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Abstract

Let f(r, p,t) (p>t=1, r=2) be the maximum of the cardinality of a minimum transversal
over all r-uniform hypergraphs # possessing the property that every subhypergraph of # with
p edges has a transversal of size ¢. The values of f(r, p,2) for p=3,4,5,6 were found in Erdos
et al. (Siberian Adv. Math. 2 (1992) 82-88). We give bounds on f(r,7,2), partially answering
a question in Erdos et al. (1992). © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A transversal of a family F of sets is a subset of | J, . » F' meeting all members
of #. The smallest cardinality (%) of a transversal of % is called the transversal
number of % . For a hypergraph # = (V, &), a transversal is a transversal of &.

Say that & possesses the property (p,t) if ©(F )<t for every & C # with |F|= p.
Erdos, Hajnal and Tuza [2] raised the following problem:

For given integers r, p, and t (p >t=1, r=2), determine the largest value,
f(r, p,t), of ©1(F) taken over the class of r-uniform families F possessing the prop-
erty (p,t).
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Erdds, Fon-Der-Flaass, Kostochka, and Tuza [1] found some bounds for f(r, p,t)
in general and determined the exact values of f(r, p,2) for 3< p<6. In particular,
f(r,6,2)=r.

In this note we give bounds for f(r,7,2). For 3< p<6, the extremal hypergraphs
were the maximal (w.r.t. the number of vertices) complete r-uniform hypergraphs pos-
sessing the property (p,?). It appears that p=7 is the first number such that this is not
the case. We will prove that for £k >10, f(4k,7,2)>=3k + 1 while the worst complete
4k-uniform hypergraph possessing property (7,2) has transversal number 3k. We will
also show that f(r,7,2)< [%1 Note that if the lower bound holds for k =2, then the
upper bound is exact for » = 8.

2. Lower bound

Clearly, the transversal number of the complete r-uniform hypergraph K;(r) on ¢
vertices is ¢ — r + 1. Observe that K7;_,(4k) possesses property (7,2). Indeed, let
Ay,...,A7 be arbitrary 4k-element subsets of the ground set U ={1,...,7k — 1}. Since
21‘721 |[4;| = 28k > 4|U]|, there exists u; € U belonging to at least five sets 4;. Since
Tk — 1 < 2(4k), there exists u, meeting the sets A; not containing u;. It follows that
K7r—1(4k) possesses property (7,2) and f(4k,7,2)=(7Tk — 1) — 4k + 1 = 3k.

On the other hand, K7;(4k) does not possess property (7,2). Indeed, let F,...,Fy
be the family of complements of lines in a Fano plane on V' ={1,...,7}. Then no two
points meet every F;. Blowing up every element of V' into k elements, we produce a
family {F7{,...,F}} of seven subsets of V' ={l,...,7k} with transversal number three.
Thus although K7;(4k) has transversal number 7k — 4k + 1 =3k + 1, it does not have
property (7,2). In this section, we exhibit a family # of 4k-element sets possessing
property (7,2) with transversal number 3k + 1.

Theorem 1. Let k=10, |S| =7k + 1 and X CS, |X| = 4k. Let & be the family of
4k-element subsets of S whose intersection with X has an odd cardinality. Then %
possesses property (7,2) and ©(B) =3k + 1.

Remark. By elaborating the arguments of Claims 3 and 4 below, one can prove that
the theorem holds already for k£ >4. But for £ =2, % does not possess property (7,2).

Proof of Theorem 1. Clearly, S\X is a transversal of % of cardinality 3k 4 1. On the
other hand, let T be an arbitrary subset of S with |T|=3k. Then there is a € (S\T)NX
and b€ (S\T)\X. Thus, either (S\7) —a€Z or (S\T) — beA. It follows that
(B) =3k + 1.

Below in a series of claims we will prove that # possesses property (7,2).

Let .o/ = {A4;,...,47} be an arbitrary family of seven members of %. Assume that
(/) > 2. Below we will derive the properties of such an .o/ which finally will produce
a contradiction.
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Claim 1. Every element of S belongs to at most four members of /.

Proof. Assume that, say, a covers A4y,...,As. There exists b € A¢ N A7. Then {a,b} is
a transversal of .o/, a contradiction.

Since |4;] + - - - + |47] =28k, we conclude from Claim 1 that almost every element
of S (with at most four exceptions) has degree four in .o7. We shall call such elements
standard; denote the set of standard vertices by St, and S\St by St. The sequence of
the degrees of vertices in St must be one of the following: (a) 3,3,3,3; (b) 3,3,2; (c)
3,1; (d) 2,2; (e) 0.

To shorten notation, we set ¥ =S\Y, 4;; =A4; N A; and AV = 4; U 4;.

Claim 2. If there exists a € AV N\ St such that a & Ay (k # i), then Ay NA;=0.
Proof. If b€ A, N A, then {a,b} is a transversal of .2/, a contradiction.

Claim 3. For any i # j, |A;j| <2k + 2. Furthermore,
(i) if |Aij|=2k+2, then AY C St and there exists Ay with Au=AM,;; and |Ay|=2k—2;
(i) if |4i;| =2k + 1, then |S\NAY|>2 and there exists Ay with 2k —3 <|Ay| <2k — 1.

Proof. Assume that m =max{|4;|}, [412]=m — 1 and m>2k + 2. Then |[42|>7k +
1—(8k—(m—1))=m—k>k+2 and there exists a € 42N St. W.Lo.g., suppose that
a €A3 ﬁA4 ﬂA5 ﬂA6. Then, by Claim 2, A7 ﬂALz = @

If there exists b€ A2 N St N A7, then b misses A; for some i€ {3,4,5,6}, say Ag.
Again by Claim 2, 46 N A1, =0, and |dg7| = |4g| + |47] — |[4%7| =8k — (Tk + 1 —
(m —1))=4k — 2+ m, a contradiction to the choice of m. It follows that

A7 C(A"*\412) U St. (1)
Observe that
[(4"2\A4).2) USt| = 8k — 2|4 5| + [St\4"?|.

If |A;2|>2k 4+ 3 then the last expression is at most 4k — 2. This contradicts the
fact that |4;| = 4k. If |4y 2| = 2k + 2 then to satisfy (1) we need |St\4"?| =4 and
A7:(A1’2\A]72)U§=(A1\(4172)U(A2\A172)U§, so that Al’z g St, |A1\(41’2|:|A2\Al72‘=2k—2
and 4,7 = A1 \A41,2. This proves (i).

Finally, if |41 | =2k + 1 then to satisfy (1) we need |St\d"?|>2 and [(4"2\4;.,)\
A7]<2. Since |4, 7| <|A41] — |41.2| = 2k — 1, this proves (ii).

Claim 4. For any i # j, |4;;| =2k — 6.

Proof. Leti=1, j=2.
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Case 1. There exists A3 with |4;3]|>2k + 2. Then by Claim 3, |4,3] =2k + 2,
A; CSt, and for some A4, |A14| =2k —2. Then 23:2 |4;NA1|=3|41| =12k, and again
by Claim 3,

7 7
Z|A1ﬂA1|:|A3 ﬂA1|+|A40A1|+Z|AZHA1|<4k+3(2k+2): 10k + 6.
=3 =5

Thus |42 = 3, |4 N A1 — 3] |4, 0 41| =12k — (10k + 6) = 2k — 6.
Case 2. max{|4; N A;|:3<I<7} =2k + 1. Let |4, 3| =2k + 1. Then by part (ii) of
Claim 3, ZLZ |A;NA1]|=3]41| —2=12k — 2 and for some 4y, 2k —3<|4; 5| <2k — 1.
If s =2, then we are done. Thus we may assume s = 4. It follows that
7 7
S AN A =143 0 A+ |As N A+ DA N Ay | <4k + 32k + 1) = 10k + 3,
=3 =5

and |4 >(12k —2) — (10k + 3) =2k — 5.

Case 3. max{|4; N 4,]:3<I<7}<2k. Then Y|, |4; N 4|>12k —4 and Y| ,
|4; N A41|<10k. Consequently, |4, .| >2k — 4.

For a €S let the spectrum s(a) be the set of indices i such that a € 4;.
Claim 5. For any i # j and any a,b € AV N St, s(a) = s(b).

Proof. If s(a) # s(b), let k € s(b)\s(a) and I € s(a)\s(b). By Claim 2, 4 N4, =0.
Then, by Claim 4,

|Ap| = 4| + |4;| — A" | =8k — (Tk +1 — 2k — 6)) =3k — 7 > 2k + 2,

a contradiction to Claim 3.

For any i # J, let ¢(i,j) denote the number & such that k # i, j and A, NAY NSt=0.
By Claim 5, this number is unique. In particular, 4. N St C 47\ 4;;. It follows that
c(i,c(i,j))=j and c(j,c(i,j))=i. In other words, St is the disjoint union of seven sets
Dy,...,D; with equal spectra inside each set. And the 4;-s form the complements of
lines of the Fano plane on these D;-s.

Claim 6. No element of St has a spectrum {i,j,c(i,j)} for some i,j.

Proof. Suppose that s(a) = {i,/,c(i,j)}. By the above, each b€ A/ has the spectrum
{1,...,71\{i,j,c(i,j)}. Then a and b cover <.

Let 4;, A; and A; be such that k = c(i, j). Since each of them has an odd intersec-
tion with X, the number of elements in X belonging to an odd number of members
of {4;,A4;,4r} is odd. But by the above, each a € St belongs to an even number of
members of {4;,4;,4;}. Thus,

|[4;NStNX|+|4; NStNX|+ |4 NStNX|
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is odd. In particular, St N X # (). Moreover, if StNX = {a}, then by Claim 6, there
are some i, j, c(i,j) such that none of these contains a. Thus, [St N.X]|>2.
On the other hand, since the cardinality of each 4; is 4k,

|4; N'St| + |4; N St| + |4, N St|

is even for every i # j. By the reasons similar to above, [St\X|>2.

The only possibility we are left with is that [St| =4 and the degree sequence is
3,3,3,3. Furthermore, |StNX|=2.

However, since ZZ:1 |[4;NX| is odd, the sum of degrees of the nonstandard vertices
in X must be odd. This is a final contradiction.

3. Upper bound
It will be easier to prove the upper bound in the following form.

Theorem 2. Let B be an r-uniform family. If ©(B) > [7r/8], then there exists F C B
with | F | <7 such that ©(F) > 2.

Proof. Let » =8k + s, where k=1 and 0<s<7.
Suppose that there exists an r-uniform family % possessing the property (7,2) with
1(#) > [7r/8] =Tk + s. For each set 4, we set

Bys={B€B|BNA=1(}.
Below, any triple (41,42,43) of members of # with 4| N A, N A; =0 will be called a

good triple. To shorten notation, below we set 4;; =A4; N 4; and a;; = |4;;|. Our main
tool will be the following fact.

Lemma 1. Let # be an r-uniform family containing a good triple (41,A4,,A43)
satisfying the following inequalities:

ap <4k + [s/2]; (2)
max{a3, a2} <3k + 5/2; (3)
apz + ap <5k +s. (4)

Then the theorem holds for A.

Proof. Suppose that ©(#)>7k + s. For the proof, we may clearly assume
a1 = a13 2 a3, (5)

since reordering to assure (5) will not violate (2), (3) or (4).
Case 1. a3 <(k +a12)/2. Then, by (5), |A3 —Al —A2| =r— 26113 >7k +s—ajy, and
so there exists By C A3 — Ay — A, with |Bg| =7k 4+ s — aj; such that 43 — By can be
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partitioned into two parts B, and B, so that |By| = [(k + a12)/2], |Bz2| = [(k + a12)/2]
and A3 C B; for i =1, 2. Furthermore, for i =1, 2, there exists B} C 4; — A3 — Aj» with
|Bi| =b; =Tk +s — aio — |Bs_;|, provided that b; >0. But this is always the case since
by (2),

ap + |Bs_i| < 3an + 2k + 1) <6k + 3[s/2] + 3k + 1| <Tk + .

Since ©(#) > Tk+s, there exist A4 € B 4,,us,, As € B A1,UB,UB, and Ag € Ba,up,up, - For
B4 = (Al UAz) —A12 —Bll —Bé, we have

|B4| 22(8k—|—S) —2a; — (7k—|—s—a12 — |Bg‘)— (7k—|—S—012 — |Bl‘)

:2k+|B]‘+|BQ|:3k+a12<7k+S.

Hence there exists A7 € %3, .

Suppose that there are two elements x and y covering & = {4,,...,47}. In order
to cover Ai,4> and A3, at least one of them, say x, belongs to some 4;;, where
1<i < j<3. Assume first that x € 415. Then y € A3 =By UB; U B,. It follows that one
of the edges A4, A5 and A¢ is not covered. If x€A;3 (i=1,2) and y & Ay, then to
meet both 4;_; and A7, y€A4s_; — A1 — B4 = B;_;. But in this case, y misses A; 4.
This completes Case 1.

Case 2. ay3 > (k+a13)/2. Let By CA; — Ay — A3 with |Bl| =7k +s—a;, —aps. Let
B, C A3 — A — A, with |B2| :min{7k+s—a12,8k +s—a3 —Cl23}. Let Bs=A3—A; —B>.
Observe that B3 D 4,3 and

|B3|=8k—|—s—a13 —min{7k—|—s—a12,8k—|—s—a13 —a23}

= max{alz —apz +k, a23}.

Let B4 C A, — A3 — Ay with |By| =min{7k +s — a1 — |B3|,8k + s — a;a — ai3}. By the
cardinality constraints on By, B,,B3 and By, there exist A4 € B4,,04,50B,> A5 € Ba,,UB,>
and A6 (S %A12U33U34.
Let Bs = (4, UA4,y) — A1, — By — By. If we prove that
|Bs| <7k + s, (6)

then the lemma would follow. Indeed, in this case there exists 47 € #p,. Thus, if two
elements x and y cover & ={4,...,A7} and x € A, then y € 43 C 413 UB, UB;3 and
hence at least one of the edges A4, As and Ag is not covered. If x €A4;3 and y & Ay,
then y€ A4, — 41 C By UBs and hence A4 or A7 is not covered. Finally, if x € 453 and
y & A1 UA;s, then ye 4 — Ay C B4 U Bs and hence 4g or A7 is not covered.

By the definition,

|B5| =28k +s5)—2ap, — (Tk+s—ap —a3)
—min{7k +s—ap — |B3‘,8k +s—ap— a13}
=% +s—ap+asz—(Tk+s—apn)— min{—|B3|,k — 6113}

=2k+ a3+ max{\B3|,—k + a13}.
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Hence if |B3| < — k + aj3, then by (2),
|Bs| =2k + ai3 — k + a13 <k +2(3k +5/2) = Tk +s.
Otherwise,
|Bs| =2k + aj3 + |B3| =2k + a13 + max{a;; — a;3 + k,an}
=max{3k + a12,2k + ai3 + ax}.

By (2) and (4), in both cases |Bs| <7k + s. This proves the lemma.

Proof of the theorem. Case 1. There are Ay, 43 € B with 2k <|A; NA3| <3k +5/2. Let
A3 C By C A4, with |Bl‘ =4k + LS/ZJ and A3 C B3 C A3 with |B3| =3k +ap+ ’VS/Z-‘
Since |By U B3| = 7k + s, there exists A, € Bp,up,- By the definition of B; and Bj,
(A1,A42,43) is a good triple, |4, N A;| <4k + [s/2] and |42 N 43| <5k + |s/2] — ais.
Hence, all conditions (2)—(4) of Lemma 1 are satisfied and it can be applied.

Case 2. There are A;,A, € B with 3k + s/2 < |41 N Ay| <4k +s/2. For i =1, 2, let
Ay C B; C A; with |B;| = 5k + [s/2]. Since

|Bl UBQ| =10k + 2|—S/2—| —dap <7k + |—S/2-|,

there exists 43 € Bp,us,- By the definition of B; and B,, (41,42,43) is a good triple
and |43 N A;| <3k for i =1, 2. Moreover, since Case 1 does not hold, |45 N 4;| <2k
for i =1, 2. Again, Lemma 1 can be applied.

Case 3. There are A1,4; € B with k<|4; NA4y| <2k For i=1,2, let A1, CB; CA4;
with |B;|=4k+[s/2|. Since |BjUBy|=8k+2|s/2| —a1» <Tk+s, there exists A3 € Bp, Uz,
By the definition of By and B,, (41,42,43) is a good triple and |43 N A;| <4k + [s/2]
for i =1, 2. Moreover, since Cases 1 and 2 do not hold, |45 N 4;| < 2k for i =1, 2.
Once more, Lemma 1 can be applied.

Case 4. For any A, B € 4, either |ANB| > 4k+[s/2] or |[ANB| < k. Let x=max{|4AN
B|:A,B€E B, |AN B|<4k + s/2} and A;,A; € B with |4 N 43| =x. For i =1, 3, let
A3 C B; C A; with \Bl|:f(7k+s+x)/21 and |B3\=L(7k—|—s+x)/2j Since |BlUB3|:7k+S,
there exists A> € #p,up,. By the construction,

max{|4; N4z, |43 N A2|} <8k + 5 — |(Tk + s +x)/2].

Since (41, A42,43) is a good triple, either |4} NA,| <4k +s/2 or |[A3NAy| <4k +s/2. We
will assume that |43 N A,| <4k +s/2. Then, under conditions of the case, |43 N A,| <x.

Since a3 + a3 <2x <2k — 2 < |(5k + s +x)/2| <7k + s — a2, we can partition A3
into four parts Bj,...,B, so that

|Bl|:7k+S7a12, ‘Bz|:7k7a12,
|B3| = |B4‘ =ap — 3k and By DAz U Ars.

For i =1, 2, there exists 4,13 € %4,,us,
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Let i€{1,2} and let C; = A4 N A4;. Since 44 N A, =0, we have |C;|<x. Let D; =
A12 UBH_Q UAB U C3_l'. Since

|Di|<an + (a12 — 3k) +x + x <5k +2[s/2] + 2(k — 1) < Tk + s,

there exists A;+5 € Bp,.

Assume that some two elements x and y cover & = {4,...,A7}. If x €4, then
y€B; for some je{1,2,3,4}. But in this case 4;,3 is not covered. So, let x € 4;3
for some i€ {1,2}. In order to cover A4 and A;_;, we need y € C5_;. Then A; s is
missed. This is the final contradiction.
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