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Abstract

Let f(r; p; t) (p¿ t¿1, r¿2) be the maximum of the cardinality of a minimum transversal
over all r-uniform hypergraphs H possessing the property that every subhypergraph of H with
p edges has a transversal of size t. The values of f(r; p; 2) for p=3; 4; 5; 6 were found in Erdős
et al. (Siberian Adv. Math. 2 (1992) 82–88). We give bounds on f(r; 7; 2), partially answering
a question in Erdős et al. (1992). c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A transversal of a family F of sets is a subset of
⋃
F ∈F F meeting all members

of F. The smallest cardinality �(F) of a transversal of F is called the transversal
number of F. For a hypergraph H= (V;E), a transversal is a transversal of E.
Say that B possesses the property (p; t) if �(F)6t for every F⊂B with |F|=p.

Erdős, Hajnal and Tuza [2] raised the following problem:
For given integers r, p; and t (p¿ t¿1, r¿2); determine the largest value;

f(r; p; t); of �(F) taken over the class of r-uniform families F possessing the prop-
erty (p; t).
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Erdős, Fon-Der-Flaass, Kostochka, and Tuza [1] found some bounds for f(r; p; t)
in general and determined the exact values of f(r; p; 2) for 36p66. In particular,
f(r; 6; 2) = r.
In this note we give bounds for f(r; 7; 2). For 36p66, the extremal hypergraphs

were the maximal (w.r.t. the number of vertices) complete r-uniform hypergraphs pos-
sessing the property (p; t). It appears that p=7 is the �rst number such that this is not
the case. We will prove that for k¿10, f(4k; 7; 2)¿3k + 1 while the worst complete
4k-uniform hypergraph possessing property (7; 2) has transversal number 3k. We will
also show that f(r; 7; 2)6d 7r8 e. Note that if the lower bound holds for k =2, then the
upper bound is exact for r = 8.

2. Lower bound

Clearly, the transversal number of the complete r-uniform hypergraph Kt(r) on t
vertices is t − r + 1. Observe that K7k−1(4k) possesses property (7; 2). Indeed, let
A1; : : : ; A7 be arbitrary 4k-element subsets of the ground set U = {1; : : : ; 7k − 1}. Since∑7

i=1 |Ai| = 28k ¿ 4|U |, there exists u1 ∈U belonging to at least �ve sets Ai. Since
7k − 1¡ 2(4k), there exists u2 meeting the sets Aj not containing u1. It follows that
K7k−1(4k) possesses property (7; 2) and f(4k; 7; 2)¿(7k − 1)− 4k + 1 = 3k.
On the other hand, K7k(4k) does not possess property (7; 2). Indeed, let F1; : : : ; F7

be the family of complements of lines in a Fano plane on V ={1; : : : ; 7}. Then no two
points meet every Fi. Blowing up every element of V into k elements, we produce a
family {F ′

1; : : : ; F
′
7} of seven subsets of V ′={1; : : : ; 7k} with transversal number three.

Thus although K7k(4k) has transversal number 7k − 4k + 1= 3k + 1, it does not have
property (7; 2). In this section, we exhibit a family B of 4k-element sets possessing
property (7; 2) with transversal number 3k + 1.

Theorem 1. Let k¿10; |S| = 7k + 1 and X ⊂ S; |X | = 4k. Let B be the family of
4k-element subsets of S whose intersection with X has an odd cardinality. Then B

possesses property (7; 2) and �(B) = 3k + 1.

Remark. By elaborating the arguments of Claims 3 and 4 below, one can prove that
the theorem holds already for k¿4. But for k =2; B does not possess property (7,2).

Proof of Theorem 1. Clearly, S\X is a transversal of B of cardinality 3k +1. On the
other hand, let T be an arbitrary subset of S with |T |=3k. Then there is a∈ (S\T )∩X
and b∈ (S \T )\X . Thus, either (S \T ) − a∈B or (S \T ) − b∈B. It follows that
�(B) = 3k + 1.

Below in a series of claims we will prove that B possesses property (7,2).
Let A = {A1; : : : ; A7} be an arbitrary family of seven members of B. Assume that

�(A)¿ 2. Below we will derive the properties of such an A which �nally will produce
a contradiction.
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Claim 1. Every element of S belongs to at most four members of A.

Proof. Assume that, say, a covers A1; : : : ; A5. There exists b∈A6 ∩ A7. Then {a; b} is
a transversal of A, a contradiction.

Since |A1|+ · · ·+ |A7|= 28k, we conclude from Claim 1 that almost every element
of S (with at most four exceptions) has degree four in A. We shall call such elements
standard; denote the set of standard vertices by St, and S\St by St. The sequence of
the degrees of vertices in St must be one of the following: (a) 3,3,3,3; (b) 3,3,2; (c)
3,1; (d) 2,2; (e) 0.
To shorten notation, we set Y = S\Y , Aij = Ai ∩ Aj and Aij = Ai ∪ Aj.

Claim 2. If there exists a∈Aij ∩ St such that a 6∈ Ak (k 6= i; j), then Ak ∩ Aij = ∅.

Proof. If b∈Ak ∩ Aij, then {a; b} is a transversal of A, a contradiction.

Claim 3. For any i 6= j, |Aij|62k + 2. Furthermore,
(i) if |Aij|=2k+2, then Aij ⊆St and there exists Ak with Aik=Ai\Aij and |Aik |=2k−2;
(ii) if |Aij|=2k+1, then |St\Aij|¿2 and there exists Ak with 2k−36|Aik |62k−1.

Proof. Assume that m=max{|Aij|}, |A1;2|¿m− 1 and m¿2k + 2. Then |A1;2|¿7k +
1− (8k − (m− 1))=m− k¿k +2 and there exists a∈A1;2 ∩ St. W.l.o.g., suppose that
a∈A3 ∩ A4 ∩ A5 ∩ A6. Then, by Claim 2, A7 ∩ A1;2 = ∅.
If there exists b∈A1;2 ∩ St ∩ A7, then b misses Ai for some i∈{3; 4; 5; 6}, say A6.

Again by Claim 2, A6 ∩ A1;2 = ∅, and |A6;7| = |A6| + |A7| − |A6;7|¿8k − (7k + 1 −
(m− 1)) = k − 2 + m, a contradiction to the choice of m. It follows that

A7⊆(A1;2\A1;2) ∪ St: (1)

Observe that

|(A1;2\A1;2) ∪ St|= 8k − 2|A1;2|+ |St\A1;2|:
If |A1;2|¿2k + 3 then the last expression is at most 4k − 2. This contradicts the
fact that |A7| = 4k. If |A1;2| = 2k + 2 then to satisfy (1) we need |St\A1;2| = 4 and
A7=(A1;2\A1;2)∪St=(A1\A1;2)∪(A2\A1;2)∪St, so that A1;2⊆St, |A1\A1;2|=|A2\A1;2|=2k−2
and A1;7 = A1\A1;2. This proves (i).
Finally, if |A1;2|=2k +1 then to satisfy (1) we need |St\A1;2|¿2 and |(A1;2\A1;2)\

A7|62. Since |A1;7|6|A1| − |A1;2|= 2k − 1, this proves (ii).

Claim 4. For any i 6= j, |Aij|¿2k − 6.

Proof. Let i = 1, j = 2.
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Case 1. There exists A3 with |A1;3|¿2k + 2. Then by Claim 3, |A1;3| = 2k + 2,
A1⊆St, and for some A4, |A1;4|=2k−2. Then

∑7
l=2 |Al∩A1|=3|A1|=12k, and again

by Claim 3,
7∑

l=3

|Al ∩ A1|= |A3 ∩ A1|+ |A4 ∩ A1|+
7∑

l=5

|Al ∩ A1|64k + 3(2k + 2) = 10k + 6:

Thus |A1;2|=
∑7

l=2 |Al ∩ A1| −
∑7

l=3 |Al ∩ A1|¿12k − (10k + 6) = 2k − 6.
Case 2. max{|Al ∩ A1|: 36l67}= 2k + 1. Let |A1;3|= 2k + 1. Then by part (ii) of

Claim 3,
∑7

l=2 |Al ∩A1|¿3|A1|− 2=12k− 2 and for some As, 2k− 36|A1; s|62k− 1.
If s= 2, then we are done. Thus we may assume s= 4. It follows that

7∑

l=3

|Al ∩ A1|= |A3 ∩ A1|+ |A4 ∩ A1|+
7∑

l=5

|Al ∩ A1|64k + 3(2k + 1) = 10k + 3;

and |A1;2|¿(12k − 2)− (10k + 3) = 2k − 5.
Case 3. max{|Al ∩ A1|: 36l67}62k. Then

∑7
l=2 |Al ∩ A1|¿12k − 4 and

∑7
l=3

|Al ∩ A1|610k. Consequently, |A1;2|¿2k − 4.

For a∈ S let the spectrum s(a) be the set of indices i such that a∈Ai.

Claim 5. For any i 6= j and any a; b∈Aij ∩ St; s(a) = s(b).

Proof. If s(a) 6= s(b), let k ∈ s(b)\s(a) and l∈ s(a)\s(b). By Claim 2, Akl ∩ A1;2 = ∅.
Then, by Claim 4,

|Akl|= |Ak |+ |Al| − |Akl|¿8k − (7k + 1− (2k − 6)) = 3k − 7¿ 2k + 2;

a contradiction to Claim 3.

For any i 6= j, let c(i; j) denote the number k such that k 6= i; j and Ak ∩Aij ∩St=∅.
By Claim 5, this number is unique. In particular, Ac(i;j) ∩ St⊆Aij\Aij. It follows that
c(i; c(i; j))= j and c(j; c(i; j))= i. In other words, St is the disjoint union of seven sets
D1; : : : ; D7 with equal spectra inside each set. And the Ai-s form the complements of
lines of the Fano plane on these Dj-s.

Claim 6. No element of St has a spectrum {i; j; c(i; j)} for some i; j.

Proof. Suppose that s(a) = {i; j; c(i; j)}. By the above, each b∈Aij has the spectrum
{1; : : : ; 7}\{i; j; c(i; j)}. Then a and b cover A.

Let Ai; Aj and Ak be such that k = c(i; j). Since each of them has an odd intersec-
tion with X , the number of elements in X belonging to an odd number of members
of {Ai; Aj; Ak} is odd. But by the above, each a∈St belongs to an even number of
members of {Ai; Aj; Ak}. Thus,

|Ai ∩ St ∩ X |+ |Aj ∩ St ∩ X |+ |Ak ∩ St ∩ X |
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is odd. In particular, St ∩ X 6= ∅. Moreover, if St ∩ X = {a}, then by Claim 6, there
are some i, j, c(i; j) such that none of these contains a. Thus, |St ∩ X |¿2.
On the other hand, since the cardinality of each Ai is 4k,

|Ai ∩ St|+ |Aj ∩ St|+ |Ak ∩ St|
is even for every i 6= j. By the reasons similar to above, |St\X |¿2.
The only possibility we are left with is that |St| = 4 and the degree sequence is

3,3,3,3. Furthermore, |St ∩ X |= 2.
However, since

∑7
i=1 |Ai ∩X | is odd, the sum of degrees of the nonstandard vertices

in X must be odd. This is a �nal contradiction.

3. Upper bound

It will be easier to prove the upper bound in the following form.

Theorem 2. Let B be an r-uniform family. If �(B)¿ d7r=8e; then there exists F⊂B

with |F|67 such that �(F)¿ 2.

Proof. Let r = 8k + s, where k¿1 and 06s67.
Suppose that there exists an r-uniform family B possessing the property (7; 2) with

�(B)¿ d7r=8e= 7k + s. For each set A, we set
BA = {B∈B |B ∩ A= ∅}:

Below, any triple (A1; A2; A3) of members of B with A1 ∩ A2 ∩ A3 = ∅ will be called a
good triple. To shorten notation, below we set Aij = Ai ∩ Aj and aij = |Aij|. Our main
tool will be the following fact.

Lemma 1. Let B be an r-uniform family containing a good triple (A1; A2; A3)
satisfying the following inequalities:

a1264k + ds=2e; (2)

max{a13; a23}63k + s=2; (3)

a13 + a2365k + s: (4)

Then the theorem holds for B.

Proof. Suppose that �(B)¿7k + s. For the proof, we may clearly assume

a12¿a13¿a23; (5)

since reordering to assure (5) will not violate (2), (3) or (4).
Case 1. a136(k + a12)=2. Then, by (5), |A3−A1−A2|¿r− 2a13¿7k + s− a12, and

so there exists B0⊆A3 − A1 − A2 with |B0| = 7k + s − a12 such that A3 − B0 can be
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partitioned into two parts B1 and B2 so that |B1|= b(k + a12)=2c, |B2|= d(k + a12)=2e
and Ai3⊆Bi for i=1; 2. Furthermore, for i=1; 2, there exists B′i ⊆Ai −Ai3−A12 with
|B′i |= bi =7k + s− a12 − |B3−i|, provided that bi¿0. But this is always the case since
by (2),

a12 + |B3−i|6b 32a12 + 1
2k +

1
2c6b6k + 3

2ds=2e+ 1
2k +

1
2c67k + s:

Since �(B)¿ 7k+s, there exist A4 ∈BA12∪B0 , A5 ∈BA12∪B1∪B′2 and A6 ∈BA12∪B2∪B′1 . For
B4 = (A1 ∪ A2)− A12 − B′1 − B′2, we have

|B4|= 2(8k + s)− 2a12 − (7k + s− a12 − |B2|)− (7k + s− a12 − |B1|)

= 2k + |B1|+ |B2|= 3k + a1267k + s:
Hence there exists A7 ∈BB4 .
Suppose that there are two elements x and y covering F = {A1; : : : ; A7}. In order

to cover A1; A2 and A3, at least one of them, say x, belongs to some Aij, where
16i¡ j63. Assume �rst that x∈A12. Then y∈A3 =B0 ∪B1 ∪B2. It follows that one
of the edges A4, A5 and A6 is not covered. If x∈Ai3 (i = 1; 2) and y 6∈ A12, then to
meet both A3−i and A7, y∈A3−i − A1 − B4 = B′3−i. But in this case, y misses Ai+4.
This completes Case 1.
Case 2. a13¿ (k + a12)=2. Let B1⊆A2−A1−A3 with |B1|=7k + s− a12− a13. Let

B2⊆A3−A1−A2 with |B2|=min{7k+s−a12; 8k+s−a13−a23}. Let B3=A3−A1−B2.
Observe that B3⊃A23 and

|B3|= 8k + s− a13 −min{7k + s− a12; 8k + s− a13 − a23}

=max{a12 − a13 + k; a23}:
Let B4⊆A1 − A3 − A2 with |B4|=min{7k + s− a12 − |B3|; 8k + s− a12 − a13}. By the
cardinality constraints on B1; B2; B3 and B4, there exist A4 ∈BA12∪A13∪B1 , A5 ∈BA12∪B2 ,
and A6 ∈BA12∪B3∪B4 .
Let B5 = (A1 ∪ A2)− A12 − B1 − B4. If we prove that

|B5|67k + s; (6)

then the lemma would follow. Indeed, in this case there exists A7 ∈BB5 . Thus, if two
elements x and y cover F= {A1; : : : ; A7} and x∈A12, then y∈A3⊂A13 ∪B2 ∪B3 and
hence at least one of the edges A4, A5 and A6 is not covered. If x∈A13 and y 6∈ A12,
then y∈A2 − A1⊆B1 ∪ B5 and hence A4 or A7 is not covered. Finally, if x∈A23 and
y 6∈ A12 ∪ A13, then y∈A1 − A2⊆B4 ∪ B5 and hence A6 or A7 is not covered.
By the de�nition,

|B5|= 2(8k + s)− 2a12 − (7k + s− a12 − a13)

−min{7k + s− a12 − |B3|; 8k + s− a12 − a13}

= 9k + s− a12 + a13 − (7k + s− a12)−min{−|B3|; k − a13}

= 2k + a13 + max{|B3|;−k + a13}:
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Hence if |B3|6− k + a13, then by (2),
|B5|= 2k + a13 − k + a136k + 2(3k + s=2) = 7k + s:

Otherwise,

|B5|= 2k + a13 + |B3|= 2k + a13 + max{a12 − a13 + k; a23}

=max{3k + a12; 2k + a13 + a23}:
By (2) and (4), in both cases |B5|67k + s. This proves the lemma.

Proof of the theorem. Case 1. There are A1; A3 ∈B with 2k6|A1∩A3|63k+ s=2: Let
A13⊂B1⊂A1 with |B1| = 4k + bs=2c and A13⊂B3⊂A3 with |B3| = 3k + a13 + ds=2e.
Since |B1 ∪ B3| = 7k + s, there exists A2 ∈BB1∪B3 . By the de�nition of B1 and B3,
(A1; A2; A3) is a good triple, |A2 ∩ A1|64k + ds=2e and |A2 ∩ A3|65k + bs=2c − a13.
Hence, all conditions (2)–(4) of Lemma 1 are satis�ed and it can be applied.
Case 2. There are A1; A2 ∈B with 3k + s=2¡ |A1 ∩ A2|64k + s=2: For i = 1; 2, let

A12⊂Bi⊂Ai with |Bi|= 5k + ds=2e. Since
|B1 ∪ B2|= 10k + 2ds=2e − a1267k + ds=2e;

there exists A3 ∈BB1∪B2 . By the de�nition of B1 and B2, (A1; A2; A3) is a good triple
and |A3 ∩ Ai|63k for i = 1; 2. Moreover, since Case 1 does not hold, |A3 ∩ Ai|¡ 2k
for i = 1; 2. Again, Lemma 1 can be applied.
Case 3. There are A1; A2 ∈B with k6|A1 ∩ A2|¡ 2k: For i = 1; 2, let A12⊂Bi⊂Ai

with |Bi|=4k+bs=2c. Since |B1∪B2|=8k+2bs=2c−a1267k+s, there exists A3 ∈BB1∪B2 .
By the de�nition of B1 and B2, (A1; A2; A3) is a good triple and |A3 ∩ Ai|64k + ds=2e
for i = 1; 2. Moreover, since Cases 1 and 2 do not hold, |A3 ∩ Ai|¡ 2k for i = 1; 2.
Once more, Lemma 1 can be applied.
Case 4. For any A; B∈B, either |A∩B|¿ 4k+ds=2e or |A∩B|¡k. Let x=max{|A∩

B|:A; B∈B; |A ∩ B|64k + s=2} and A1; A3 ∈B with |A1 ∩ A3| = x. For i = 1; 3, let
A13⊂Bi⊂Ai with |B1|=d(7k+s+x)=2e and |B3|=b(7k+s+x)=2c. Since |B1∪B3|=7k+s,
there exists A2 ∈BB1∪B3 . By the construction,

max{|A1 ∩ A2|; |A3 ∩ A2|}68k + s− b(7k + s+ x)=2c:
Since (A1; A2; A3) is a good triple, either |A1∩A2|64k+s=2 or |A3∩A2|64k+s=2. We
will assume that |A3 ∩A2|64k + s=2. Then, under conditions of the case, |A3 ∩A2|6x.
Since a13 + a2362x62k − 2¡ b(5k + s+ x)=2c67k + s− a12, we can partition A3

into four parts B1; : : : ; B4 so that

|B1|= 7k + s− a12; |B2|= 7k − a12;

|B3|= |B4|= a12 − 3k and B1⊇A13 ∪ A23:
For i = 1; 2, there exists Ai+3 ∈BA12∪Bi .
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Let i∈{1; 2} and let Ci = A4 ∩ Ai. Since A4 ∩ A12 = ∅, we have |Ci|6x. Let Di =
A12 ∪ Bi+2 ∪ Ai3 ∪ C3−i. Since

|Di|6a12 + (a12 − 3k) + x + x65k + 2ds=2e+ 2(k − 1)¡ 7k + s;

there exists Ai+5 ∈BDi .
Assume that some two elements x and y cover F = {A1; : : : ; A7}. If x∈A12 then

y∈Bj for some j∈{1; 2; 3; 4}. But in this case Aj+3 is not covered. So, let x∈Ai3
for some i∈{1; 2}. In order to cover A4 and A3−i, we need y∈C3−i. Then Ai+5 is
missed. This is the �nal contradiction.
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[2] P. Erdős, A. Hajnal, Zs. Tuza, Local constraints ensuring small representing sets, J. Combin. Theory,
Ser. A 58 (1991) 78–84.


