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Abstract

We consider high-energy proton–heavy nucleus scattering within the framework of the Glauber–Gribov approximation and taking int
cross section fluctuations. Fixing parameters of the model for cross section fluctuations by the available data, we make predictions fo
elastic and coherent diffractive dissociation proton–nucleus cross sections for the RHIC and LHC energy range. We predict a strong ch
A-dependence of diffraction dissociation fromA0.42 at RHIC energies toA0.27 at LHC energies. Based on the obtained results, we discus
approach of the interactions to the black body (unitarity) limit. We estimate the electromagnetic contribution to coherentpA diffraction and find
that it dominates the coherent diffractive cross section on heavy nuclear targets in the LHC kinematics.
 2005 Elsevier B.V.
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1. Introduction

With the advent of the Large Hadron Collider (LHC) o
will have an opportunity to study proton–proton, proto
nucleus and nucleus–nucleus collisions at the unpreceden
high energies,

√
s = 14, 9 and 6 GeV per nucleon, respe

tively [1]. While the main physics drive of the LHC is the sear
for Higgs boson, supersymmetry and other physics beyond
Standard Model, many ideas of the traditional physics of
and hard hadron–hadron interactions can be tested. In p
ular, one should be able to address the issue of blackenin
strong interactions at high energies much better than this
be done at the RHIC and Tevatron energies. In this work,
termblackeningmeans the approach of a given partial wave
limiting value given by unitarity of the scattering operator. W
refer to this regime the black body limit (BBL). Specifically, t
TOTEM Collaboration[2] at the LHC intends to study the tota
elastic and diffractive dissociation proton–proton cross sect
at the maximal accelerator energy of

√
s = 14 GeV with the
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aim to test various models, whose predictions depend on
way the BBL is implemented.

It is commonly believed that phenomena associated
high parton densities are more pronounced in nuclei than in
nucleons. In this respect, examining the energy and the at
mass numberA dependence of total, elastic and diffractive d
sociation cross sections in hadron–nucleus scattering, o
expected to see an enhancement of the effects related to b
ening of the proton–proton interaction.

In this work, we consider total, elastic and diffractive d
sociation proton–nucleus cross sections. As a starting p
we use the well-established Glauber–Gribov multiple sca
ing formalism[3,4], which is known to work with a few per
cent accuracy for total and elastic hadron–nucleus cross
tions. While the Glauber method is essentially based on n
relativistic quantum mechanics, which takes into account o
elastic intermediate states, its generalization by Gribov wi
the field-theoretical framework also includes inelastic (diffr
tive) intermediate states. The latter is a manifestation of the
crease of the coherence length associated with the given pr
with energy[5]. A convenient way to model this essential fe
ture of high-energy hadron scattering is by working with eig
states of the scattering operator and by introducing cross se
fluctuations[6–11].
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The main goal of the present work is to extend a partic
model of cross section fluctuations summarized in[9] to the
RHIC and LHC energies and to make predictions for the to
elastic and diffractive dissociation proton–heavy nucleus c
sections and discuss the approach to the black body regim

2. High-energy hadron–nucleus scattering,
Glauber formalism and cross section fluctuations

In order to define and explain the terms “black body (di
limit”, “unitarity”, “shadowing” and “diffraction”, which we
extensively use in this work, it is instructive to consider a sim
example of high-energy scattering on a completely absor
spherical potential with a radiusa in non-relativistic quantum
mechanics[12]. Making usual partial wave decomposition, o
notices that all partial scattering amplitudes with the ang
orbital momentsl > lmax, wherelmax = pa andp is the pro-
jectile momentum, are zero (no scattering). On the other h
for the partial scattering amplitudes withl � lmax, scattering is
maximal in the sense that there is no transmitted wave (the
ashadowformed right behind the target sphere) and, hence
scattered wave equals minus the incoming wave, i.e. the p
scattering amplitudes arefl = i/(2p) for l � lmax. Using the
optical theorem, one readily finds the total cross section

(1)σtot = 2πa2,

which is twice as large as the geometric cross section of the
getπa2. One can separately calculate the elastic cross se
with the resultσel = πa2 and, hence, the difference betwe
the total and elastic cross sections, the inelastic cross secti
σinel = πa2.

These classic results can be understood by noticing tha
completely absorbing potential of radiusa serves as ablack
bodyobstacle in the way of the incoming plane wave and
one deals withdiffraction of the plane wave on ablack disc.
Then in accordance with Babinet’s principle of wave optics,
intensity of the scattered or diffracted light (which is analog
to σel of our quantum mechanical exercise) is equal to the
tensity of light scattered in diffraction on the circular open
of size a in an opaque screen, which is proportional toπa2.
At the same time, the intensity of the absorbed light, whic
analogous toσinel, is also proportional toπa2, which means
thatσel = σinel = πa2. The considered example shows that
formation of a shadow behind the scattering center leads to
fraction. If the scattering potential is a black body, scatter
is maximal and the elastic cross section (which is, at the s
time, the diffractive cross section) equals half the total cr
section. The latter is twice as large as the geometric transv
cross section of the target black disc. A nice discussion of
fraction in high-energy scattering can be found in[13].

In order to show that scattering off the black body is inde
maximal, we recall the general condition on the partial s
tering amplitudes, which is a consequence of unitarity of
scattering operator,

(2)Imfl(θ) = p
∣∣fl(θ)

∣∣2 + pGin
l (θ),
r

l,
s
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whereGin
l accounts for inelastic processes;θ is the scattering

angle. Solving Eq.(2) for Imfl(θ) and choosing the smaller o
the two solutions, we obtain

(3)Imfl(θ) = 1

2p

(
1−

√
1− 4p2

(|Refl |2 + Gin
l

))
.

From this equation, one sees that the maximal value of Imfl(θ)

is Imf max
l (θ) = 1/(2p), which is exactly the value of the sca

tering amplitude in the black body scattering problem. One
say that the partial scattering amplitudes forl � lmax saturate.
While in the considered simple example blackening of Imfl

leads to the energy-independent total cross section, it is no
case in a more realistic situation. For instance, our analysis
demonstrate that the total proton–nucleus cross section sl
increases with energy regardless that many partial waves r
their constant maximal values.

In a number of models, which discuss saturation in h
processes, one often assumes that the total cross section re
a fixed maximal value or that partial scattering amplitudes re
constant values smaller than the maximal 1/(2p), see e.g.[14].

The choice of the smaller of the two solutions to Eq.(2) is a
reflection of the fact that in hadron–hadron scattering, the im
inary part of the scattering amplitude is driven by the inela
contribution.

Turning to hadron–nucleus scattering, we notice that w
the target nucleus can be better approximated by a compl
absorbing black disk than the target proton, it is still a poor
proximation. A better approach was formulated by Glauber[3].
The target nucleus is approximated by a static collection
nucleon scatterers so that the phase of the elastic scatterin
plitude is a sum of the phases accumulated in each projec
nucleon scattering. This means that if we express the el
hadron–nucleus scattering amplitudefA(�q) in terms of the pro-
file functionΓA(�b),

(4)fA(�q) = ip

2π

∫
d2�b ei �q·�bΓA(�b),

thenΓA(�b) can be expressed in terms of the elementary had
nucleon profile functionsΓ (�b),

(5)Γ (�b) = 1

ip2π

∫
d2�q e−i �q·�bf (�q),

integrated with the nuclear ground state wave functionΨA(�r1,

�r2, . . . , �rA)

ΓA(�b) =
∫

d3�r1 d3�r2 · · ·d3�rA
∣∣ΨA(�r1, �r2, . . . , �rA)

∣∣2

(6)×
(

1−
i=A∏
i=1

(
1− Γ (�b − �si)

))
.

Eqs.(4)–(6)assume that at high energies the small momen
transfer�q is perpendicular to the direction of the beam, i.e. i
a two-dimensional vector. The corresponding conjugated v
able is the two-dimensional vector of the impact paramete�b.
In Eq. (6), the vectors�si are the transverse components of
position of the nucleons�ri ; f (�q) is the hadron–nucleon sca
tering amplitude. For sufficiently heavy nuclei (A > 16) it is
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permissible to neglect the nucleon–nucleon correlations in
ground state nuclear wave function, which means that each
cleon moves in the nucleus independently, and to write

(7)
∣∣ΨA(�r1, �r2, . . . , �rA)

∣∣2 =
i=A∏
i=1

ρA(�ri),

where the nucleon distributionρA(�r ) is normalized to unity.
The parameterization ofρA(�r ) is detailed in Section4. Then the
nuclear profile function for a heavy nucleus can be presente
the following compact form

(8)ΓA(�b) = 1− exp

(
−A

∫
d3�r ρA(�r )Γ (�b − �s )

)
.

The elementary profile function is readily calculated using
standard parameterization for the elementary proton–nuc
scattering amplitude

(9)f (�q) = ipσtot(s)(1− iη)

4π
e−B(s)q2/2,

whereσtot is the energy-dependent total cross section;B(s) is
the slope of the amplitude;η = Imf (�q)/Ref (�q). In our nu-
merical analysis, we use[11]

(10)B(s) = 10.5+ 0.5 ln(s/s0) GeV−2,

wheres0 = 25 GeV;η = π/2× 0.0808= 0.127.
EvaluatingΓ (�b − �s ) using Eq.(5) and substituting the re

sult in Eq.(8), we obtain the Glauber approximation express
for ΓA(�b)

(11)ΓA(�b) = 1− exp
(−A/2σtot(s)(1− iη)T (b)

)
,

where

(12)T (b) =
∫

dzd2�s e−(�b−�s )2/(2B(s))

2πB(s)
ρA

(√
|�s|2 + z2

)
.

In theB(s) → 0 limit, theT (b) function takes a more familia
approximate form,T (b) = ∫

dzρA(
√

b2 + z2 ).
It is interesting to point out that the profile functionΓA(�b)

plays the role of the partial scattering amplitude and the
pact parameter|�b| plays the role of the orbital momentuml.
As a consequence, the unitarity condition is diagonal in|�b| and
reads (compare to Eq.(3))

(13)2 ReΓA(�b) = ∣∣ΓA(�b)
∣∣2 + Gin(�b).

The solution to this equation is

(14)ReΓA(�b) =
1−

√
1− (1+ η2

A)Gin(�b)

1+ η2
A

,

where ηA = ImΓA(�b)/ReΓA(�b). The maximal value o
ReΓA(�b) is unity (ηA vanishes in the black disc limit), an
therefore, the Glauber approximation expression forΓA(�b)

of Eq. (11) trivially complies with the unitarity constraint o
Eq.(13).

The Glauber formalism offers a convenient scheme for
calculation of various observables measured in the had
nucleus scattering at high-energies such as the total and e
e
u-

in

n

-

e
–
tic

cross sections

σhA
tot (s) = 2

∫
d2�b ReΓA(�b),

(15)σhA
el (s) =

∫
d2�b ∣∣ΓA(�b)

∣∣2.
It is important to note that while the nuclear profile functi
saturates, the scattering cross sections in Eq.(15) grow with
energy at larges.

The quantum mechanical expressions of the Glauber for
ism imply that coherent diffraction on nuclei consists of o
elastic scattering. This contradicts experiments on diffrac
dissociation, which showed that the incoming particle can
sociate into states with the same quantum numbers leavin
target nucleus in its ground state. Therefore, the Glauber
malism should be extended to accommodate this experim
fact.

A simple picture of diffractive dissociation was sugges
by Feinberg and Pomeranchuk[5] and elaborated on by Goo
and Walker[6]. One thinks of the incoming wave as a coh
ent superposition of eigenstates of the scattering operator.
eigenstate interacts with the target with its own cross sec
Since in general these cross sections (eigenvalues) are d
ent, the final state contains not only the initial particle but a
other states, whichdiffracted into existence. It is important to
note that the formalism of scattering eigenstates is base
the assumption that one can represent scattering as supe
tion of scattering of the components with different interact
strengths. The use of this assumption and the completene
the set of scattering states allows to obtain compact formu
In perturbative QCD, this assumption can be justified fort ∼ 0
relevant for the scattering off nuclei, while it is not valid f
sufficiently larget .

Introducing the probability to interact with a given cross s
tion σ , P(σ, s), the expressions for the total and elastic hadr
nucleus cross sections become (compare to Eqs.(15))

σhA
tot (s) = 2

∫
dσ P (σ)

∫
d2�b ReΓA(�b,σ ),

(16)σhA
el (s) =

∫
d2�b

∣∣∣∣
∫

dσ P (σ)ΓA(�b,σ )

∣∣∣∣
2

.

In these equations, the profile functionΓA(�b,σ ) depends on the
eigenvalueσ rather than on the total cross sectionσ

pp
tot (s),

(17)ΓA(�b,σ ) = 1− exp
(−A/2σ(1− iη)T (b)

)
.

Therefore, the cross sections in Eq.(16)are sensitive not only to
the first moment ofP(σ, s), 〈σ 〉(s) = σ

hp
tot (s), but also to higher

moments〈σk〉(s).
The motivation to introduce cross section fluctuations is

need for a simple picture of diffractive dissociation. The cr
section for coherent diffraction dissociation of hadrons o
nuclear target is found as the difference between the coh
diffraction and elastic cross sections[10],
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σhA
DD(s) =

∫
d2�b

(∫
dσ P (σ, s)

∣∣ΓA(�b,σ )
∣∣2

(18)−
∣∣∣∣
∫

dσ P (σ, s)ΓA(�b,σ )

∣∣∣∣
2)

.

SinceσhA
DD(s) is identically zero if cross section fluctuations a

absent,σhA
DD(s) is the most sensitive observable to cross sec

fluctuations.
At small impact parameters and largeσ , the nuclear pro-

file function saturates,ΓA(�b,σ ) ≈ 1, and becomes independe
of σ . This leads to vanishingσhA

DD(s). Therefore,cross section
fluctuationsindicate how close to theblack body limitregime
one is: the proximity to the blackening regime is indicated
the decreasing size ofσhA

DD(s). Phenomenologically this fact ca
be taken into account by modelingP(σ) which becomes nar
rower as

√
s increases and by taking into account the incre

of σ
hp
tot (s) with energy, seeFig. 1.

3. Energy dependence ofP(σ, s)

The distribution over cross sectionsP(σ, s) has the follow-
ing properties[9]:

∞∫
0

dσ P (σ, s) = 1,

∞∫
0

dσ σP (σ, s) = σtot(s),

(19)

∞∫
0

dσ σ 2P(σ, s) = 〈
σ 2〉(s) = σ 2

tot(s)
(
1+ ωσ (s)

)
.

The first equation is probability conservation; the second e
tion requires thatP(σ, s) reproduces correctly the total hadro
nucleon cross section; the third equation introducesωσ (s)

which measures the broadness of cross section fluctua
around the average value. One can also consider higher
ments ofP(σ, s).

Eqs.(19)constitute the minimal set of constraints onP(σ, s)

and one can successfully modelP(σ, s) using only these con
straints and the behavior ofP(σ, s) in the limiting cases o
σ → 0 andσ → ∞. The constituent quark counting rules su
gest thatP(σ) = O(σ ) asσ → 0. In addition, convergence o
integrals for the moments ofP(σ, s) (see Eqs.(19)) requires
thatP(σ, s) → 0 faster than any power ofσ asσ → ∞.

We assume a particular parameterization ofP(σ, s) [9]
and determine free parameters of the parameterization u
Eqs. (19) with σtot(s) and ωσ as an input at each energy.
particular, we use the following form for the protonP(σ, s),

(20)P(σ, s) = N(s)
σ

σ + σ0(s)
exp

(
− (σ/σ0(s) − 1)2

Ω2(s)

)
,

whose parameters at typical energies are summarized inTa-
ble 1.

It is worth emphasizing that for largeσhN
tot and for the nuclea

observables considered in this Letter, effects of fluctuations
n

e

-

ns
o-

g

re

Table 1
ParametersP(σ, s) at various typical energies
√

s, GeV ωσ Ω(s) σ0(s), mb

24 (nD data,[18]) 0.29 2.2 19
61 (pD data,[19]) 0.33 3.4 16
546 (UA4,[20]) 0.19 0.94 48
546 (CDF,[21]) 0.16 0.77 51
1800 (CDF,[21]) 0.15 0.72 63
9000 (LHC,pA) 0.10 0.52 88
14 000 (LHC,pp [22]) 0.065 0.39 97.5

primarily determined by the second moment ofP(σ, s), i.e. by
the value of the dispersionωσ [10]. This allows us to use a sim
ple form ofP(σ, s) with energy-dependent parameters, wh
still captures the essential features of the distribution over c
sections.

The total proton–proton cross sectionσ
pp
tot (s) is calculated

using the Regge theory motivated fit by Donnachie and La
shoff [15],

(21)σ
pp
tot (s) = 21.7s0.0808+ 56.08s−0.4525,

which is in a good agreement with the available data. Rece
more elaborate parameterizations of the total proton–pr
cross section, which explicitly implement Froissart’s unita
bound, were suggested[16,17]. An inspection shows that a
parameterizations predict the values of the total proton–pr
cross section, which differ by 5–10% at the Fermilab and L
energies. The nuclear cross sections, which we consider, ar
tually insensitive to such small differences, primarily due to
approximate saturation of the nuclear profile functionΓA(�b,σ ),
see the discussion in the end of Section2. We explicitly checked
that all nuclear cross sections presented in our work chang
at most 1.5%, when instead of the parameterization ofσ

pp
tot (s)

of Donnachie and Landshoff[15], we use the parameteriz
tion of [16]. For the parameterization of[17], the change is
absolutely negligible.

The parameterωσ is a key input of our analysis since it d
fines the broadness ofP(σ, s) (ωσ ∝ Ω(s)) and, hence, the
magnitude of cross section fluctuations. Information onωσ

can be extracted either from the inelastic shadowing cor
tion in proton (neutron)–deuterium total cross section or fr
proton–proton or proton–antiproton single diffraction att = 0,
see the details in[9]. For the lower values of

√
s and the UA4

point at
√

s = 546 GeV, we used the results of[9]. In partic-
ular, there were used the neutron–deuterium total cross se
data[18] (with maximal

√
s ≈ 24 GeV), the analysis of[19] of

the proton–deuterium data with maximal
√

s ≈ 61 GeV), and
the proton–antiproton single diffraction data taken by the U
experiment at the SPS collider at CERN with

√
s = 546 GeV

[20].
In addition to this, we used the CDF (Fermilab) data

proton–antiproton single diffraction with
√

s = 546 GeV and√
s = 1800 GeV[21]. An extrapolation to the LHC proton

proton energy
√

s = 14 TeV, ωs = 0.06–0.07, is done using
K. Goulianos fit and is cited in[22]. A linear interpolation be-
tween the

√
s = 1.8 TeV and

√
s = 14 TeV gives an estimate fo
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the value ofωs at the proton–nucleus LHC energies,ωs ≈ 0.10.
Note that the uncertainty of the extrapolation of diffraction fro
the Fermilab to the LHC energies (the uncertainty in the va
of ωs ) constitutes the main uncertainty of our predictions
the absolute value ofσhA

DD, but it affects only very weakly ou
predictions for theA-dependence of the diffractive cross se
tion. This uncertainty will be rectified during early runs of t
LHC by thepp experiments which will measure diffraction
pp scattering at smallt .

It is important to note that judging by the values ofωσ at√
s = 61 GeV and

√
s = 546 GeV, the functionωσ reaches

its (broad) maximum around the present RHIC energy ra
of

√
s = 200 GeV. In our analysis, we assumed thatωσ (

√
s =

200 GeV) = 0.3.
Fig. 1 shows the distributionP(σ, s) as a function ofσ

at three energies considered inTable 1: the solid curve cor-
responds to

√
s = 9 TeV (pA collisions at the LHC); the

dashed curve corresponds to
√

s = 1.8 TeV (Tevatron); the dot
dashed curve corresponds to

√
s = 200 GeV (RHIC). As

√
s

increases, the position of the maximum ofP(σ, s) increases
which naturally corresponds to the increasingσ

pp
tot (s). Although

the dispersionωσ becomes progressively smaller as the
ergy increases, there is no significant change in the w
of the distribution as measured by the range of values oσ ,
where P(σ, s) > 0.5 maxP(σ, s). Consequently, even at th
LHC one should expect significant fluctuations in the num
of wounded nucleons inpA scattering at central impact par
meters[23].

While the average total cross section increases with
ergy according to Eq.(21), small cross sections can grow wi√

s much faster. For instance, the cross sections corresp
ing to P(σ, s) = 0.002 in Fig. 1 increase with energy asσ ∝
s0.5–0.75.

Fig. 1. The cross section distributionP(σ, s) at different energies: the soli
curve corresponds to

√
s = 9 TeV (LHC); the dashed curve corresponds√

s = 1.8 TeV (Tevatron); the dot-dashed curve corresponds to
√

s = 200 GeV
(RHIC).
e

e

-
h

r

-

d-

4. Results and discussion

Using Eqs.(15) and (18), we calculate the total, elastic an
diffractive dissociation cross sections for proton-208Pb scatter-
ing as a function of

√
s. The result is given inFig. 2.

In our numerical analysis, we used the following parame
ization of the nucleon distributionρA(�r )

(22)ρA(�r ) = ρ0

1+ exp((r − c)/a)
,

Fig. 2. The proton–lead total, elastic and diffractive dissociation cross sec
as functions of

√
s. The solid curves correspond to Glauber formalism w

cross section fluctuations; the dashed curves neglect the cross section fl
tions.
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wherec = RA − (πa)2/(3RA) with RA = 1.145A1/3 fm and
a = 0.545 fm; the constantρ0 is chosen to provide the norma
ization ofρA(�r ) to unity.

One sees fromFig. 2that cross section fluctuations decrea
the total and elastic cross sections. The effect is largest in√

s = 100–200 GeV region. This can be explained by the
creasing role of nuclear shadowing: an increase ofωσ leads
to an increase of the inelastic shadowing correction, which
creases the total cross section.

An examination ofFig. 2shows that, for
√

s > 546 GeV, the
total cross section behaves as

(23)σ
pA
tot (s) ∝ s0.045,

which is slower than the inputσpp
tot (s) ∝ s0.0808.

The diffractive dissociation cross section (the lower pa
of Fig. 2) noticeably decreases with increasing energies√

s > 200 GeV. We would like to stress that the predic
diffractive dissociation cross section primarily depends on
inputωσ [10] and depends only weakly on the shape of the
tribution P(σ, s). Therefore, the diffractive dissociation cro
section is a sensitive tool to study the role of cross section
tuations.

We also examined the dependence of the total, elastic
diffractive dissociation cross sections at

√
s = 200 GeV (RHIC)

and
√

s = 9000 GeV (pA at the LHC) on the atomic numberA.
The results are summarized inFig. 3, where the dashed curve
correspond to

√
s = 200 GeV and the solid curves correspo

to
√

s = 9 TeV.
The total cross section behaves with an increasing ato

number as

σ
pA
tot ∝ A0.70 RHIC,

(24)σ
pA
tot ∝ A0.62 LHC.

The dependence on the atomic number of the diffractive
sociation cross section is much slower

σ
pA
DD ∝ A0.42 RHIC,

(25)σ
pA
DD ∝ A0.27 LHC.

Theσ
pA
DD ∝ A0.27 behavior at the LHC kinematics is slower th

the σ
pA
DD ∝ A0.4 result of [10] at much lower energies: cros

section fluctuations play a progressively smaller role as on
creases the energy.

It was pointed out in[10] that the fluctuations near the a
erage give the major contribution toσhA

DD. This point was il-
lustrated by Taylor-expanding the integrand in Eq.(18) about
σ = 〈σ 〉 and keeping only first two non-vanishing terms. T
approximate expression forσhA

DD reads[10]

(26)σhA
DD ≈ ωσ (s)σ 2

tot(s)

4

∫
d2�b (

AT (b)
)2

e−Aσtot(s)T (b).

Note that the effects ofη are small and can be neglected. W
would like to emphasize that the integral in Eq.(26) is a smooth
function ofb, which does not contain a subtraction of two lar
factors, as appears from Eq.(18). Therefore,σhA

DD is much more
e
-

-

l
r

e
-

-

d

ic

-

-

Fig. 3. The atomic number dependence of the total, elastic and diffractive
sociation cross sections. The dashed curves correspond to

√
s = 200 GeV and

the solid curves correspond to
√

s = 9 TeV. The second set of dashed and so
curves, which do not go through the points, correspond to the approximat
culation ofσDD using Eq.(26).

sensitive to the first moments ofP(σ), i.e. toσtot(s) andωσ (s),
rather than to the details of the shape ofP(σ).

Calculations ofσpA
DD using Eq.(26) are presented in th

lower panel ofFig. 3 by the second set of dashed and so
curves, which do not go through the points. For the LHC
ergy, the approximation of Eq.(26) works rather well. For the
RHIC energy, the approximation of Eq.(26) is good only qual-
itatively.
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5. Electromagnetic contribution

CoherentpA diffraction,p + A → X + A, has an importan
electromagnetic contribution originating from the ultraperip
eralpA scattering, when the nucleus acts as a source of q
real photons which interact with the proton[24]. The smallness
of the electromagnetic coupling constant is compensated b
clear coherence, which gives the enhancement factorZ2, where
Z is the nuclear charge. Therefore, the electromagnetic b
ground becomes important for such heavy nuclei as208Pb and
constitutes a correction for light nuclei down to40Ca.

Since the strong amplitude is imaginary and the electrom
netic one is real, the two contributions do not interfere. Th
the cross section of this process is given by convolution of
flux of the equivalent photons,n(ω), with the photon–proton
cross section,σγp(ω), see e.g.[24]

(27)σ
pA
e.m. =

ωmax∫
ωmin

dω

ω
n(ω)σ

γp
tot (ω).

In this equation,

(28)n(ω) ≈ 2Z2α

π
ln

(
γ

ωR

)
,

whereγ is the Lorentz factor andR is an effective radius o
the nucleus;ωmax≈ γ /R; ωmin determines the minimal photo
energy required to excite an inelastic final state. Assuming
the lightest inelastic final state in theγp scattering is∆(1232),
we obtainωmin = 0.3 GeV.

In our numerical analysis of Eq.(27), we usedγ ≈ pl/mN ,
wherepl is the momentum of the nucleus in the laborat
frame. This corresponds toγ ≈ 100 for RHIC andγ ≈ 3000
for the LHC. The nuclear effective radius was estimated
R = RA = 1.145A1/3 fm, see Eq.(22). The real photon–proto
cross section was parameterized in the two-Reggeon for
Donnachie and Landshoff[15],

(29)σ
γp
tot (s) = 0.0677s0.0808+ 0.129s−0.4525,

wheres = 2ωmp + m2
p.

The resulting electromagnetic contributions to the coh
ent diffractive cross section are presented inFig. 4 by dashed
curves. They should be compared to the coherent diffrac
dissociation cross sections presented by the solid curves
comparison shows that the electromagnetic contribution c
pletely dominates coherentpA diffraction on Pb-208 in the
LHC kinematics, but it becomes smaller thanσ

pPb
DD towards the

RHIC energies. For the lighter nucleus of Ca-40, the role of
electromagnetic contribution is dramatically reduced:σ

pCa
e.m. is

about half ofσpCa
DD in the LHC kinematics and can be neglect

in the RHIC kinematics.

6. Conclusions and discussion

We calculated the total, elastic and diffractive dissoc
tion proton–nucleus cross sections at high energies using
Glauber–Gribov formalism and taking into account inela
i-

u-

k-

-
,
e

t

s

of

-

e
he
-

e

-
e

Fig. 4. The electromagnetic contribution evaluated using Eq.(27) (dashed
curves) and coherent diffractive dissociation cross sections (solid curve
functions of

√
s for Pb and Ca.

intermediate states by means of the notion of cross section
tuations. We extended the model of cross section fluctuat
of [9] to the RHIC and LHC energies and applied it to the c
culation of the cross sections. As a consequence of the dec
of cross section fluctuations at the LHC energy, we obse
a significant reduction of the diffractive dissociation cross s
tion in pA coherent diffraction. This calculation can serve
a benchmark calculation, whose comparison to the future
can give information on blackening of the proton–proton in
action.

We found that towards the LHC energies,
√

s = 9 TeV,
σ

pA
tot ∝ s0.045, which is slower than the inputσpp

tot ∝ s0.0808.
Studying the cross sections as a function of the atomic n
ber A, we found thatσpA

tot ∝ A0.70 andσ
pA
DD ∝ A0.42 at

√
s =

200 GeV (RHIC) and thatσpA
tot ∝ A0.62 and σ

pA
DD ∝ A0.27 at√

s = 9 TeV (LHC).
Another novel result of the present work is an estimate of

electromagnetic contribution to coherentpA diffraction com-
ing from ultraperipheralpA scattering. The electromagnet
smallness of the background is compensated by nuclear c
ence (the enhancement factor is proportional toZ2, whereZ

is the nuclear charge) and the Lorentzγ factor. We show tha
when the nuclear momentum in the laboratory frame is la
the ultraperipheral e.m. background completely dominates
herentpA diffraction on Pb in the LHC kinematics, seeFig. 4.
One way to reduce the electromagnetic contribution is to
lighter nuclei, such as for example Ca-40.



252 V. Guzey, M. Strikman / Physics Letters B 633 (2006) 245–252

ram
nd

Fs,
n

eva

rac-

56

52.

3

s.

9.

ond
.

993.

ys.

ys.
Acknowledgements

The work is supported by the Sofia Kovalevskaya Prog
of the Alexander von Humboldt Foundation (Germany) a
DOE (USA).

References

[1] A. Acardi, et al., Hard probes in heavy ion collisions at the LHC: PD
shadowing andpA collisions, in: Subgroup report of 3rd Workshop o
Hard Probes in Heavy Ion Collisions: 3rd Plenary Meeting, Gen
Switzerland, 7–11 October 2002, hep-ph/0308248.

[2] TOTEM Collaboration, Total cross section, elastic scattering and diff
tion dissociation at the LHC, CERN/LHCC 97-49, August 1997.

[3] R.J. Glauber, Phys. Rev. 100 (1955) 242;
V. Franco, Phys. Rev. Lett. 24 (1970) 1452.

[4] V.N. Gribov, Sov. Phys. JETP 29 (1969) 483, Zh. Eksp. Teor. Fiz.
(1969) 892.

[5] E.L. Feinberg, I.Ia. Pomeranchuk, Suppl. Nuovo Cimento III (1956) 6
[6] M.L. Good, W.D. Walker, Phys. Rev. 120 (1960) 1857.
[7] H.I. Miettininen, J. Pumplin, Phys. Rev. D 18 (1978) 1696.
[8] B.Z. Kopeliovich, L.I. Lapidus, A.B. Zamolodchikov, JETP Lett. 3

(1981) 595, Pis’ma Zh. Eksp. Teor. Fiz. 33 (1981) 612.
,

[9] B. Blättel, G. Baym, L.L. Frankfurt, H. Heiselberg, M. Strikman, Phy
Rev. D 47 (1993) 2761.

[10] L. Frankfurt, G.A. Miller, M. Strikman, Phys. Rev. Lett. 71 (1993) 285
[11] M. Strikman, V. Guzey, Phys. Rev. C 52 (1995) 1189.
[12] L.D. Landau, E.M. Lifshitz, Non-Relativistic Quantum Mechanics, sec

ed., in: Course in Theoretical Physics, vol. 3, Pergamon Press, 1977
[13] G. Alberi, G. Goggi, Phys. Rep. 74 (1981) 1.
[14] K. Golec-Biernat, M. Wusthoff, Phys. Rev. D 59 (1999) 014017.
[15] A. Donnachie, P.V. Landshoff, Phys. Lett. B 296 (1992) 227.
[16] J.R. Cudell, et al., Phys. Rev. D 65 (2002) 074024.
[17] M.M. Block, F. Halzen, Phys. Rev. D 72 (2005) 036006;

M.M. Block, F. Halzen, Phys. Rev. D 72 (2005) 039902, Erratum.
[18] P.V.R. Murthy, et al., Nucl. Phys. B 92 (1975) 269.
[19] L.G. Dakhno, Sov. J. Nucl. Phys. 37 (1983) 590, Yad. Fiz. 37 (1983)
[20] D. Bernard, et al., UA4 Collaboration, Phys. Lett. B 186 (1987) 227.
[21] F. Abe, et al., CDF Collaboration, Phys. Rev. D 50 (1994) 5535.
[22] A. Ageev, et al., J. Phys. G: Nucl. Part. Phys. 28 (2002) R117.
[23] G. Baym, B. Blättel, L.L. Frankfurt, H. Heiselberg, M. Strikman, Ph

Rev. C 52 (1995) 1604.
[24] G. Baur, K. Hencken, D. Trautmann, S. Sadovsky, Y. Kharlov, Ph

Rep. 364 (2002) 359, hep-ph/0112211.


	Proton-nucleus scattering and cross section fluctuations at RHIC and LHC
	Introduction
	High-energy hadron-nucleus scattering, Glauber formalism and cross section fluctuations
	Energy dependence of P(sigma,s)
	Results and discussion
	Electromagnetic contribution
	Conclusions and discussion
	Acknowledgements
	References


