

Discrete Mathematics 207 (1999) 277-284

DISCRETE MATHEMATICS

n and similar papers at core.ac.uk

Note

Transversals in uniform hypergraphs with property (7,2)

Dmitry G. Fon-Der-Flaass^{a, 1}, Alexandr V. Kostochka^{a, *,2}, Douglas R. Woodall^b

^aInstitute of Mathematics, Novosibirsk, 630090, Russia ^bSchool of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK

Received 2 September 1998; accepted 22 December 1998

Abstract

Let f(r, p, t) $(p > t \ge 1, r \ge 2)$ be the maximum of the cardinality of a minimum transversal over all *r*-uniform hypergraphs \mathscr{H} possessing the property that every subhypergraph of \mathscr{H} with *p* edges has a transversal of size *t*. The values of f(r, p, 2) for p=3, 4, 5, 6 were found in Erdős et al. (Siberian Adv. Math. 2 (1992) 82–88). We give bounds on f(r, 7, 2), partially answering a question in Erdős et al. (1992). © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Transversal; Uniform hypergraph

1. Introduction

A transversal of a family \mathscr{F} of sets is a subset of $\bigcup_{F \in \mathscr{F}} F$ meeting all members of \mathscr{F} . The smallest cardinality $\tau(\mathscr{F})$ of a transversal of \mathscr{F} is called the *transversal* number of \mathscr{F} . For a hypergraph $\mathscr{H} = (V, \mathscr{E})$, a *transversal* is a transversal of \mathscr{E} .

Say that \mathscr{B} possesses the property (p,t) if $\tau(\mathscr{F}) \leq t$ for every $\mathscr{F} \subset \mathscr{B}$ with $|\mathscr{F}| = p$. Erdős, Hajnal and Tuza [2] raised the following problem:

For given integers r, p, and t ($p > t \ge 1$, $r \ge 2$), determine the largest value, f(r, p, t), of $\tau(\mathcal{F})$ taken over the class of r-uniform families \mathcal{F} possessing the property (p, t).

^{*} Corresponding author.

E-mail address: sasha@math.nsc.ru (A.V. Kostochka)

¹ The work of this author was partly supported by the grant 96-01-01614 of the Russian Foundation for Fundamental Research.

 $^{^2}$ This work was carried out while the second author was visiting Nottingham, funded by Visiting Fellowship Research Grant GR/L54585 from the Engineering and Physical Sciences Research Council. The work of this author was also partly supported by grants 96-01-01614 and 97-01-01075 of the Russian Foundation for Fundamental Research.

Erdős, Fon-Der-Flaass, Kostochka, and Tuza [1] found some bounds for f(r, p, t) in general and determined the exact values of f(r, p, 2) for $3 \le p \le 6$. In particular, f(r, 6, 2) = r.

In this note we give bounds for f(r,7,2). For $3 \le p \le 6$, the extremal hypergraphs were the maximal (w.r.t. the number of vertices) complete *r*-uniform hypergraphs possessing the property (p,t). It appears that p=7 is the first number such that this is not the case. We will prove that for $k \ge 10$, $f(4k,7,2) \ge 3k + 1$ while the worst complete 4k-uniform hypergraph possessing property (7,2) has transversal number 3k. We will also show that $f(r,7,2) \le \lceil \frac{7r}{8} \rceil$. Note that if the lower bound holds for k=2, then the upper bound is exact for r=8.

2. Lower bound

Clearly, the transversal number of the complete *r*-uniform hypergraph $K_t(r)$ on *t* vertices is t - r + 1. Observe that $K_{7k-1}(4k)$ possesses property (7,2). Indeed, let A_1, \ldots, A_7 be arbitrary 4k-element subsets of the ground set $U = \{1, \ldots, 7k - 1\}$. Since $\sum_{i=1}^{7} |A_i| = 28k > 4|U|$, there exists $u_1 \in U$ belonging to at least five sets A_i . Since 7k - 1 < 2(4k), there exists u_2 meeting the sets A_j not containing u_1 . It follows that $K_{7k-1}(4k)$ possesses property (7,2) and $f(4k, 7, 2) \ge (7k - 1) - 4k + 1 = 3k$.

On the other hand, $K_{7k}(4k)$ does not possess property (7,2). Indeed, let F_1, \ldots, F_7 be the family of complements of lines in a Fano plane on $V = \{1, \ldots, 7\}$. Then no two points meet every F_i . Blowing up every element of V into k elements, we produce a family $\{F'_1, \ldots, F'_7\}$ of seven subsets of $V' = \{1, \ldots, 7k\}$ with transversal number three. Thus although $K_{7k}(4k)$ has transversal number 7k - 4k + 1 = 3k + 1, it does not have property (7,2). In this section, we exhibit a family \mathcal{B} of 4k-element sets possessing property (7,2) with transversal number 3k + 1.

Theorem 1. Let $k \ge 10$, |S| = 7k + 1 and $X \subset S$, |X| = 4k. Let \mathscr{B} be the family of 4k-element subsets of S whose intersection with X has an odd cardinality. Then \mathscr{B} possesses property (7,2) and $\tau(\mathscr{B}) = 3k + 1$.

Remark. By elaborating the arguments of Claims 3 and 4 below, one can prove that the theorem holds already for $k \ge 4$. But for k = 2, \mathcal{B} does not possess property (7,2).

Proof of Theorem 1. Clearly, $S \setminus X$ is a transversal of \mathscr{B} of cardinality 3k + 1. On the other hand, let T be an arbitrary subset of S with |T| = 3k. Then there is $a \in (S \setminus T) \cap X$ and $b \in (S \setminus T) \setminus X$. Thus, either $(S \setminus T) - a \in \mathscr{B}$ or $(S \setminus T) - b \in \mathscr{B}$. It follows that $\tau(\mathscr{B}) = 3k + 1$.

Below in a series of claims we will prove that \mathcal{B} possesses property (7,2).

Let $\mathscr{A} = \{A_1, \dots, A_7\}$ be an arbitrary family of seven members of \mathscr{B} . Assume that $\tau(\mathscr{A}) > 2$. Below we will derive the properties of such an \mathscr{A} which finally will produce a contradiction.

Claim 1. Every element of S belongs to at most four members of \mathcal{A} .

Proof. Assume that, say, a covers A_1, \ldots, A_5 . There exists $b \in A_6 \cap A_7$. Then $\{a, b\}$ is a transversal of \mathcal{A} , a contradiction.

Since $|A_1| + \cdots + |A_7| = 28k$, we conclude from Claim 1 that almost every element of *S* (with at most four exceptions) has degree four in \mathscr{A} . We shall call such elements *standard*; denote the set of standard vertices by St, and *S*\St by \overline{St} . The sequence of the degrees of vertices in \overline{St} must be one of the following: (a) 3,3,3,3; (b) 3,3,2; (c) 3,1; (d) 2,2; (e) 0.

To shorten notation, we set $\overline{Y} = S \setminus Y$, $A_{ij} = A_i \cap A_j$ and $A^{ij} = A_i \cup A_j$.

Claim 2. If there exists $a \in \overline{A^{ij}} \cap \text{St}$ such that $a \notin A_k$ $(k \neq i, j)$, then $A_k \cap A_{ij} = \emptyset$.

Proof. If $b \in A_k \cap A_{ij}$, then $\{a, b\}$ is a transversal of \mathscr{A} , a contradiction.

Claim 3. For any $i \neq j$, $|A_{ij}| \leq 2k + 2$. Furthermore, (i) if $|A_{ij}|=2k+2$, then $A^{ij} \subseteq$ St and there exists A_k with $A_{ik}=A_i \setminus A_{ij}$ and $|A_{ik}|=2k-2$; (ii) if $|A_{ij}|=2k+1$, then $|\overline{St} \setminus A^{ij}| \geq 2$ and there exists A_k with $2k-3 \leq |A_{ik}| \leq 2k-1$.

Proof. Assume that $m = \max\{|A_{ij}|\}, |A_{1,2}| \ge m-1 \text{ and } m \ge 2k+2$. Then $|\overline{A^{1,2}}| \ge 7k+1-(8k-(m-1))=m-k \ge k+2$ and there exists $a \in \overline{A^{1,2}} \cap \text{St.}$ W.l.o.g., suppose that $a \in A_3 \cap A_4 \cap A_5 \cap A_6$. Then, by Claim 2, $A_7 \cap A_{1,2} = \emptyset$.

If there exists $b \in A^{1,2} \cap \text{St} \cap A_7$, then *b* misses A_i for some $i \in \{3,4,5,6\}$, say A_6 . Again by Claim 2, $A_6 \cap A_{1,2} = \emptyset$, and $|A_{6,7}| = |A_6| + |A_7| - |A^{6,7}| \ge 8k - (7k + 1 - (m-1)) = k - 2 + m$, a contradiction to the choice of *m*. It follows that

$$A_7 \subseteq (A^{1,2} \setminus A_{1,2}) \cup \overline{\operatorname{St}}.$$
(1)

Observe that

$$|(A^{1,2}\backslash A_{1,2})\cup \overline{\mathrm{St}}| = 8k - 2|A_{1,2}| + |\overline{\mathrm{St}}\backslash A^{1,2}|.$$

If $|A_{1,2}| \ge 2k + 3$ then the last expression is at most 4k - 2. This contradicts the fact that $|A_7| = 4k$. If $|A_{1,2}| = 2k + 2$ then to satisfy (1) we need $|\overline{St} \setminus A^{1,2}| = 4$ and $A_7 = (A^{1,2} \setminus A_{1,2}) \cup \overline{St} = (A_1 \setminus A_{1,2}) \cup (A_2 \setminus A_{1,2}) \cup \overline{St}$, so that $A^{1,2} \subseteq St$, $|A_1 \setminus A_{1,2}| = |A_2 \setminus A_{1,2}| = 2k - 2$ and $A_{1,7} = A_1 \setminus A_{1,2}$. This proves (i).

Finally, if $|A_{1,2}| = 2k + 1$ then to satisfy (1) we need $|\overline{\text{St}} \setminus A^{1,2}| \ge 2$ and $|(A^{1,2} \setminus A_{1,2}) \setminus A_7| \le 2$. Since $|A_{1,7}| \le |A_1| - |A_{1,2}| = 2k - 1$, this proves (ii).

Claim 4. For any $i \neq j$, $|A_{ij}| \ge 2k - 6$.

Proof. Let i = 1, j = 2.

Case 1. There exists A_3 with $|A_{1,3}| \ge 2k + 2$. Then by Claim 3, $|A_{1,3}| = 2k + 2$, $A_1 \subseteq St$, and for some A_4 , $|A_{1,4}| = 2k - 2$. Then $\sum_{l=2}^{7} |A_l \cap A_1| = 3|A_1| = 12k$, and again by Claim 3,

$$\sum_{l=3}^{7} |A_l \cap A_1| = |A_3 \cap A_1| + |A_4 \cap A_1| + \sum_{l=5}^{7} |A_l \cap A_1| \le 4k + 3(2k+2) = 10k + 6.$$

Thus $|A_{1,2}| = \sum_{l=2}^{7} |A_l \cap A_1| - \sum_{l=3}^{7} |A_l \cap A_1| \ge 12k - (10k+6) = 2k - 6.$

Case 2. max{ $|A_l \cap A_1|$: $3 \le l \le 7$ } = 2k + 1. Let $|A_{1,3}| = 2k + 1$. Then by part (ii) of Claim 3, $\sum_{l=2}^{7} |A_l \cap A_1| \ge 3|A_1| - 2 = 12k - 2$ and for some A_s , $2k - 3 \le |A_{1,s}| \le 2k - 1$. If s = 2, then we are done. Thus we may assume s = 4. It follows that

$$\sum_{l=3}^{7} |A_l \cap A_1| = |A_3 \cap A_1| + |A_4 \cap A_1| + \sum_{l=5}^{7} |A_l \cap A_1| \le 4k + 3(2k+1) = 10k+3,$$

and $|A_{1,2}| \ge (12k-2) - (10k+3) = 2k - 5$.

Case 3. max{ $|A_l \cap A_1|$: $3 \le l \le 7$ } $\le 2k$. Then $\sum_{l=2}^7 |A_l \cap A_1| \ge 12k - 4$ and $\sum_{l=3}^7 |A_l \cap A_1| \le 10k$. Consequently, $|A_{1,2}| \ge 2k - 4$.

For $a \in S$ let the spectrum s(a) be the set of indices i such that $a \in A_i$.

Claim 5. For any $i \neq j$ and any $a, b \in \overline{A^{ij}} \cap St$, s(a) = s(b).

Proof. If $s(a) \neq s(b)$, let $k \in s(b) \setminus s(a)$ and $l \in s(a) \setminus s(b)$. By Claim 2, $A^{kl} \cap A_{1,2} = \emptyset$. Then, by Claim 4,

 $|A_{kl}| = |A_k| + |A_l| - |A^{kl}| \ge 8k - (7k + 1 - (2k - 6)) = 3k - 7 > 2k + 2,$

a contradiction to Claim 3.

For any $i \neq j$, let c(i,j) denote the number k such that $k \neq i, j$ and $A_k \cap \overline{A^{ij}} \cap \text{St} = \emptyset$. By Claim 5, this number is unique. In particular, $A_{c(i,j)} \cap \text{St} \subseteq A^{ij} \setminus A_{ij}$. It follows that c(i,c(i,j))=j and c(j,c(i,j))=i. In other words, St is the disjoint union of seven sets D_1, \ldots, D_7 with equal spectra inside each set. And the A_i -s form the complements of lines of the Fano plane on these D_j -s.

Claim 6. No element of \overline{St} has a spectrum $\{i, j, c(i, j)\}$ for some i, j.

Proof. Suppose that $s(a) = \{i, j, c(i, j)\}$. By the above, each $b \in \overline{A^{ij}}$ has the spectrum $\{1, \ldots, 7\} \setminus \{i, j, c(i, j)\}$. Then *a* and *b* cover \mathscr{A} .

Let A_i , A_j and A_k be such that k = c(i, j). Since each of them has an odd intersection with X, the number of elements in X belonging to an odd number of members of $\{A_i, A_j, A_k\}$ is odd. But by the above, each $a \in St$ belongs to an even number of members of $\{A_i, A_j, A_k\}$. Thus,

$$|A_i \cap \overline{\operatorname{St}} \cap X| + |A_i \cap \overline{\operatorname{St}} \cap X| + |A_k \cap \overline{\operatorname{St}} \cap X|$$

On the other hand, since the cardinality of each A_i is 4k,

$$|A_i \cap \overline{\operatorname{St}}| + |A_j \cap \overline{\operatorname{St}}| + |A_k \cap \overline{\operatorname{St}}|$$

is even for every $i \neq j$. By the reasons similar to above, $|\overline{St} \setminus X| \ge 2$.

The only possibility we are left with is that $|\overline{St}| = 4$ and the degree sequence is 3,3,3,3. Furthermore, $|\overline{St} \cap X| = 2$.

However, since $\sum_{i=1}^{7} |A_i \cap X|$ is odd, the sum of degrees of the nonstandard vertices in X must be odd. This is a final contradiction.

3. Upper bound

It will be easier to prove the upper bound in the following form.

Theorem 2. Let \mathscr{B} be an *r*-uniform family. If $\tau(\mathscr{B}) > \lceil 7r/8 \rceil$, then there exists $\mathscr{F} \subset \mathscr{B}$ with $|\mathscr{F}| \leq 7$ such that $\tau(\mathscr{F}) > 2$.

Proof. Let r = 8k + s, where $k \ge 1$ and $0 \le s \le 7$.

Suppose that there exists an *r*-uniform family \mathscr{B} possessing the property (7,2) with $\tau(\mathscr{B}) > \lceil 7r/8 \rceil = 7k + s$. For each set *A*, we set

$$\mathscr{B}_A = \{ B \in \mathscr{B} \mid B \cap A = \emptyset \}.$$

Below, any triple (A_1, A_2, A_3) of members of \mathscr{B} with $A_1 \cap A_2 \cap A_3 = \emptyset$ will be called a *good triple*. To shorten notation, below we set $A_{ij} = A_i \cap A_j$ and $a_{ij} = |A_{ij}|$. Our main tool will be the following fact.

Lemma 1. Let \mathscr{B} be an *r*-uniform family containing a good triple (A_1, A_2, A_3) satisfying the following inequalities:

 $a_{12} \leqslant 4k + \lceil s/2 \rceil; \tag{2}$

 $\max\{a_{13}, a_{23}\} \leqslant 3k + s/2; \tag{3}$

$$a_{13} + a_{23} \leqslant 5k + s. \tag{4}$$

Then the theorem holds for B.

Proof. Suppose that $\tau(\mathscr{B}) > 7k + s$. For the proof, we may clearly assume

$$a_{12} \geqslant a_{13} \geqslant a_{23},\tag{5}$$

since reordering to assure (5) will not violate (2), (3) or (4).

Case 1. $a_{13} \leq (k + a_{12})/2$. Then, by (5), $|A_3 - A_1 - A_2| \geq r - 2a_{13} \geq 7k + s - a_{12}$, and so there exists $B_0 \subseteq A_3 - A_1 - A_2$ with $|B_0| = 7k + s - a_{12}$ such that $A_3 - B_0$ can be

partitioned into two parts B_1 and B_2 so that $|B_1| = \lfloor (k + a_{12})/2 \rfloor$, $|B_2| = \lceil (k + a_{12})/2 \rceil$ and $A_{i3} \subseteq B_i$ for i = 1, 2. Furthermore, for i = 1, 2, there exists $B'_i \subseteq A_i - A_{i3} - A_{12}$ with $|B'_i| = b_i = 7k + s - a_{12} - |B_{3-i}|$, provided that $b_i \ge 0$. But this is always the case since by (2),

$$a_{12} + |B_{3-i}| \leq \lfloor \frac{3}{2}a_{12} + \frac{1}{2}k + \frac{1}{2} \rfloor \leq \lfloor 6k + \frac{3}{2}\lceil s/2 \rceil + \frac{1}{2}k + \frac{1}{2} \rfloor \leq 7k + s.$$

Since $\tau(\mathscr{B}) > 7k + s$, there exist $A_4 \in \mathscr{B}_{A_{12} \cup B_0}$, $A_5 \in \mathscr{B}_{A_{12} \cup B_1 \cup B'_2}$ and $A_6 \in \mathscr{B}_{A_{12} \cup B_2 \cup B'_1}$. For $B_4 = (A_1 \cup A_2) - A_{12} - B'_1 - B'_2$, we have

$$|B_4| = 2(8k+s) - 2a_{12} - (7k+s - a_{12} - |B_2|) - (7k+s - a_{12} - |B_1|)$$

$$= 2k + |B_1| + |B_2| = 3k + a_{12} \leq 7k + s.$$

Hence there exists $A_7 \in \mathscr{B}_{B_4}$.

Suppose that there are two elements x and y covering $\mathscr{F} = \{A_1, \dots, A_7\}$. In order to cover A_1, A_2 and A_3 , at least one of them, say x, belongs to some A_{ij} , where $1 \le i < j \le 3$. Assume first that $x \in A_{12}$. Then $y \in A_3 = B_0 \cup B_1 \cup B_2$. It follows that one of the edges A_4 , A_5 and A_6 is not covered. If $x \in A_{i3}$ (i = 1, 2) and $y \notin A_{12}$, then to meet both A_{3-i} and A_7 , $y \in A_{3-i} - A_1 - B_4 = B'_{3-i}$. But in this case, y misses A_{i+4} . This completes Case 1.

Case 2. $a_{13} > (k + a_{12})/2$. Let $B_1 \subseteq A_2 - A_1 - A_3$ with $|B_1| = 7k + s - a_{12} - a_{13}$. Let $B_2 \subseteq A_3 - A_1 - A_2$ with $|B_2| = \min\{7k + s - a_{12}, 8k + s - a_{13} - a_{23}\}$. Let $B_3 = A_3 - A_1 - B_2$. Observe that $B_3 \supset A_{23}$ and

$$|B_3| = 8k + s - a_{13} - \min\{7k + s - a_{12}, 8k + s - a_{13} - a_{23}\}$$
$$= \max\{a_{12} - a_{13} + k, a_{23}\}.$$

Let $B_4 \subseteq A_1 - A_3 - A_2$ with $|B_4| = \min\{7k + s - a_{12} - |B_3|, 8k + s - a_{12} - a_{13}\}$. By the cardinality constraints on B_1, B_2, B_3 and B_4 , there exist $A_4 \in \mathscr{B}_{A_{12} \cup A_{13} \cup B_1}, A_5 \in \mathscr{B}_{A_{12} \cup B_2}$, and $A_6 \in \mathscr{B}_{A_{12} \cup B_3 \cup B_4}$.

Let
$$B_5 = (A_1 \cup A_2) - A_{12} - B_1 - B_4$$
. If we prove that
 $|B_5| \leq 7k + s,$ (6)

then the lemma would follow. Indeed, in this case there exists $A_7 \in \mathscr{B}_{B_5}$. Thus, if two elements x and y cover $\mathscr{F} = \{A_1, \dots, A_7\}$ and $x \in A_{12}$, then $y \in A_3 \subset A_{13} \cup B_2 \cup B_3$ and hence at least one of the edges A_4 , A_5 and A_6 is not covered. If $x \in A_{13}$ and $y \notin A_{12}$, then $y \in A_2 - A_1 \subseteq B_1 \cup B_5$ and hence A_4 or A_7 is not covered. Finally, if $x \in A_{23}$ and $y \notin A_{12} \cup A_{13}$, then $y \in A_1 - A_2 \subseteq B_4 \cup B_5$ and hence A_6 or A_7 is not covered.

By the definition,

$$|B_5| = 2(8k+s) - 2a_{12} - (7k+s-a_{12}-a_{13})$$

- min{7k+s-a_{12} - |B_3|, 8k+s-a_{12}-a_{13}}
= 9k+s-a_{12} + a_{13} - (7k+s-a_{12}) - min{-|B_3|, k-a_{13}}
= 2k + a_{13} + max{|B_3|, -k + a_{13}}.

Hence if $|B_3| \leq -k + a_{13}$, then by (2),

$$|B_5| = 2k + a_{13} - k + a_{13} \le k + 2(3k + s/2) = 7k + s.$$

Otherwise,

$$|B_5| = 2k + a_{13} + |B_3| = 2k + a_{13} + \max\{a_{12} - a_{13} + k, a_{23}\}$$
$$= \max\{3k + a_{12}, 2k + a_{13} + a_{23}\}.$$

By (2) and (4), in both cases $|B_5| \leq 7k + s$. This proves the lemma.

Proof of the theorem. Case 1. There are $A_1, A_3 \in \mathscr{B}$ with $2k \leq |A_1 \cap A_3| \leq 3k + s/2$. Let $A_{13} \subset B_1 \subset A_1$ with $|B_1| = 4k + \lfloor s/2 \rfloor$ and $A_{13} \subset B_3 \subset A_3$ with $|B_3| = 3k + a_{13} + \lceil s/2 \rceil$. Since $|B_1 \cup B_3| = 7k + s$, there exists $A_2 \in \mathscr{B}_{B_1 \cup B_3}$. By the definition of B_1 and B_3 , (A_1, A_2, A_3) is a good triple, $|A_2 \cap A_1| \leq 4k + \lceil s/2 \rceil$ and $|A_2 \cap A_3| \leq 5k + \lfloor s/2 \rfloor - a_{13}$. Hence, all conditions (2)–(4) of Lemma 1 are satisfied and it can be applied.

Case 2. There are $A_1, A_2 \in \mathscr{B}$ with $3k + s/2 < |A_1 \cap A_2| \le 4k + s/2$. For i = 1, 2, let $A_{12} \subset B_i \subset A_i$ with $|B_i| = 5k + \lceil s/2 \rceil$. Since

$$|B_1 \cup B_2| = 10k + 2\lceil s/2 \rceil - a_{12} \leq 7k + \lceil s/2 \rceil,$$

there exists $A_3 \in \mathscr{B}_{B_1 \cup B_2}$. By the definition of B_1 and B_2 , (A_1, A_2, A_3) is a good triple and $|A_3 \cap A_i| \leq 3k$ for i = 1, 2. Moreover, since Case 1 does not hold, $|A_3 \cap A_i| < 2k$ for i = 1, 2. Again, Lemma 1 can be applied.

Case 3. There are $A_1, A_2 \in \mathscr{B}$ with $k \leq |A_1 \cap A_2| < 2k$. For i = 1, 2, let $A_{12} \subset B_i \subset A_i$ with $|B_i| = 4k + \lfloor s/2 \rfloor$. Since $|B_1 \cup B_2| = 8k + 2\lfloor s/2 \rfloor - a_{12} \leq 7k + s$, there exists $A_3 \in \mathscr{B}_{B_1 \cup B_2}$. By the definition of B_1 and B_2 , (A_1, A_2, A_3) is a good triple and $|A_3 \cap A_i| \leq 4k + \lceil s/2 \rceil$ for i = 1, 2. Moreover, since Cases 1 and 2 do not hold, $|A_3 \cap A_i| < 2k$ for i = 1, 2. Once more, Lemma 1 can be applied.

Case 4. For any $A, B \in \mathcal{B}$, either $|A \cap B| > 4k + \lceil s/2 \rceil$ or $|A \cap B| < k$. Let $x = \max\{|A \cap B| : A, B \in \mathcal{B}, |A \cap B| \le 4k + s/2\}$ and $A_1, A_3 \in \mathcal{B}$ with $|A_1 \cap A_3| = x$. For i = 1, 3, let $A_{13} \subset B_i \subset A_i$ with $|B_1| = \lceil (7k+s+x)/2 \rceil$ and $|B_3| = \lfloor (7k+s+x)/2 \rfloor$. Since $|B_1 \cup B_3| = 7k+s$, there exists $A_2 \in \mathcal{B}_{B_1 \cup B_3}$. By the construction,

$$\max\{|A_1 \cap A_2|, |A_3 \cap A_2|\} \leq 8k + s - \lfloor (7k + s + x)/2 \rfloor.$$

Since (A_1, A_2, A_3) is a good triple, either $|A_1 \cap A_2| \leq 4k + s/2$ or $|A_3 \cap A_2| \leq 4k + s/2$. We will assume that $|A_3 \cap A_2| \leq 4k + s/2$. Then, under conditions of the case, $|A_3 \cap A_2| \leq x$.

Since $a_{13} + a_{23} \le 2x \le 2k - 2 < \lfloor (5k + s + x)/2 \rfloor \le 7k + s - a_{12}$, we can partition A_3 into four parts $B_1, ..., B_4$ so that

 $|B_1| = 7k + s - a_{12},$ $|B_2| = 7k - a_{12},$ $|B_3| = |B_4| = a_{12} - 3k$ and $B_1 \supseteq A_{13} \cup A_{23}.$

For i = 1, 2, there exists $A_{i+3} \in \mathscr{B}_{A_{12} \cup B_i}$.

Let $i \in \{1, 2\}$ and let $C_i = A_4 \cap A_i$. Since $A_4 \cap A_{12} = \emptyset$, we have $|C_i| \leq x$. Let $D_i = A_{12} \cup B_{i+2} \cup A_{i3} \cup C_{3-i}$. Since

$$|D_i| \le a_{12} + (a_{12} - 3k) + x + x \le 5k + 2\lceil s/2 \rceil + 2(k - 1) < 7k + s,$$

there exists $A_{i+5} \in \mathscr{B}_{D_i}$.

Assume that some two elements x and y cover $\mathscr{F} = \{A_1, \ldots, A_7\}$. If $x \in A_{12}$ then $y \in B_j$ for some $j \in \{1, 2, 3, 4\}$. But in this case A_{j+3} is not covered. So, let $x \in A_{i3}$ for some $i \in \{1, 2\}$. In order to cover A_4 and A_{3-i} , we need $y \in C_{3-i}$. Then A_{i+5} is missed. This is the final contradiction.

References

- P. Erdős, D.G. Fon-Der-Flaass, A.V. Kostochka, Zs. Tuza, Small transversals in uniform hypergraphs, Siberian Adv. Math. 2 (1992) 82–88.
- [2] P. Erdős, A. Hajnal, Zs. Tuza, Local constraints ensuring small representing sets, J. Combin. Theory, Ser. A 58 (1991) 78–84.