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Abstract In mammals, the principal circadian clock within the
suprachiasmatic nucleus (SCN) entrains the phase of clocks in
numerous peripheral tissues and controls the rhythmicity in var-
ious body functions. During ontogenesis, the molecular mecha-
nism responsible for generating circadian rhythmicity develops
gradually from the prenatal to the postnatal period. In the begin-
ning, the maternal signals set the phase of the newly developing
fetal and early postnatal clocks, whereas the external light–dark
cycle starts to entrain the clocks only later. This minireview dis-
cusses the complexity of signaling pathways from mothers and
the outside world to the fetal and newborn animals’ circadian
clocks.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Organisms are exposed to environmental changes that recur

mostly in 24-h cycles as a consequence of the Earth’s rotation.

The most prominent changes are cycles in light and darkness.

In response to such changes, organisms evolved an endogenous

clock, i.e., a mechanism that enables them to anticipate rhyth-

mically occurring events. Even under constant environmental

conditions, the clock generates rhythmic signals in about

24-h cycles and is, therefore, called circadian (from Latin circa

diem). Under natural conditions, the circadian clock is en-

trained to the 24-h day by external cyclically occurring events,

mainly by the light period of the day. Due to the entrainment,

periods of rest and activity and of many other physiological

functions are restricted to a certain time of the day to ensure

the best strategy for obtaining food, exposure to optimal out-

side temperature, protection against predators and excess of

sun light, etc.

In mammals, the principal circadian clock resides in cells

grouped in two suprachiasmatic nuclei (SCN) of the hypothal-
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amus [1]. In rodents, the paired nuclei are composed of about

20 000 neurons. These neurons are themselves circadian oscilla-

tors and are mutually synchronized [2]. Morphologically and

functionally, the rodent SCN is divided into at least two parts,

namely the ventrolateral (VL) part called the core and the

dorsomedial (DM) part called the shell. The VL part receives

the photic information from the retina (see below) and ex-

presses mostly light dependent rhythms, e.g., in photoinduc-

tion of the immediate early genes (IEGs) c-fos and junB [3].

The DM part exhibits spontaneous oscillations of many rhyth-

mic variables, like expression of the arginine vasopressin and c-

fos genes [4,5]. Apart from the SCN, nearly every tissue of the

body, e.g., liver, kidneys, heart, muscle, spleen, etc., contains a

peripheral clock driving local rhythms specific for the tissue

function [for review see 6]. Under entrained conditions, the

phase of the peripheral clocks is set by the SCN program.

However, the peripheral clocks rhythmicity persists even in tis-

sue culture and may not depend on the SCN [7].

The basic molecular core clock mechanism responsible for

generation of the rhythmicity within the SCN and peripheral

rhythmic cells is formed by interactive transcriptional–transla-

tional feedback loops between the clock genes, namely two Per

(Per1,2), two Cry (Cry1,2), Clock, Bmal1, Rev-erba and casein

kinase 1 epsilon (CK1e), and their protein products PER1,2,

CRY1,2, CLOCK, BMAL1, REV-ERBa, CK1e [for review

see 8]. Briefly, CLOCK and BMAL1 as a heterodimer posi-

tively activates the rhythmic expression of Per, Cry and Rev-

erba genes. In the cytoplasm, the PER and CRY proteins form

a complex important for nuclear translocation of both pro-

teins. After shuttling into the nucleus, the PER:CRY complex

directly interacts with the CLOCK:BMAL1 heterodimer and

inhibits CLOCK:BMAL1 mediated transcription. Regulation

of Bmal1 transcription is mediated mostly by REV-ERBa.

The SCN and peripheral clocks operate with similar compo-

nents and share a similar molecular core clock mechanism.

However, some tissue-dependent differences may exist [9].

Also, phasing of clock gene expression differs between the

SCN and various peripheral tissues. Peripheral clocks may

be phase delayed relative to the SCN by 3–9 h. Although the

molecular basis of the circadian clock has been partially de-

fined, the molecular clock outputs that ultimately control cir-

cadian rhythms at cellular, organ and system-level are still

poorly understood. Components of the core clock mechanism

within the SCN and peripheral tissues may serve as down-
blished by Elsevier B.V. All rights reserved.
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A. Sumová et al. / FEBS Letters 580 (2006) 2836–2842 2837
stream transcription factors. At a certain time of day, they

switch on transcription of a great array of tissue specific clock

controlled genes that are relevant to distinct functions of these

organs [10,11]. For example, about 10% of the liver transcrip-

tome is under circadian control [12,11]. In the SCN, the argi-

nine vasopressin (AVP) gene is one of the best-recognized

clock controlled genes: it is expressed in a circadian manner

and appears to augment SCN excitability [13].
2. Setting the biological clocks

2.1. Entrainment of the central clock

The phase of the central clock is set mostly by photic stimuli:

exposure of animals to light in the first part of the subjective

night phase-delays and in the second half phase-advances the

clock [14]. The photic information is transferred from the retina

to the SCN via the monosynaptic retinohypothalamic (RHT)

and polysynaptic geniculohypothalamic (GHT) tracts. Besides

the classical retinal photoreceptors cones and rods, a small sub-

set of retinal ganglion cells containing the opsin-like protein mel-

anopsin is also photosensitive and projects to the SCN [for

review see 15]. The RHT and GHT terminate on a subset of re-

tino-recipient cells in the VL SCN. The spontaneously rhythmic

cells in the DM SCN receive photic information only through

the VL part. In the late day, the signal of darkness may be neu-

ropeptide Y, the main neurotransmitter of the GHT [16]. During

the night, release of the RHT neurotransmitter glutamate signals

‘‘light’’ to the clock [for review see 17]. Light-induced clock reset-

ting may involve sequential activation of glutamatergic NMDA

and non-NMDA receptors. Depending on the time when light

impinges on the retina at night, the SCN signals downstream

of glutamate may diverge. In the early night, signal transduction

leads to activation of ryanodine receptors and release of Ca2+. In

the late night, the activated cGMP-dependent pathway down-

stream of glutamate involves Ca2+ influx, nitric oxide synthetase

and intracellular movement of nitric oxide. Nitric oxide can acti-

vate soluble guanylylcyclase, which increases cGMP and acti-

vates cGMP-dependent protein kinase (PKG) [18]. Activation

of the second messenger pathways is followed by activation of

transcription factors. The Ca2þ
i =cAMP response element bind-

ing protein (CREB) is phosphorylated [19] and IEGs, namely

c-fos and jun-B [3] and clock genes Per1 and Per2 [20] are trans-

criptionally activated, mostly in the VL SCN. Light induced P-

CREB may directly regulate transcription of Per genes via a

CRE element in the 5 0-flanking regions of their promoters [21].

Importantly, light may induce CREB phosphorylation and tran-

scription of IEGs and clock genes only during the interval when

light entrains the clock, i.e., during the subjective night [19,3].

While the role of IEGs in photic entrainment has not yet been

solved, induction of Per1 and Per2 genes is believed to be in-

volved in resetting the core clock molecular mechanism. Via

the above-mentioned pathways, the clock may attain a new

phase in response to a photic stimulus experienced at night. Also,

a long day length, i.e., a long photoperiod, such as during sum-

mer days, may modulate the SCN rhythmicity as well as its

molecular clockwork [for review see 17,22].

Non-photic stimuli, like enforced locomotor activity, arou-

sal, serotonergic drugs, melatonin, dark pulses, etc., are also

supposed to reset the central clock when administered at a crit-

ical time of the day, e.g., in the late day [for review see 23]. Due
to the complexity of the stimuli, their resetting pathways may

vary. These may, however, converge at the same endpoint

since it has been demonstrated that several non-photic cues

acutely downregulate the Per1 and Per2 genes, i.e., act oppo-

site to light stimuli. Hence, the Per genes may represent the

molecular target for the modulating effect of non-photic stim-

uli on light signaling to the clock.

2.2. Entrainment of peripheral clocks

Peripheral clocks are indirectly entrained by light via setting

their phase by the light entrainable SCN clock. However, they

may also be directly entrained by changes in their local envi-

ronment. Under normal conditions, the indirect and direct

pathways act in concert. The SCN-controlled rhythm in spon-

taneous feeding represents one of the strongest entraining cues

for many peripheral clocks. In nocturnal animals, the feeding

rhythm is related to another SCN-controlled rhythm, i.e., to

the rhythm in locomotor activity. Both locomotor activity

and feeding mostly occur during night. However, under certain

circumstances, the local entraining cue might be in conflict

with the SCN signaling. This may happen in the case when ac-

cess to food is restricted to an unusual time of the day, i.e., to

the daytime rest period. Under such restricted feeding, the

rhythmic gene expression in liver, kidneys, heart, and other tis-

sues is phase-shifted relative to that in animals fed ad libitum,

whereas the phase of gene expression within the SCN does not

change [24]. Under such conditions, entrainment of the periph-

eral clock mediated via the nutrition supply may uncouple

from the SCN entrainment. Besides the feeding rhythm, the

SCN may control peripheral clocks by humoral as well as neu-

ral pathways. In the liver, glucocorticoids have been proposed

to play a role in setting the phase, as administration of dexa-

methasone acutely shifts rhythmic gene expression in the liver

and induces rhythmic Per expression in cell cultures [25]. Neu-

ral pathways may involve the autonomic nervous system since

adrenaline may control gene expression in the liver [26].
3. Ontogenesis of the biological clocks

3.1. Ontogenesis of the SCN clock

Development of the SCN clock proceeds in more stages

from fetal to postnatal periods. In the rat, the SCN is formed

as a component of periventricular cell groups during embry-

onic days (E)14 through E17. Neurogenesis is complete at

E18 although morphological maturation proceeds until post-

natal day (P)10. During prenatal period, the SCN neurons

only form a few synapses [27]. In this respect, the fetal SCN

might resemble an in vitro culture of dissociated SCN cells

where connections between the individual cells are sparse or

do not exist. Synaptogenesis progresses slowly around birth

and then markedly increases from P4 to P10 [27].

It seems that appearance of the first significant rhythms in

clock genes expression within a population of the rat SCN neu-

rons proceeds in parallel with the SCN development. At E19,

no rhythms of clock genes expression and no clock proteins

PER1, PER2 and CRY1 are detectable [28]. At E20, formation

of a rhythm in Per1 expression is indicated and rhythms of

Per2, Cry1 and Bmal1 only appear during the first postnatal

days [29]. In another study, rhythms in Per1 and Per2 expres-

sion in the rat SCN have been reported at E20 [30,31]. Impor-



Fig. 1. Signaling to developing fetal clocks. The maternal circadian
clock within the suprachiasmatic nucleus (SCN) is entrained mostly by
photic and also by non-photic cues with time of the day. The
underlying molecular mechanism is symbolized by Per1 mRNA that is
upregulated by photic and downregulated by non-photic entraining
stimuli. The entrained maternal SCN controls overt humoral and
behavioral rhythms that may feedback to the maternal SCN. At the
same time, the fetal SCN and perhaps peripheral clocks are entrained
via as yet only partially recognized rhythmically delivered maternal
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tantly, amplitude of the rhythms in Per1 and Per2 expression

in rhythmic SCN cells increases with age until P10 [28] as

the synaptogenesis progresses. The parallelism points to the

importance of mutual communication between individual

clock cells for generating a marked rhythmic signal. Interest-

ingly, Bmal1 is strongly expressed in the fetal SCN of rats

[28] as well as of hamsters [32], while Per1 and Cry1 are ex-

pressed only weakly.

The rat SCN clock starts to drive output rhythms only

around birth as the rhythm inAVP heteronuclear RNA is

undetectable in the rat SCN at E20, i.e., 1–2 days before birth,

but is clearly present at P1 [29]. The rhythm in AVP mRNA is

detectable at E21 [33], whereas the rhythm in firing rate only at

E22 [34]. Altogether, these data are in favor of the hypothesis

that the rat is born with a rather immature SCN clock that

develops further postnatally. It remains to be ascertained

whether the day–night difference in the SCN metabolic activ-

ity, monitored by a 2-deoxyglucose uptake and detected as

soon as at E19 [35], i.e., well before the first appearance of

the rhythm in clock genes expression, represents an intrinsic

SCN rhythmicity or a maternal cue driven change. Also, it is

of utmost importance to reveal whether the lack of rhythmicity

in clock genes expression within the fetal SCN is due to a lack

of synchronization between single oscillating SCN cells. How-

ever, the undetectable levels of clock proteins throughout the

circadian cycle at E19 [28] suggest rather a not yet fully devel-

oped core clockwork in the fetal SCN.
stimuli. Although the fetal clocks begin to exhibit intrinsic rhythmicity
of the molecular clockwork only around birth and early postnatally,
the phase of the newly forming and appearing rhythms in the fetal
SCN is set by the maternal SCN early prenatally. Pathways from the
maternal to fetal clocks may involve signaling by dopamine via
induction of c-fos and/or by melatonin (thick arrow). Also, behavioral
maternal rhythms, e.g., locomotor activity and feeding may, hypo-
thetically, entrain the fetal clocks (thin arrows). For more detail see
Section 4.1.
3.2. Ontogenesis of peripheral clocks

Development of peripheral clocks depends on maturation of

the organ housing the clock as well as on maturation of the

molecular clockwork. The first appearance of molecular oscil-

lations might be thus highly organ- and species-specific. In the

rat heart, rhythmic expression of Per1 and Bmal1 genes begins

between P2 and P5 whereas that of Per2 begins at P14 [36]. In

the rat liver, rhythms in clock gene expression may start from

P2 and develop further through P10 until P20 [28]. In the

murine cerebral cortex, daily rhythms of Per1 and Per2

mRNA are detected from P14 [37].
4. Entrainment of developing clocks

4.1. Maternal signaling to fetal clocks

The fetal SCN clock is supposed to be entrained exclusively

by cues delivered periodically by the mother. Though light un-

der certain circumstances may reach the fetus even in the

uterus [38], the photic pathways to the fetal SCN in altricial ro-

dents are not fully developed. Therefore, non-photic maternal

entrainment appears to be dominant. There is extensive evi-

dence that primarily the maternal SCN sets the phase of the

developing fetal clock. First, the rhythm in the fetal SCN met-

abolic activity is synchronized by the maternal SCN [39]. Sec-

ond, the newly forming and appearing rhythms in clock genes

expression in the very late fetal and early neonatal stages are,

from the beginning, in phase with the maternal clock [29].

Moreover, although the maternal SCN does not generate fetal

rhythms per se, it ensures the postnatal within litter synchrony

[for review see 40]. In hamsters, the postnatal within litter syn-

chrony is established very early during the fetal development

as a maternal SCN lesion at E10 but no more at E12 abolishes
the synchrony [41]. In rats, it is suggested that the maternal

synchronization of fetal clocks occurs even before the SCN

is formed [42]. If this is the case, what is the fetal anatomical

substrate that is synchronized by the mother’s clock? And as

the molecular clockwork in the rat SCN develops mostly post-

natally, what is the fetal molecular mechanism that is synchro-

nized by maternal signals? There is also confusion concerning

the photoperiodic entrainment of fetuses and newborn ro-

dents. Djungarian hamsters maintain memory of the photope-

riod experienced during their fetal stage even postnatally, i.e.,

the photoperiodic entrainment should be set by their mothers.

However, rhythms in clock genes expression or in c-fos pho-

toinduction in the neonatal rat SCN are not modulated by

the photoperiod experienced by mothers during pregnancy

[43,44], though photoperiod modulates the rhythms in the

adult rat SCN [for review see 22]. The above-mentioned

rhythms, as well as the overt rhythm in the pineal melatonin

production, start to be photoperiod dependent only around

P10 [for review see 40]. A question arises as to where the mem-

ory of the photoperiod experienced during the fetal stage is

stored, if not in the neonatal rodent SCN?

Also the entraining signal from mother to fetus is still not

completely understood. A designed candidate must exhibit a

circadian variation, penetrate the placenta and act at a func-

tional receptor or affect neuronal activity of the fetal SCN. It

is difficult to imagine how the fetal clock might become en-



Fig. 2. Signals entraining clocks after birth. Three developmental periods in rodents are depicted: (i) about first week of life, i.e., between the
postnatal day 0 and 6–10 (P0–P6(10)); (ii) since the end of the first week until P20 involving the start of weaning (P6(0)–P20); and (iii) between P20
and the end of weaning at P28 (P20–P28). P0–P6(10): During this period, pups are fully dependent on maternal care and maternal entrainment
prevails. Periodic absence of the mother might entrain molecular oscillations within the pup’s SCN clock via glucocorticoids. Periodic breast feeding
and maternal care entrain molecular oscillations in the peripheral clocks. Although the newborn pup’s SCN clock is already photosensitive, the
photic entrainment does not yet occur. P6(10)–P20: during this period, pups open their eyes and start to be partially independent of their mothers.
Significance of maternal absence as an entraining cue of the pup’s SCN is losing and the pup’s SCN clock begins to be entrained by photic stimuli. At
the same time, the pup’s SCN may start to control peripheral clocks. Moreover, apart from the maternal day-time feeding, pups begin gradually to
forage themselves during the night-time and molecular oscillations of peripheral clocks shift accordingly. P20–P28: during this period, pups become
completely independent of their mothers and maternal entrainment is lost. Similarly as in adults, the SCN clock is entrained dominantly by photic
cues and peripheral clocks by nocturnal feeding regime. The SCN clock may entrain molecular oscillations in peripheral clocks either directly or
rather indirectly via entraining the feeding regime with the external daytime. For more details see Sections 4.2 and 4.3.
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trained before it becomes rhythmic itself. Hypothetically, the

mechanism might be similar to induction of oscillations in

peripheral clock cells in vitro following the addition of serum

[45]. At a certain time of day, an entraining maternal cue

may trigger a signaling pathway that might impinge onto the

yet non-rhythmic clock cells and induce expression of certain

genes. Consequently, an imprinting of time awareness might

be initiated. Alternatively, a maternal signal might synchronize

already existing oscillations in individual cells. Maternal mela-

tonin may fulfill all the criteria of a functional entraining cue

and was considered as a first class candidate at least for the

photoperiodic entrainment. However, it appears that hor-

mones are not exclusive entraining cues for the fetal clock.

Activation of dopaminergic pathways through D1 receptors

entrains rodent fetuses as well [46]. Dopamine receptors, as

well as melatonin receptors, are present in fetal SCN cells

[47]. While melatonin might be considered as the signal of

night, dopamine might be the signal of day. The dopaminergic

signaling includes activation of the IEG c-fos within the fetal

SCN [48]. In the adult rat SCN, c-fos expression is spontane-

ously high during the daytime and low during the nighttime

[5]. c-fos expression is likely related to neuronal activation

which is also high during the day and low during the night.

Importantly, a marked rhythm in cFos protein immunoreac-

tivity in the neonatal rat SCN is present at P3, i.e., at the ear-

liest time tested [44]. Preliminary data show that the rhythm

might be present even at earlier developmental stages (El-

Hennamy et al., unpublished results). It is therefore possible

that maternal cue-induced c-fos expression may provide the fe-
tal clock with a daytime signal and elevation of neuronal activ-

ity. It is not yet clear, however, how the suggested signals and

pathways may induce rhythmic expression of clock genes. The

signaling pathways activating c-fos and Per genes share a com-

mon element, i.e., phosphorylation of CREB. This step might

represent the crucial point triggering rhythmic clock gene

expression. As more cues share the ability to induce phosphor-

ylation of CREB and expression of c-fos, the induction might,

hypothetically, represent a common step setting the daytime in

the fetal clock (see Fig. 1).

4.2. Signals entraining the central clock postnatally

In rodents, such as rats, mice and hamsters, the newborn neo-

nates are fully dependent on their mothers. In the laboratory, the

exquisite maternal entrainment of their rhythmicity becomes

less important after the first week of their life when the photic

entrainment starts to override the maternal entrainment. In nat-

ure, the switch from maternal to photic entrainment may corre-

late with the ability of pups to leave their underground burrows

and get exposed to the environmental light. The mechanism

underlying the change in sensitivity of the clock to entraining sig-

nals is not fully understood. The phase of the newborn rat SCN

clock is set prenatally, synchronously with the mother’s clock.

Rat pups are born, however, with a low-amplitude oscillation

in clock genes expression and the amplitude increases only grad-

ually [28,29]. At the early developmental stage, pups may be

partly entrained to the different circadian phase of a foster

mother [for review see 40]. This maternal entrainment may be

facilitated or even enabled by the low amplitude of pups’ clock
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oscillations. As the clock rhythmicity strengthens, maternal cues

may lose the ability to entrain it and a stronger entraining agent,

i.e., light, may take their place.

Maternal cues entraining the pups’ clock postnatally may

not be the same as those entraining the fetal clock. Many

potentially entraining substrates, such as, e.g., melatonin,

may be delivered in milk. Recent studies however indicate that

this pathway may contribute only little to resetting the pups’

clock. When blinded newborn rats are reared by a foster

mother on an inverted light–dark regime, the phase of rhythms

in Per1 and Per2 mRNAs within the pups’ SCN is shifted only

marginally by about 2 h [30]. Maternal behavior, namely ab-

sence of the mother, may, however, strongly entrain the neona-

tal clock. When newborn pups are deprived of their mothers

during the light phase, i.e., at the time when they usually suckle

milk, the rhythmic SCN expression of Per1 and Per2 genes is

completely phase-reversed within six days [31]. Likely, the

feeding regime and the periodic partial maternal absence are

not the crucial resetting cues for the pups’ SCN clock, as they

are also reversed under the fostering experiment [30]. The com-

plete absence of the mother at the time when pups are usually

fed may be, however, a strong stressor for pups altering expres-

sion of stress related genes, such as corticotropine releasing hor-

mone, glucocorticoid receptor and AVP [31]. Hypothetically,

the signaling pathway involved in the maternal postnatal

entrainment might employ glucocorticoids similarly as with

entrainment of peripheral clocks in adults. Sensitivity of the

SCN clock to stress diminishes with postnatal age [49].

As innervation of the VL SCN via RHT and GHT develops

mostly during the first days after birth, pups become more sen-

sitive to light and gradually the photic entrainment of the SCN

clock prevails. The signaling cascade responding to light is

functional at least partly immediately after birth: light pulses

induce c-fos expression in the rat SCN on the day of birth

[48] or at P1 [50]. The light induced gene expression is, how-

ever, not the only pre-requisite for photic resetting the circa-

dian clock. The photic entrainment may be accomplished

mostly due to the fact that light induces the signaling cascade

only during a restricted time window that corresponds to the

duration of subjective night. During the subjective night, the

SCN clock is sensitive to light and photic stimuli may phase

delay or phase advance the clock depending upon the time

of their administration. The mechanism of how the molecular

clockwork gates the response to light is still not understood.

The gate for insensitivity to light is not yet developed at P3

since light pulses administered at any time within a 24-h cycle

induce high cFos immunoreactivity in the SCN no matter

whether it is day or night [44]. In another study [48] a slight

gate was indicated at P2. However, the gate for insensitivity

to light becomes present only at P10 [44]. This day corresponds

well with the developmental stage when photic entrainment be-

gins to override maternal entrainment [for review see 40].

Moreover, at P10 the rat SCN clock starts to be entrained

by the photoperiod [43]. In comparison with adult rats [51],

the photoperiodic control of the molecular clockwork is only

partial and even at P20 it is not yet complete [43]. The data

suggest that at least in rodents, the postnatal photic and pho-

toperiodic entrainment develops in dependence on advance-

ment of the mechanism that gates the clockwork insensitivity

to light. The development proceeds gradually and may be

accomplished at the end of the weaning time (see Fig. 2).
4.3. Signals entraining peripheral clocks postnatally

During postnatal ontogenesis, the circadian expression of

clock genes in the rat peripheral clocks might be entrained

not only by signals from the developing SCN clock, but also

by maternal behavior, namely by the rhythm in breast feeding

and care of the newborns. The latter possibility seems to be the

case in the first weeks of life. The mother feeds her pups and

thus keeps them active mostly during the day. Adult rats, how-

ever, are active and consume food mostly at night. During the

weaning period, between P14 and P28, the pup’s feeding and

activity regimes apparently change. In parallel with the

changes, the phases of rhythms in genes expression in the heart

change as well [36]. First, the phases shift by several hours be-

tween P14 and P20. The shifts, though smaller, continue, to-

gether with a drastic change of the rhythm’s amplitude

between P20 and P30, when the matured circadian system

seems to have been established. Similarly, during development

of the molecular clockwork in the rat liver, rhythms of clock

genes expression appear to phase shift during the first weeks

of life [28]. Apparently, at this developmental stage, setting

peripheral clocks by the feeding regime may prevail upon

entrainment by the SCN (see Fig. 2).
5. Concluding comments

This minireview cannot encompass all known data on bio-

logical clocks and their entrainment during development.

From the data summarized it is, however, obvious how little

is known about biochemical signals setting the time in the

clocks. Many questions still remain to be answered. What

may be the pathways setting the phase of the SCN clock pre-

natally by the mother at the time when the fetal SCN is not

yet formed or at the time when the molecular clockwork is

not yet functioning? And what pathways mediate maternal

entrainment of the central and peripheral clocks during the

first weeks after delivery?

It is of great importance to recognize principles of maternal

and photic entrainment of the circadian system during devel-

opment. This system plays a significant role in controlling

many physiological processes and understanding the mecha-

nisms of its entrainment during ontogenesis might facilitate

optimization of conditions necessary for its healthy develop-

ment in animals, as well as human beings.
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Sumová, A. (2006) Expression of clock and clock-driven genes in
the rat suprachiasmatic nucleus during late fetal and early
postnatal development. J. Biol. Rhythms.

[30] Ohta, H., Honma, S., Abe, H. and Honma, K. (2002) Effects of
nursing mothers on rPer1 and rPer2 circadian expressions in the
neonatal rat suprachiasmatic nuclei vary with developmental
stage. Eur. J. Neurosci. 15, 1953–1960.

[31] Ohta, H., Honma, S., Abe, H. and Honma, K. (2003) Periodic
absence of nursing mothers phase-shifts circadian rhythms of
clock genes in the suprachiasmatic nucleus of rat pups. Eur. J.
Neurosci. 17, 1628–1634.

[32] Li, X. and Davis, F.C. (2005) Developmental expression of clock
genes in the Syrian hamster. Dev. Brain Res. 158, 31–40.

[33] Reppert, S.M. and Uhl, G.R. (1987) Vasopressin messenger
ribonucleic acid in supraoptic and suprachiasmatic nuclei:
appearance and circadian regulation during development. Endo-
crinology 120, 2483–2487.

[34] Shibata, S. and Moore, R.Y. (1987) Development of neuronal
activity in the rat suprachiasmatic nucleus. Brain Res. 431, 311–
315.

[35] Reppert, S.M. and Schwartz, W.J. (1984) The suprachiasmatic
nuclei of the fetal rat: characterization of a functional circadian
clock using 14C-labeled deoxyglucose. J. Neurosci. 4, 1677–1682.

[36] Sakamoto, K., Oishi, K., Nagase, T., Miyazaki, K. and Ishida, N.
(2002) Circadian expression of clock genes during ontogeny in the
rat heart. Neuroreport 13, 1239–1242.

[37] Shimomura, H., Moriya, T., Sudo, M., Wakamatsu, H., Akiy-
ama, M., Miyake, Y. and Shibata, S. (2001) Differential daily
expression of Per1 and Per2 mRNA in the suprachiasmatic
nucleus of fetal and early postnatal mice. Eur. J. Neurosci. 13,
687–693.

[38] Weaver, D.R. and Reppert, S.M. (1989) Direct in utero percep-
tion of light by the mammalian fetus. Dev. Brain Res. 47, 151–
155.

[39] Reppert, S.M. and Schwartz, W.J. (1986) Maternal suprachias-
matic nuclei are necessary for maternal coordination of the
developing circadian system. J. Neurosci. 6, 2724–2729.

[40] Weinert, D. (2005) Ontogenetic development of the mammalian
circadian system. Chronobiol. Int. 22, 179–205.

[41] Davis, F.C. and Gorski, R.A. (1988) Development of hamster
circadian rhythms: role of the maternal suprachiasmatic nucleus.
J. Comp. Physiol. [A] 162, 601–610.

[42] Honma, S., Honma, K.I., Shirakawa, T. and Hiroshige, T. (1984)
Effects of elimination of maternal circadian rhythms during
pregnancy on the postnatal development of circadian corticoste-
rone rhythm in blinded infantile rats. Endocrinology 114, 44–50.
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