker(\alpha_i)$ when $\varepsilon = (\alpha_1, \ldots, \alpha_p)$. Define

$$L = L(\Delta) = \{ V(\varepsilon) \mid \varepsilon \in \mathbf{E}(\Delta) \}.$$

Agree that $V(\varepsilon) = V$ if ε is the empty tuple. Introduce a partial order \leq into *L* by reverse inclusion: $X \leq Y \Leftrightarrow X \supseteq Y$. Then *L* is equal to the intersection lattice of the arrangement $\mathscr{A}(\Delta)$ [8, Definition 2.1]. For $X \in L$, define

$$\mathbf{E}_X(\Delta) := \{ \varepsilon \in \mathbf{E}(\Delta) \mid V(\varepsilon) = X \}.$$

Then

$$\mathbf{E}(\Delta) = \bigcup_{X \in L} \mathbf{E}_X(\Delta)$$
 (disjoint).

Define

$$C_X(\Delta) := \sum_{\varepsilon \in \mathbf{E}_X(\Delta)} \mathbf{K} (\prod \varepsilon)^{-1}.$$

Then $C_X(\Delta)$ is a $\partial(V)$ -submodule of $C(\Delta)$. The following theorem is equivalent to Lemma 3.2 in [9]. Our proof is a rephrasing of the proof there.

PROPOSITION 2.1.

$$C(\Delta) = \bigoplus_{X \in L} C_X(\Delta).$$

Proof. It is obvious that $C(\Delta) = \sum_{X \in L} C_X(\Delta)$. Suppose that $\sum_{X \in L} \phi_X = 0$ with $\phi_X \in C_X(\Delta)$. We will show that $\phi_X = 0$ for all $X \in L$. By taking out the degree p part, we may assume that deg $\phi_X = p$ for all $X \in L$. Let $\mathcal{S} = \{X \in L \mid \phi_X \neq 0\}$. Suppose \mathcal{S} is not empty. Then there exists a minimal element X_0 in \mathcal{S} (with respect to the partial order by reverse inclusion). Let $X \in \mathcal{S} \setminus \{X_0\}$ and write

$$\phi_X = \sum_{\varepsilon \in \mathbf{E}_X(\Delta)} c_{\varepsilon} (\prod \varepsilon)^{-1}$$

with $c_{\varepsilon} \in \mathbf{K}$. Let $\varepsilon \in \mathbf{E}_X(\Delta)$. Because of the minimality of X_0 , one has $X_0 \notin X$. Thus there exists $\alpha_0 \in \varepsilon$ such that $X_0 \notin \ker(\alpha_0)$. Let $I(X_0)$ be the prime ideal of *S* generated by the polynomial functions vanishing on X_0 . Then $\alpha_0 \notin I(X_0)$. Thus

$$\left(\prod\Delta\right)^p \left(\prod\varepsilon\right)^{-1} \in I(X_0)^{p|\Delta_{X_0}|-p+1},$$

where $\prod \Delta := \prod_{\alpha \in \Delta} \alpha$ and $\Delta_{X_0} = \Delta \cap I(X_0)$. Multiply $(\prod \Delta)^p$ to both sides of

$$\phi_{X_0} = -\sum_{X \in S \ X
eq X_0} \phi_X$$

to get

$$(\prod \Delta)^{p} \phi_{X_{0}} = -\sum_{X \in S \atop X \neq X_{0}} (\prod \Delta)^{p} \phi_{X}$$
$$= -\sum_{X \in S \atop X \neq X_{0}} \sum_{\varepsilon \in \mathbf{E}_{X}(\Delta)} c_{\varepsilon} (\prod \Delta)^{p} (\prod \varepsilon)^{-1} \in I(X_{0})^{p|\Delta_{X_{0}}|-p+1}.$$

Since $(\prod \Delta)/(\prod \Delta_{X_0}) \in S \setminus I(X_0)$ and $I(X_0)^{p|\Delta_{X_0}|-p+1}$ is a primary ideal, one has

$$\left(\prod \Delta_{X_0}\right)^p \phi_{X_0} \in I(X_0)^{p|\Delta_{X_0}|-p+1}.$$

This is a contradiction because

$$\operatorname{deg}(\prod \Delta_{X_0})^p \phi_{X_0} = p |\Delta_{X_0}| - p.$$

Therefore $\mathcal{S} = \phi$.

Next we will study the structure of $C_X(\Delta)$ for each $X \in L$. Let $AO_X(\Delta)$ be the **K**-subspace of $AO(\Delta)$ generated over **K** by

$$\{(\prod \varepsilon)^{-1} \mid \varepsilon \in \mathbf{E}(\Delta)^i \cap \mathbf{E}_X(\Delta)\}.$$

Then

$$AO(\Delta) = \bigoplus_{X \in L} AO_X(\Delta)$$

by Proposition 2.1. Let \mathscr{B}_X be a K-basis for $AO_X(\Delta)$. Then we have

PROPOSITION 2.2. The $\partial(V)$ -module $C_X(\Delta)$ can also be regarded as a free $\partial(V/X)$ -module with a basis \mathcal{B}_X . In other words, there exists a natural graded isomorphism

$$\partial(V/X) \bigotimes_{\mathbf{K}} AO_X(\Delta) \simeq C_X(\Delta).$$

Proof. First assume that Δ spans V^* and $X = \{\mathbf{0}\}$. Then $\mathbf{E}(\Delta)^i \cap \mathbf{E}(\Delta)_X$ is equal to the set of **K**-bases for V^* , which are contained in Δ . Thus $AO_X(\Delta)$ is generated over **K** by

$$\{(\prod \varepsilon)^{-1} \mid \varepsilon \in \mathbf{E}_{\ell}(\Delta) \text{ is a basis for } V\}.$$

Similarly C_X is spanned over **K** by

$$\{(\prod \varepsilon)^{-1} \mid \varepsilon \in \mathbf{E}(\Delta) \text{ spans } V\}.$$

Then Theorem 1 of [4] is exactly the desired result. Next let $X \in L$ and $\overline{V} = V/X$. Regard the dual vector space \overline{V}^* as a subspace of V^* and the symmetric algebra $\overline{S} := S(\overline{V}^*)$ of \overline{V}^* as a subring of S. Then $\Delta_X := I(X) \cap \Delta$ is a subset of \overline{V}^* and Δ_X spans \overline{V}^* . Consider $AO(\Delta_X)$ and $C(\Delta_X)$, which are both contained in $\overline{S}_{(0)}$. Note that $C_X(\Delta)$ can be regarded as a $\partial(V/X)$ -module because $\partial(X)$ annihilates $C_X(\Delta)$. Denote the zero vector of \overline{V} by \overline{X} . Then it is not difficult to see that

$$C_{\overline{X}}(\Delta_X) \simeq C_X(\Delta)$$
 (as $\partial(V)$ -modules),
 $AO_{\overline{X}}(\Delta_X) \simeq AO_X(\Delta)$ (as **K**-vector spaces)

Since there exists a natural graded isomorphism

$$C_{\overline{X}}(\Delta_X) \simeq \partial(\overline{V}) \bigotimes_{\mathbf{K}} AO_{\overline{X}}(\Delta_X),$$

one has

$$C_X(\Delta) \simeq \partial(V/X) \bigotimes_{\mathbf{K}} AO_X(\Delta).$$

Proof of Theorem 1.3. By Proposition 2.2, $C_X(\Delta)$ is generated over $\partial(V)$ by $AO_X(\Delta)$. Since

$$C(\Delta) = \bigoplus_{X \in L} C_X(\Delta)$$
 (Proposition 2.1),

and

$$AO(\Delta) = \bigoplus_{X \in L} AO_X(\Delta),$$

the $\partial(V)$ -module $C(\Delta)$ is generated by $AO(\Delta)$. So \mathscr{B} generates $C(\Delta)$ over $\partial(V)$. Define

$$J(\Delta) := \sum_{arepsilon \in \mathbf{E}^d(\Delta)} \mathbf{K} \Big(\prod arepsilon \Big)^{-1},$$

which is an ideal of $C(\Delta)$. Then it is known by [9, Theorem 4.2] that

$$C(\Delta) = J(\Delta) \oplus AO(\Delta)$$
 (as **K**-vector spaces).

It is obvious to see that

$$\partial(V)_+C(\Delta) \subseteq J(\Delta).$$

On the other hand, we have

$$C(\Delta) = \partial(V)AO(\Delta) = \partial(V)_{+}AO(\Delta) + AO(\Delta)$$
$$= \partial(V)_{+}C(\Delta) + AO(\Delta).$$

Combining these, we have (2) and (3) at the same time. By (2), we know that \mathscr{B} minimally generates $C(\Delta)$ over $\partial(V)$, which is (1).

If $M = \bigoplus_{p \ge 0} M_p$ is a graded vector space with dim $M_p < +\infty$ $(p \ge 0)$, we let

$$\operatorname{Poin}(M, t) = \sum_{p=0}^{\infty} (\dim M_p) t^p$$

be its *Poincaré (or Hilbert) series*. Recall [8, Sect. 2.42] the (one variable) Möbius function μ : $L(\Delta) \rightarrow \mathbb{Z}$ defined by $\mu(V) = 1$ and for X > Vby $\sum_{Y \leq X} \mu(Y) = 0$. Then the *Poincaré polynomial* Poin($\mathfrak{A}(\Delta), t$) of the arrangement $\mathfrak{A}(\Delta)$ is defined by

$$\operatorname{Poin}(\mathscr{A}(\Delta), t) = \sum_{X \in L} \mu(X)(-t)^{\operatorname{codim} X}$$

PROPOSITION 2.3 [9, Theorem 4.3]. For $X \in L$ we have

dim $AO_X(\Delta) = (-1)^{\operatorname{codim} X} \mu(X)$ and $\operatorname{Poin}(AO(\Delta), t) = \operatorname{Poin}(\mathscr{A}(\Delta), t)$.

Recall that $C(\Delta)$ is a graded $\partial(V)$ -module. Since $C(\Delta)$ is infinitedimensional, Poin $(C(\Delta), t)$ is a formal power series. We now prove Theorem 1.2, which gives a combinatorial formula for Poin $(C(\Delta), t)$.

Proof of Theorem 1.2. We have

$$\operatorname{Poin}(C(\Delta), t) = \sum_{X \in L} \operatorname{Poin}(C_X(\Delta), t)$$
$$= \sum_{X \in L} \operatorname{Poin}(\partial(V/X), t) \operatorname{Poin}(AO_X(\Delta), t)$$

by Propositions 2.1 and 2.2. Since the **K**-algebra $\partial(V/X)$ is isomorphic to the polynomial algebra with codim X variables, we have

$$\operatorname{Poin}(C(\Delta), t) = \sum_{X \in L} (1 - t)^{-\operatorname{codim} X} \operatorname{Poin}(AO_X(\Delta), t).$$

By Proposition 2.3, we have

$$\operatorname{Poin}(AO_X(\Delta), t) = (-1)^{\operatorname{codim} X} \mu(X) t^{\operatorname{codim} X}$$

.. ..

Thus

$$\operatorname{Poin}(C(\Delta), t) = \sum_{X \in L} (-1)^{\operatorname{codim} X} \mu(X) \left(\frac{t}{1-t}\right)^{\operatorname{codim} X}$$
$$= \operatorname{Poin}(\mathscr{A}(\Delta), (1-t)^{-1}t).$$

Let Der be the S-module of derivations:

 $Der = \{\theta \mid \theta: S \to S \text{ is a K-linear derivations} \}.$

Then Der is naturally isomorphic to $S \bigotimes_{\mathbf{K}} V$. Define

$$D(\Delta) = \{ \theta \in \text{Der} \mid \theta(\alpha) \in \alpha S \text{ for any } \alpha \in \Delta \},\$$

which is naturally an S-submodule of Der. We say that the arrangement $\mathfrak{A}(\Delta)$ is *free* if $D(\Delta)$ is a free S-module [8, Definition 4.15]. An element $\theta \in D(\Delta)$ is said to be *homogeneous of degree* p if

$$\theta(x) \in S_p$$
 for all $x \in V^*$.

When $\mathcal{A}(V)$ is a free arrangement, let $\theta_1, \ldots, \theta_\ell$ be a homogeneous basis for $D(\Delta)$. The ℓ nonnegative integers deg θ_1, \ldots , deg θ_ℓ are called the *exponents* of $\mathcal{A}(\Delta)$. Then one has

PROPOSITION 2.4 (Factorization Theorem [12], [8, Theorem 4.137]). If $\mathfrak{A}(\Delta)$ is a free arrangement with exponents d_1, \ldots, d_ℓ , then

$$\operatorname{Poin}(A(\Delta), t) = \prod_{i=1}^{t} (1 + d_i t).$$

By Theorem 1.2 and Proposition 2.4, we immediately have Corollary 1.1.

The arrangement $\mathscr{A}(\Delta)$ is *generic* if $|\Delta| \ge \ell$ and any ℓ vectors in Δ are linearly independent. In this case, it is easy to see that [8, Lemma 5.122]

$$\operatorname{Poin}(\mathscr{A}(\Delta), t) = (1+t) \sum_{i=0}^{\ell-1} \binom{|\Delta|-1}{i} t^i.$$

Proof of Corollary 1.2. By Theorem 1.2, one has

$$Poin(C(\Delta), t) = \left(1 + \frac{t}{1-t}\right) \sum_{i=0}^{\ell-1} {\binom{|\Delta|-1}{i}} \left(\frac{t}{1-t}\right)^{i}$$
$$= (1-t)^{-\ell} \sum_{i=0}^{\ell-1} (1-t)^{\ell-i-1} {\binom{|\Delta|-1}{i}} t^{i}$$
$$= (1-t)^{-\ell} \sum_{i=0}^{\ell-1} {\binom{|\Delta|-1}{i}} t^{i} \sum_{j=0}^{\ell-i-1} {\binom{\ell-i-1}{j}} (-1)^{j} t^{j}$$
$$= (1-t)^{-\ell} \sum_{k=0}^{\ell-1} t^{k} \sum_{j=0}^{k} (-1)^{j} {\binom{|\Delta|-1}{k-j}} {\binom{\ell-k+j-1}{j}}.$$

On the other hand, we have

$$\sum_{j=0}^{k} (-1)^{j} \binom{|\Delta|-1}{k-j} \binom{\ell-k+j-1}{j} = \binom{|\Delta|-\ell+k-1}{k}$$

by equating the coefficients of x^k in $(1+x)^{|\Delta|-\ell+k-1}$ and $(1+x)^{|\Delta|-1}(1+x)^{-(\ell-k)}$. This proves the assertion.

We now consider the **nbc** (no broken circuit) bases [1–3, 6, 9, p. 72]. Suppose that Δ is linearly ordered: $\Delta = \{\alpha_1, \ldots, \alpha_n\}$. Let $X \in L$ with codim X = p. Define

$$\mathbf{nbc}_X(\Delta) := \{ \varepsilon \in \mathbf{E}_X(\Delta) \mid \varepsilon = (\alpha_{i_1}, \dots, \alpha_{i_p}), i_1 < \dots < i_p, \}$$

contains no broken circuits}.

Let $\mathscr{B}_X = \{(\prod \varepsilon)^{-1} \mid \varepsilon \in \mathbf{nbc}_X(\Delta)\}$ for $X \in L$. Then we have

PROPOSITION 2.5 [9, Theorem 5.2]. Let $X \in L$. The set \mathscr{B}_X is a **K**-basis for $AO_X(\Delta)$.

Thanks to Propositions 2.1, 2.2, and 2.5 we easily have

PROPOSITION 2.6. Let $\mathscr{B} = \bigcup_{X \in L} \mathscr{B}_X = \{\phi_1, \dots, \phi_m\}$. Write supp $(\phi_i) = X$ if $\phi_i \in \mathscr{B}_X$. Then, for any $\phi \in C(\Delta)$ and $j \in \{1, \dots, m\}$, there uniquely exists $\theta_i \in \partial(V/\text{supp}(\phi_i))$ such that

$$\phi = \sum_{j=1}^m heta_j(\phi_j).$$

Remark 2.1. Suppose that Δ spans V^* and that $AO_{\{0\}}(\Delta) = \sum_{j=1}^{q} \mathbf{K}\phi_j$, where $q = |\mu(\{0\})|$. Then the mapping

$$\phi\mapsto \sum_{j=1}^q heta_j^{(0)}(\phi_j)\in AO_{\{0\}}(\Delta)$$

is the restriction to $C(\Delta)$ of the Jeffrey-Kirwan residue [4, Definition 6, 11]. Here $\theta_i^{(0)}$ is the degree zero part of θ_i (j = 1, ..., q).

REFERENCES

- 1. A. Björner, On the homology of geometric lattices, Algebra Universalis 14 (1982), 107-128.
- A. Björner, Homology and shellability of matroids and geometric lattices, *Cambridge Univ*. (1992), 226–283.
- A. Björner and G. Ziegler, Broken circuit complexes: Factorizations and generalizations, J. Combin. Theory Ser. B 51 (1991), 96–126.
- M. Brion and M. Vergne, Arrangement of hyperplanes I. Rational functions and Jeffrey-Kirwan residue, Ann. Sceint. Ec. Norm. Sup. 32 (1999), 715–741.
- 5. R. Cordovil, "A Commutative Algebra for Oriented Matroids," preprint.
- M. Jambu and H. Terao, Arrangements of hyperplanes and broken circuits, in "Contemporary Mathematics," Vol. 90, pp. 147–162, Amer. Math. Soc., Providence, 1989.
- P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, *Invention. Math.* 56 (1980), 167–189.

- O. Orlik and H. Terao, "Arrangements of Hyperplanes," Grundlehren der Math. Wiss., Vol. 300, Springer-Verlag, Berlin/New York, 1992.
- 9. P. Orlik and H. Terao, Commutative algebras for arrangements, *Nagoya J. Math.* **134** (1994), 65–73.
- K. Saito, On the uniformization of complements of discriminant loci, in "Conference Notes. Amer. Math. Soc. Summer Institute, Williamstown, 1975."
- 11. A. Szenes, Iterated residues and multiple Bernoulli polynomials, *Internat. Math. Res. Not.* (1998), 937–956.
- H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepherd– Todd–Brieskorn formula, *Invention. Math.* 63, No. 1 (1981), 159–179.
- H. Terao, Free arrangements of hyperplanes and unitary reflection groups, Proc. Japan Acad. Ser. A 56 (1980), 389–392.