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S U M M A R Y

Background: The development of novel antibiotics to treat multidrug-resistant (MDR) tuberculosis is

time-consuming and expensive. Multiple immune modulators, immune suppressants, anti-inflamma-

tories, and growth enhancers, and vitamins A and D, inhibit Mycobacterium avium subspecies

paratuberculosis (MAP) in culture. We studied the culture inhibition of Mycobacterium tuberculosis

complex by these agents.

Methods: Biosafety level two M. tuberculosis complex (ATCC 19015 and ATCC 25177) was studied in

radiometric Bactec or MGIT culture. Agents evaluated included clofazimine, methotrexate, 6-

mercaptopurine, cyclosporine A, rapamycin, tacrolimus, monensin, and vitamins A and D.

Results: All the agents mentioned above caused dose-dependent inhibition of the M. tuberculosis

complex. There was no inhibition by the anti-inflammatory 5-aminosalicylic acid, which causes

bacteriostatic inhibition of MAP.

Conclusions: We conclude that, at a minimum, studies with virulent M. tuberculosis are indicated with

the agents mentioned above, as well as with the thioamide 5-propothiouricil, which has previously been

shown to inhibit the M. tuberculosis complex in culture. Our data additionally emphasize the importance

of vitamins A and D in treating mycobacterial diseases.

� 2014 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
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1. Introduction

Multidrug-resistant (MDR) and total drug-resistant (TDR)
tuberculosis is an increasing problem worldwide.1–4 Amongst the
multiple evolving strategies attempting to address this problem is
the development of new antibiotics.5–8 However, identifying,
evaluating, obtaining regulatory approval, and marketing totally
new antibiotics is time-consuming and expensive.9–11 Existing
approved pharmaceuticals that have heretofore unanticipated
inhibition on Mycobacterium tuberculosis could more rapidly
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and less expensively proceed to ethically acceptable clinical
evaluation.

There are increasing concerns that Mycobacterium avium

subspecies paratuberculosis (MAP) may be zoonotic,12–14 and is

responsible for, at a minimum, Crohn’s disease.15 We posit that the

reason the pathogenesis of MAP has been missed is because,

unknowingly, since 1942,16 the medical profession has been

treating MAP without understanding that was what they were

doing. Multiple agents called ‘immune suppressants’, ‘immune

modulators’,17–22 and ‘anti-inflammatories’,23 as well as vita-

mins,24 exhibit dose-dependent inhibition of MAP in culture: they

are anti-MAP antibiotics. As controls in these and other experi-

ments,25 we used Mycobacterium avium subspecies avium and two

biosafety level 2 strains from the M. tuberculosis complex.
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We present herein unreported data on the dose-dependent
inhibition, in culture, of the M. tuberculosis complex by multiple
agents we have studied, and correlate these data with those from
prior publications.17–24 We compared the known anti-M. tubercu-

losis antibiotics para-aminosalicylic acid (PAS) and isoniazid with
sulfapyridine and the anti-leprosy antibiotic clofazimine. We also
evaluated the anti-inflammatory 5-aminosalicylic acid (5-ASA),
the thiopurine immunomodulator 6-mercaptopurine (6-MP), and
the immunosuppressants methotrexate, cyclosporine A, thalido-
mide, rapamycin, and tacrolimus. In addition, we studied two
vitamins that inhibit mycobacteria in culture, vitamins A24 and
D.24,26

2. Methods

This study was approved by the Research and Development
Committee at the Veterans Affairs Medical Center, Bronx NY (0720-
06-038) and was conducted under the Institutional Radioactive
Materials Permit (#31-00636-07).

2.1. Bacterial culture

The purpose of this study was to evaluate inhibition on the M.

tuberculosis complex. We used two biosafety level 2 strains,
bacillus Calmette–Guérin (BCG) Mycobacterium bovis Karlson and
Lessel (ATCC 19015) and an avirulent M. tuberculosis strain (ATCC
25177).27

When indicated, comparisons of inhibition of MAP are
included; the MAP was mostly that isolated from humans with
Crohn’s disease (‘Dominic’ ATCC 43545; ‘Ben’ ATCC 43544; ‘Linda’
ATCC 43015; ATCC 700535; ‘303’ ATCC # PTA 778828) and UCF-4
(gift of Saleh Naser, Burnett College of Biomedical Sciences,
University of Central Florida, Orlando, FL,USA).29 All ATCC were
from ATCC Rockville, MD, USA.

All agents studied were purchased and prepared as described in
previous publications.17–19,23,24,30 The solvent in which the
chemical was dissolved is identified in each table in the Results
section.

Our Bactec 460 (Becton Dickinson, Franklin Lakes, NJ, USA) 14C
radiometric culture inhibition methods have been published in
detail previously.17–19,23,24,30 This system quantifies bacterial
growth, or the lack thereof, by providing 14C in palmitate, an
energy source for mycobacterial growth.31 Vials are assayed on a
daily basis, quantifying the amount of 14C released as 14CO2, by the
integral detector in the Bactec 460. The data are obtained as
manufacturer-determined arbitrary ‘growth units’ (GU) of 0–999.
Because the Bactec 460 is only semi-automatic and because of the
onerous regulatory requirements of using radionucleotides, this
exquisitely sensitive23 system is being phased out. The Bactec 460
radiometric system has been replaced by the fully automatic,
oxygen consumption detecting fluorescent probe-based MGIT 960
system (Becton Dickinson).32,33

In this study we performed a parallel Bactec/MGIT comparison.
For this comparison, both components of the study were set up on
the same day, using the same pre-culture for the bacterial
inoculum. For the Bactec component, we used our previously
described methods.17–19,23,24,30 The final volume in the Bactec
system was always 5 ml, and the concentration of the dissolving
liquid was identical in each tube, irrespective of the concentration
of the agent being tested. In this Bactec/MGIT comparison
experiment, the agents were dissolved in dimethyl sulfoxide
(DMSO), and the final concentration was always 3.2% DMSO. In the
MGIT system the final volume was 7 ml. Accordingly, we increased
the volume of the inoculum, test agent, and DMSO so that the
concentration was the same for each component in the final
solution.
To minimize possible confounding variables in the Bactec/MGIT
comparison, mycobactin J, Oleic Acid, Albumin, Dextrose &
Catalase (OADC) (Cat # BD-237510), and Tween 80 were not
added to either the Bactec or the MGIT cultures. Neither OADC nor
Albumin, Dextrose & Catalase (ADC) (Cat # BD-212352) nor
mycobactin J is required for the growth of the M. tuberculosis

strain.17–19,23,24,30 MGIT computer-declared ‘positivity’ occurred
by day 7 of the control M. tuberculosis inoculum. We did not use
Tween 80, recommended to minimize mycobacterial clumping,31

because we,19 and others,34 have found that it interferes with
inhibition.

Bactec quantifies growth as the ‘growth index’ (GI). Sequential
days of data are added together and presented as the cumulative GI
(cGI). The data are then mathematically manipulated to indicate
the amount of inhibition from the control as the percentage change
from control cGI (inhibition as %�DcGI; see Greenstein et al.23 for
calculation).

MGIT data are provided by the integral MGIT computer as either
growth units or as the day when the computer determines an
individual inoculum has reached log phase growth and is declared
‘positive.’ In our Bactec/MGIT M. tuberculosis comparison, we
present the MGIT data in both ways. Agents being tested were
added at the beginning of the experiment. The calculation for MGIT
‘cumulative growth units’ (cGU) was made by adding the growth
units from the MGIT printout until an arbitrary day post
inoculation; in this particular experiment we terminated the
experiment on day 16 because the controls had passed log phase
growth and showed no further increase in the control growth units.
The calculation for cGU was as described for cGI for Bactec data.23

The effect (or lack thereof) of each agent in the MGIT is presented
as the percentage decrease in cGU units (%�DcGU). The calculation
of %�DcGI was performed in two stages (using Excel) using the
following formula: step one = [(A � B)/A] = C, step
two = �C � % = final result of %�DcGU, where A = the cGU of the
control inoculum for the given diluent (in these experiments
DMSO see above and in each table), B = the cGU for the particular
chemical at a particular dose being tested, incubated for the same
number of days as A, and C = the product of [(A � B)/A]. Days to
positivity are also presented in the tables and figure (see Figure 1
legend for details).

3. Results

The inhibitory control used was PAS. There was a marked dose-
dependent inhibition (>95%�DcGI at 1 mg/ml) of M. tuberculosis

(Table 1). This was not as pronounced with BCG, particularly when
PAS was dissolved in 7H9 (18%�DcGI at 1 mg/ml) or water
(�86%�DcGI at 1 mg/ml; Table 1). Isoniazid was an additional
inhibitory control. It was found to be bactericidal against M.

tuberculosis whether dissolved in NaOH or water (99%�DcGI at
1 mg/ml; Table 2). BCG was best inhibited when the dissolving
solution was NaOH (99%�DcGI at 1 mg/ml; Table 2).

Our non-inhibitory control was the intact molecule of
sulfasalazine (comprising sulfapyridine coupled to 5-ASA). There
was no dose-dependent inhibition of either M. tuberculosis

complex strain studied (Table 3).
Sulfapyridine, alone or with 5-ASA (the two component

molecules of our non-inhibitory control sulfasalazine), showed
poor dose-dependent inhibition of M. tuberculosis (63%�DcGI at
64 mg/ml; Table 4). BCG was more susceptible to sulfapyridine
(�89%�DcGI at 16 mg/ml; Table 4). There was no synergy of
sulfapyridine with 5-ASA on BCG (Table 4).

Alone, 5-ASA showed no dose-dependent inhibition on the M.

tuberculosis complex (Table 5). This is in contrast to the weak,
but consistent and replicable, bacteriostatic dose-dependent



Figure 1. A simultaneous comparison of the effects of vitamins A and D was

performed using both Bactec and MGIT systems. The Bactec data are presented here,

as previously,18–20,23–25,30 in graph form (cGI = cumulative growth index) (A); data

in tabular form are given in Table 11. The MGIT data are presented in two ways: the

manufacturer determined ‘growth unit’ was combined, arbitrarily, for the first 16

days of the experiment and is presented in ‘cumulative growth units’ (cGU) (B);

alternatively, the data are presented as recommended by the manufacturer in ‘days

to positivity’ (C). The inhibitory control was monensin and the non-inhibitory

control was phthalimide.

Table 1
Inhibitory control: para-aminosalicylic acid (PAS)a

M. tuberculosis

(ATCC 25177)

BCG (ATCC 19015)

mg/ml NaOH NaOH Water NaOH NaOH NaOH 7H9 NaOH Water

1 �95% �95% �98% �72% �96% �81% �18% �29% �86%

4 �96% �98% �99% �98% �98% �94% �94% �83% �99%

16 �97% �98% �99% �98% �98% �96% �97% �93% �99%

64 �97% �98% �99% �98% �98% �97% �98% �94% �99%

BCG, Bacillus Calmette–Guérin.
a PAS was the first mass-produced anti-tuberculosis antibiotic and was used here

as an inhibitory control. The dissolving solution is indicated for each experiment.

Inhibition data are presented as %�DcGI (see Methods for calculation).

Table 2
Inhibitory control: isoniazida

M. tuberculosis BCG

mg/ml NaOH Water NaOH 7H9 Water

1 �99% �99% �99% �2% �62%

4 �98% �99% �98% 32% �25%

16 �98% �99% �99% 3% �63%

64 �98% �99% �98% �98% �99%

BCG, bacillus Calmette–Guérin.
a Isoniazid is an acknowledged anti-tuberculosis antibiotic. Isoniazid was equally

inhibitory against M. tuberculosis whether dissolved in NaOH or water. Efficacy

against BCG was best observed when it was dissolved in NaOH. Inhibition data are

presented as %�DcGI (see Methods for calculation).

Table 3
Non-inhibitory control: sulfasalazine (intact sulfasalazine: sulfapyridine/5-ASA)a

mg/ml M. tuberculosis

(ATCC 25177)

BCG (ATCC 19015)

1 �31% �11% �4% 8% �54% 46%

4 �7% 18% 4% 10% �41% 51%

16 �8% 62% 6% 25% �25% 100%

64 �8% 31% 55% 24% 27% 295%

5-ASA, 5-aminosalicylic acid; BCG, bacillus Calmette–Guérin.
a The non-inhibitory control was sulfasalazine, the intact combination of

sulfapyridine and 5-ASA. NaOH was used to dissolve in all experiments. Inhibition

data are presented as %�DcGI (see Methods for calculation).

Table 5
The effect of 5-ASA on Mycobacterium tuberculosis, BCG, and MAPa

mg/ml M. tuberculosis BCG MAP

1 �42% �24% �16% 26% �26% 3% �19%

4 �38% �13% �7% 4% �31% 19% �18%

16 �56% �10% �9% 13% �35% 21% �28%

64 �24% �4% 47% 6% 68% 149% �45%

5-ASA, 5-aminosalicylic acid; BCG, bacillus Calmette–Guérin; MAP, Mycobacterium

avium subspecies paratuberculosis.
a 5-ASA was studied alone in comparing M. tuberculosis, BCG, and MAP (UCF-4).

There was no dose-dependent inhibition observed with the M. tuberculosis or BCG.

In contrast, the previously reported,23 subtle, bacteriostatic, dose-dependent

inhibition with MAP was reproduced here. NaOH was used to dissolve in all

experiments. Inhibition data are presented as %�DcGI (see Methods for

calculation).

Table 4
Inhibition of sulfapyridine � 5-ASAa

Sulfapyridine Sulfapyridine+

5ASA

mg/ml M. tuberculosis BCG

1 9% 7% 9% 7% 9% 7%

4 �6% �13% �6% �13% �6% �13%

16 �13% �90% �13% �90% �13% �90%

64 �63% �99% �63% �99% �63% �99%

5-ASA, 5-aminosalicylic acid; BCG, bacillus Calmette–Guérin.
a Sulfapyridine was studied alone or with separate and equal weight of 5-ASA.

There was dose-dependent inhibition of both M. tuberculosis and BCG, only by

sulfapyridine. 5-ASA had no effect. NaOH was used to dissolve both agents in all

experiments. Inhibition data are presented as %�DcGI (see Methods for

calculation).
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inhibition of 5-ASA on MAP,23 that we replicated here with MAP
UCF-4 (Table 5, right-hand column).

The agricultural growth enhancer monensin caused dose-
dependent inhibition of MAP, some strains of M. avium, and BCG.30

We replicated our data with BCG30 here and found, for the first
time, profound monensin dose-dependent inhibition on M.

tuberculosis (99%�DcGI starting at 4 mg/ml; Table 6).



Table 6
Monensin, a growth enhancer, inhibits both Mycobacterium tuberculosis and BCGa

mg/ml M. tuberculosis BCG

1 �28% �96% �74% �25% �44% �29% �28%

4 �36% �99% �98% �77% �69% �66% �54%

16 �79% �99% �99% �87% �92% �84% �73%

64 �99% �99% �99% �97% �98% �95% �91%

BCG, bacillus Calmette–Guérin; MAP, Mycobacterium avium subspecies paratuber-

culosis.
a The veterinarian profession calls monensin a ‘growth enhancer’ because cows

treated with it gain weight and produce more milk. We consistently showed dose-

dependent monensin inhibition with MAP, with Mycobacterium avium subspecies

avium ATCC 25291, and here with the M. tuberculosis complex. Dimethyl sulfoxide

(DMSO) was used to dissolve in all experiments. Inhibition data are presented as

%�DcGI (see Methods for calculation).
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The thiopurine immune modulator 6-MP causes profound and
reproducible dose-dependent inhibition of MAP.17,21,22 In this
study we replicated our observations on MAP17 with MAP UCF-4
that had been isolated from a patient with Crohn’s disease
(67%�DcGI at 1 mg/ml; right-hand column, Table 7) and found a
profound inhibition of the M. tuberculosis complex, more pro-
nounced with M. tuberculosis (94%�DcGI by 4 mg/ml; Table 7).

The immunosuppressant methotrexate causes dose-dependent
inhibition of MAP.17 We studied four additional MAP strains, two of
which (‘Ben’ and ‘Linda’) had been isolated from humans with
Crohn’s disease (Table 8; four right-hand columns). With ‘Linda’,
inhibition was 87%�DcGI at 4 mg/ml (Table 8). Methotrexate
showed dose-dependent inhibition on the M. tuberculosis complex.
This was more pronounced on BCG (�87%�DcGI at 4 mg/ml) than
on M. tuberculosis (97%�DcGI at 64 mg/ml; Table 8).
Table 7
6-Mercaptopurine (6-MP), an immune modulator, inhibits mycobacterial growtha

mg/ml M. tuberculosis BCG MAP

1 �58% �44% �2% �66% �43% �67%

4 �94% �70% �52% �74% �61% �87%

16 �99% �97% �80% �92% �81% �95%

64 �99% �98% �98% �96% �92% �98%

BCG, bacillus Calmette–Guérin; MAP, Mycobacterium avium subspecies paratuber-

culosis.
a The medical profession calls 6-MP an ‘immune modulator’. We replicated 6-MP

dose-dependent inhibition of MAP and M. avium subspecies avium. We now

reproduced the MAP inhibition using MAP UCF-4. We additionally showed marked

dose-dependent inhibition on the M. tuberculosis complex. Inhibition was more

pronounced on M. tuberculosis than on BCG. NaOH was used to dissolve in all

experiments. Inhibition data are presented as %�DcGI (see Methods for

calculation).

Table 8
Methotrexate, an ‘immune suppressant’, inhibits MAP and BCG more than M.

tuberculosisa

M. tuberculosis BCG MAP

Human

isolates

Bovine

isolates

mg/ml ‘Ben’ ‘Linda’ 700535 303

1 �13% �60% 18% �4% �41% 6% �10%

4 �19% �95% �87% �73% �87% �67% �82%

16 �23% �97% �95% �96% �99% �99% �98%

64 �97% �96% �94% �96% �99% �99% �99%

BCG, bacillus Calmette–Guérin; MAP, Mycobacterium avium subspecies paratuber-

culosis.
a The medical profession calls methotrexate an ‘immune suppressant’. Metho-

trexate inhibits MAP. Here we reproduced that observation in four species of MAP,

two of which were isolated from patients with Crohn’s disease. Dose-dependent

inhibition was most pronounced with BCG and MAP, less so with M. tuberculosis.

NaOH was used to dissolve in all experiments. Inhibition data are presented as

%�DcGI (see Methods for calculation).
Clofazimine is an acknowledged anti-mycobacterial antibiotic
used routinely to treat leprosy,35 which inhibits MAP in
culture18,19,36 and has been used in trials on putative MAP
gastrointestinal infections.37–39 Clofazimine was profoundly in-
hibitory against the M. tuberculosis complex (>99%�DcGI at 1 mg/
ml for both M. tuberculosis and BCG, the lowest dose we tested;
Table 9). The immune suppressants cyclosporine A, rapamycin, and
tacrolimus inhibit MAP in culture.18 Cyclosporine A was more
inhibitory against M. tuberculosis (96%�DcGI at 16 mg/ml; Table 9)
than BCG (85%�DcGI at 64 mg/ml; Table 9). Rapamycin inhibited
M. tuberculosis (85%�DcGI at 16 mg/ml; Table 9) but not BCG (no
dose-dependent inhibition; Table 9). Tacrolimus was the least
effective macrolide antibiotic immune suppressant we studied. It
inhibited M. tuberculosis (99%�DcGI at 64 mg/ml; Table 9) but had
no inhibition on BCG (Table 9).

Vitamins A24 and D24,26 inhibit mycobacteria in culture. We
replicated our data24 using M. tuberculosis. Both retinoic acid
(85%�DcGI at 4 mg/ml; Table 10) and retinol (84%�DcGI at 16 mg/
ml; Table 10) were more inhibitory than vitamin D3 (46%�DcGI at
64 mg/ml; Table 10).

A comparison of the Bactec and MGIT systems using M.

tuberculosis was performed with vitamin A, its metabolite retinoic
acid, and vitamin D. The previously reported inhibition24 was
replicated and was found to be more pronounced with vitamin A
and retinoic acid than with vitamin D and was more elegantly seen
using the Bactec system (Figure 1 and Tables 11 and 12).

4. Discussion

In this study we clearly showed the dose-dependent inhibition
of the M. tuberculosis complex by agents conventionally called
immune suppressants, immune modulators, and growth enhan-
cers, and vitamins A and D, in part reproducing previous
publications by ourselves and others. The most obvious concern
about any inferences that could be drawn from this study is that
pathogenic M. tuberculosis strains were not evaluated. Our
unfunded laboratory is approved for biosafety level 2 experiments;
hence our study was limited to two biosafety level 2 representa-
tives of the M. tuberculosis complex. The results presented cannot
be ascribed to a simple pH effect for two reasons. First the
experimental control always contained the same exact concentra-
tion of the dissolving solution as did each vial, irrespective of the
amount of agent being tested. Second, because of buffering, in the
final incubation vial, the pH was always within the manufacturer’s
recommended range of 6.6 � 0.2 (data not presented).

The experimental inhibitory controls used in this study were
PAS40 and isoniazid,41 both acknowledged anti-tuberculosis
antibiotics. The non-inhibitory control was the intact molecule
of sulfasalazine comprising two molecules, sulfapyridine and 5-
ASA.16 Neither intact sulfasalazine nor 5-ASA inhibited the M.

tuberculosis complex, although we reproduced our subtle bacteri-
ostatic dose-dependent 5-ASA inhibition of MAP (Tables 3 and 5
and Greenstein et al.23). In contrast, sulfapyridine showed dose-
dependent inhibition, more pronounced with BCG than M.

tuberculosis. From our inhibition curves, we conclude that
sulfapyridine is not likely to be clinically useful in the therapy
of MDR tuberculosis and 5-ASA has no potential role.

Clofazimine is known to inhibit M. tuberculosis in culture.42–47

These data are corroborated in this study where it was found to
cause dose-dependent inhibition of both of our M. tuberculosis

complex strains. Clofazimine is used to treat leprosy35 and putative
MAP infections of the gastrointestinal tract.37,38 Clofazimine is
already used in combination to treat MDR tuberculosis48–50 (see
Dooley et al.1, Gopal et al.51, Dey et al.52 and Cholo et al.53 for
reviews). We conclude that the preexisting clinical use of
clofazimine, coupled with our culture inhibition data, justify



Table 9
Clofazimine (an anti-leprosy antibiotic) and the immune suppressants cyclosporine A, rapamycin, and tacrolimus inhibit mycobacterial growtha

Clofazimine Cyclosporine A Rapamycin Tacrolimus

mg/ml M. tuberculosis BCG M. tuberculosis BCG M. tuberculosis BCG M. tuberculosis BCG

1 �99% �99% 8% 30% 3% 11% 11% 3%

4 �99% �98% �11% 4% �28% 15% �6% 12%

16 �99% �98% �96% �12% �85% 0% �13% �5%

64 �99% �99% �99% �85% �99% �28% �99% �11%

BCG, bacillus Calmette–Guérin; MAP, Mycobacterium avium subspecies paratuberculosis.
a Comparison of clofazimine and the immune suppressants. Clofazimine is an anti-leprosy antibiotic and is used to treat human MAP infections. Clofazimine shows

bactericidal inhibition of MAP in culture42–47 and is used to treat tuberculosis.51,52 Here we found pronounced inhibition of the M. tuberculosis complex. The immune

suppressants cyclosporine A, rapamycin, and tacrolimus are used at high dose to prevent transplanted organ rejection, and at lower doses in inflammatory diseases.

Cyclosporine A was more active against M. tuberculosis than against MAP. Rapamycin and tacrolimus are both from the macrolide family of antibiotics. Rapamycin showed

greater inhibition against M. tuberculosis than did tacrolimus. All agents were dissolved in dimethyl sulfoxide (DMSO) at a final concentration of 3.2%. Inhibition data are

presented as %�DcGI (see Methods for calculation).

Table 10
Mycobacterium tuberculosis is inhibited by vitamins A and Da

mg/ml Monensin Phthalimide Retinol Retinoic acid Cholecalciferol

1 �28% 2% �5% �44% �9%

4 �36% 13% �33% �85% �13%

16 �79% �5% �84% �98% �39%

64 �99% �36% �99% �99% �46%

a We have previously shown dose-dependent inhibition of MAP and Mycobacte-

rium avium by vitamins A and D. We here replicated that inhibition with vitamin A,

retinoic acid, and vitamin D. The metabolite retinoic acid was more inhibitory than

vitamin A; both were consistently more inhibitory than vitamin D. Inhibition data

are presented as %�DcGI (see Methods for calculation).

Table 11
Comparison of Bactec and MGIT for monensin (inhibitory control) and phthalimide

(non-inhibitory control)a

Bactec MGIT

Measurement %�DcGI %�DcGU Days to positivity

Monensin

1 mg/ml �28% 6% 6

4 mg/ml �36% �27% 6

16 mg/ml �79% �51% 7

64 mg/ml �99% �70% 9

Phthalimide

1 mg/ml 2% 7% 6

4 mg/ml 13% 16% 6

16 mg/ml �5% 22% 6

64 mg/ml �36% �1% 6

a Comparison of Bactec and MGIT for inhibitory and non-inhibitory controls: we

compared the manner in which Bactec and MGIT data are presented. The

experiment was set up on the same day, from the same inoculum culture. Bactec

inhibition data are presented as %�DcGI (see Methods for calculation) and the MGIT

data are expressed as %�DcGU, calculated in the same manner as the Bactec data

(see Methods). The conventional manner in which MGIT data are expressed is ‘days

to positivity’ (right hand column).

Table 12
Comparison of Bactec and MGIT: retinol (vitamin A), retinoic acid (vitamin A

metabolite), and cholecalciferol (Vitamin D3)a

Bactec MGIT

Measurement %�DcGI %�DcGU Days to positivity

Retinol

1 mg/ml �5% 14% 6

4 mg/ml �33% 35% 6

16 mg/ml �84% �31% 8

64 mg/ml �99% �100% No growth

Retinoic acid

1 mg/ml �44% 25% 6

4 mg/ml �85% �38% 7

16 mg/ml �98% �100% No growth

64 mg/ml �99% �100% No growth

Cholecalciferol

1 mg/ml �9% 31% 6

4 mg/ml �13% 2% 7

16 mg/ml �39% �94% 11

64 mg/ml �46% �100% No growth

a Comparison of Bactec and MGIT for vitamins A and D. We compared the manner

in which Bactec and MGIT data are presented. The experiment was set up on the

same day, from the same inoculum culture. Bactec inhibition data are presented as

%�DcGI (see Methods for calculation) and the MGIT data are expressed as %�DcGU,

calculated in the same manner as the Bactec data (see Methods). The conventional

manner in which MGIT data are expressed is ‘days to positivity’ (right hand

column). ‘No growth’ is to day 61, when the experiment was terminated. See also

Figure 1.
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additional consideration of other inhibitory agents discussed in
this manuscript.

Others, using a less sensitive growth detection method, have
failed to show inhibition of virulent M. tuberculosis by methotrex-
ate.9 Against BCG, we found consistent inhibition at doses
comparable to doses used in clinically significant putative human
MAP infections (Table 8 and Greenstein et al.17). However, against
our avirulent M. tuberculosis strain, higher doses of methotrexate
were necessary to inhibit growth in culture. We conclude that our
data do not justify considering methotrexate clinical application in
humans; merely further culture inhibition studies on virulent M.

tuberculosis.
In contrast to methotrexate, the thioguanine immune modula-

tor 6-MP was found to be more inhibitory against M. tuberculosis

than BCG. Furthermore the inhibitory potency found in culture was
equal to 6-MP dosages used clinically in putative human MAP
infections (Table 7 and Greenstein et al.,17 Shin and Collins,21 and
Krishnan et al.22). We conclude that 6-MP is more likely than
methotrexate to be of use in treating virulent M. tuberculosis.

The immune suppressants cyclosporine A54 (a cyclic undeca-
peptide), rapamycin55 and tacrolimus56 (both from the macrolide
family of antibiotics), are used most conventionally in the
prevention of organ transplant rejection.57 In addition, they are
used, always at lower doses (see Table 7 in Greenstein et al.18), in
the therapy of several autoimmune diseases, including those we
suggest may be caused by MAP.58 All three of these immune
suppressants cause dose-dependent inhibition of MAP in culture.18

In the current study we found that these immune suppressant
agents also inhibited M. tuberculosis in culture. From our data
(Table 9), we conclude that of the four agents tested, clofazimine is
the most potent and potentially clinically useful agent and that
cyclosporine A and rapamycin are potentially of more use as anti-
tuberculosis agents than tacrolimus.

Monensin59 is called a growth enhancer by the agricultural
community, because cows fed it gain weight and produce more
milk.60,61 In addition to being a cocciomycotic in poultry,62

monensin decreases fecal MAP shedding in infected cows.63 Of
interest to this manuscript, monensin is an inhibitor of MAP,30,64

M. avium, and BCG in culture.30 We have now demonstrated its
inhibition of M. tuberculosis (Table 6) with greater potency than
observed with BCG.30
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To our knowledge there is no accepted safety profile of
monensin for human use. Safety concerns mainly address whether
or not residual monensin could be detected in food from animals
exposed to monensin,65–68 or the effect of monensin on human
cells in culture.69–73 In a solitary case report, a young agricultural
employee, naively conceptualizing that the ‘growth enhancer’
acted as an anabolic steroid, took three times the pro-rated lethal
dose for cattle, developed fatal rhabdomyolysis, renal and cardiac
failure.74 Monensin is used extensively and safely in ruminants60,75

and poultry.76 In the current study we found it to be a potent anti-
tuberculosis agent that may be of use in humans. We conclude that
studies of monensin for human safety and efficacy in MDR
tuberculosis may be indicated.

Vitamin D utility in treating human tuberculosis77–79 and
animals infected with MAP80,81 is conventionally ascribed to
vitamin D enhancing the immune response of the infected host.82

Direct vitamin D inhibition of M. tuberculosis was first documented
in 1948.26 In 2012 we observed,24 and replicated herein, vitamin A
as well as D3 inhibition of MAP, M. avium, and the M. tuberculosis

complex. We infer there is a direct vitamin A and D mycobacterial
prokaryotic inhibition that is synergistic with eukaryotic immune
system enhancement. We conclude adequate nutrition should be
emphasized when treating mycobacterial diseases.

With the withdrawal of support for the Bactec 460 system by its
manufacturer (Becton Dickinson), mycobacterial investigators
require other sensitive methods of documenting mycobacterial
bacteriostatic, in addition to bactericidal, effects. We compared the
radiometric Bactec 460 with the fluorometric MGIT 960 system
(Tables 11 and 12 and Figure 1). We have presented our method of
analyzing the MGIT data using the computer-generated growth unit
provided by the MGIT system. Our analyses (Tables 11 and 12 and
Figure 1) indicate alternative ways of analyzing MGIT data that may
be of use to investigators when studying mycobacteria in culture.

This manuscript contains only unpublished data. We have
shown that the thioamides, thiourea, and methimazole inhibit
MAP and M. avium, but not the M. tuberculosis complex in culture.20

It is of considerable interest that in those experiments a control, 5-
propothiouricil, markedly inhibited M. tuberculosis in culture
(97%�DcGI at 16 mg/ml; Table 9 in Greenstein et al.20). We
conclude that 5-propothiouricil should be included if the
thioamide family is evaluated for potential therapy of tuberculosis.

In summary, we have presented data justifying the evaluation
of the inhibition of virulent M. tuberculosis by multiple pharma-
ceuticals, known as immune modulators and immune suppres-
sants, a ruminant growth enhancer, and vitamins A and D, as
potential novel therapeutic agents for tuberculosis in humans.
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