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SUMMARY

During cell division, polarized epithelial cells employ
mechanisms to preserve cell polarity and tissue
integrity. In dividing cells of the mammalian skin,
planar cell polarity (PCP) is maintained through the
bulk internalization, equal segregation, and polarized
recycling of cortical PCP proteins. The dramatic
redistribution of PCP proteins coincides precisely
with cell-cycle progression, but the mechanisms
coordinating PCP and mitosis are unknown. Here
we identify Plk1 as a master regulator of PCP dy-
namics during mitosis. Plk1 interacts with core PCP
component Celsr1 via a conserved polo-box domain
(PBD)-binding motif, localizes to mitotic endosomes,
and directly phosphorylates Celsr1. Plk1-dependent
phosphorylation activates the endocytic motif spe-
cifically during mitosis, allowing bulk recruitment
of Celsr1 into endosomes. Inhibiting Plk1 activity
blocks PCP internalization and perturbs PCP asym-
metry. Mimicking dileucine motif phosphorylation
is sufficient to drive Celsr1 internalization during
interphase. Thus, Plk1-mediated phosphorylation of
Celsr1 ensures that PCP redistribution is precisely
coordinated with mitotic entry.

INTRODUCTION

Cell polarity is the fundamental unit of epithelial architecture, char-

acterized by the asymmetric localization of cortical polarity pro-

teins (Goodrich and Strutt, 2011; Roignot et al., 2013). When

epithelial cells divide, they employ mechanisms to ensure these

cortical asymmetries are preservedor tissues risk disorganization

and loss of epithelial integrity. To preserve apical-basal polarity,

the mitotic spindle aligns parallel to the substratum such that

both daughter cells inherit cortical polarity proteins equally (Fer-

nández-Miñán et al., 2007; Hao et al., 2010; Jaffe et al., 2008; Re-

insch and Karsenti, 1994). We previously identified a mechanism

whereby rapidly dividing basal cells of the mammalian skin pre-

serveplanarcell polarity (PCP) viamitotic internalizationof cortical

PCP components (Devenport et al., 2011). Mitotic internalization

erases and restores PCP with every cell division and must there-

fore be precisely coordinated with cell-cycle progression, but the

mechanisms regulating this process are not known.
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PCP is defined by the collective alignment of cell polarity along

the epithelial plane. The process is controlled by a set of con-

served ‘‘core’’ PCP proteins, including Celsr (Flamingo/Fmi in

Drosophila), Frizzled (Fz), Vangl (VanGogh/Vang), Dishevelled

(Dvl), and Prickle (Pk), which orient diverse structures including

Drosophila wing hairs and mammalian hair follicles (Goodrich

and Strutt, 2011; Simons and Mlodzik, 2008; Vladar et al.,

2009). PCP proteins localize asymmetrically within the cell,

with Fz and Dvl positioned opposite Vangl and Pk (Axelrod,

2001; Bastock et al., 2003; Strutt, 2001; Strutt and Strutt,

2009; Tree et al., 2002). These complexes associate intercellu-

larly via homotypic bridges formed by the seven-pass trans-

membrane cadherin Celsr/Fmi (Chen et al., 2008; Lawrence

et al., 2004; Struhl et al., 2012; Usui et al., 1999). Local disrup-

tions to PCP propagate non-autonomously to neighboring cells

(Simons andMlodzik, 2008; Taylor et al., 1998; Vinson and Adler,

1987), highlighting the need for PCP maintenance during tissue

growth and regeneration.

In mammalian skin, PCP controls the coordinated alignment

of hair follicles (HFs), which is maintained despite lifelong

proliferation and regeneration (Devenport and Fuchs, 2008;

Devenport et al., 2011; Guo et al., 2004; Ravni et al., 2009).

HF alignment relies on PCP function in interfollicular basal

cells, highly proliferative progenitors that give rise to the outer

stratified skin layers and HFs (Devenport and Fuchs, 2008).

When basal cells divide, asymmetrically localized PCP com-

ponents become rapidly and selectively internalized into endo-

somes, segregated equally into daughter cells, and recycled

to the plasma membrane where asymmetry is restored (De-

venport et al., 2011). Forced cortical retention of PCP proteins

during division causes tissue-wide defects in HF alignment,

demonstrating the necessity of mitotic endocytosis to pre-

serve global PCP.

To elucidate the mechanisms controlling PCP during mitosis,

we undertook a proteomic approach to identify mitosis-specific

posttranslational modifications (PTMs) and interacting partners

of Celsr1. We demonstrate that the key mitotic kinase, Plk1, is

a Celsr1-interacting protein essential for mitotic internalization.

Celsr1 contains a conserved PBD-binding motif required for

internalization and Plk1 association. Plk1 directly phosphory-

lates conserved serine/threonine (S/T) residues near Celsr1’s

dileucine endocytic motif, which allows the AP2 adaptor com-

plex and clathrin to recruit Celsr1 into endosomes. Inhibition of

Plk1 diminishes Celsr1 phosphorylation and blocks mitotic

internalization, leading to the disruption of Celsr1 asymmetry

ex vivo. Finally, mimicking dileucine motif phosphorylation un-

couples Celsr1 internalization from mitosis and bypasses the
c.
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requirement for Plk1 function. Together, these results explain

how the dramatic rearrangement of PCP proteins is precisely co-

ordinated with the onset of mitosis.

RESULTS

Mitosis-Specific Phosphorylation of Celsr1 Endocytic
Motif Coordinates Internalization with Mitotic
Progression
To understand the mechanisms targeting PCP proteins for bulk

internalization in mitosis, we focused on Celsr1 because it acts

upstream in the process, being both necessary and sufficient to

recruit Vangl2 and Fz6 to mitotic endosomes (Devenport and

Fuchs, 2008; Devenport et al., 2011). Mitotic internalization of

Celsr1 requires a juxtamembrane dileucine motif (Devenport

et al., 2011), a common sorting motif that is recognized by

the AP2 adaptor complex to initiate clathrin-mediated endocy-

tosis (Traub and Bonifacino, 2013). Celsr1 internalizes at the

onset of prophase in vivo as shown by the complete redistribu-

tion of membrane-localized Celsr1 into bright intracellular

puncta upon first detection of the mitotic marker, pH3 (Figures

1A and 1B). Exogenous Celsr1DN-GFP, lacking the N-terminal

extracellular domain, internalizes in cultured keratinocytes with

the same temporal dynamics observed for full-length Celsr1

in vivo (Figure 1C) and thus provides a useful tool to address

how Celsr1’s endocytic motif is recognized exclusively during

mitosis.

To identify mitosis-specific interacting partners and PTMs

on Celsr1, we performed a comparative mass spectrometry

(MS)-based analysis of Celsr1 in dividing and non-dividing

cells. Mouse keratinocytes stably expressing Celsr1DN-GFP

were grown either asynchronously or synchronized in mitosis,

and Celsr1DN-GFP coimmunoprecipitates were analyzed by

MS/MS. Coimmunoprecipitates from non-GFP wild-type cells

served as controls for non-specific binding. We identified over

300 Celsr1-associated proteins that were enriched in mitotic

samples (Figure 1D; Tables S1 and S2). Among the most abun-

dant of these was the mitotic kinase Plk1. Plk1 is a S/T kinase

essential for mitotic entry and progression (Barr et al., 2004;

Elia et al., 2003a, 2003b) and thus is a likely candidate to provide

cell-cycle control of PCP internalization.

We also identified 20 S/T phosphorylation sites on Celsr1’s

cytoplasmic tail, three of which were clustered around its

dileucine endocytic motif (Figure 1E; Tables S3 and S4). By

comparing peak intensities of extracted ion chromatographs,

we found that all three sites were enriched in mitotically syn-

chronized samples compared with their asynchronous counter-

parts (S2714, 2.2-fold; T2750, 2.9-fold; T2752, 1.3-fold) (Figures

1F and S1). We hypothesized that phosphorylation near the

dileucine endocytic motif (designated as dileucine motif phos-

phorylation hereafter) might determine the specificity of PCP

internalization during mitosis.

Plk1 Colocalizes with Internalized Celsr1 during Mitosis
Plk1 was a likely candidate to control mitotic PCP internalization

because of its central role in promoting early mitotic events, but

the protein was not known to localize to the plasmamembrane or

to endosomes. To determine the localization of Plk1 in dividing

keratinocytes, we coexpressed Plk1-YFP with Celsr1DN-Flag.
Deve
In addition to the previously described localization of Plk1 at cen-

trosomes and kinetochores (Barr et al., 2004; Park et al., 2010),

Plk1-YFP adopted punctate localization in the cytoplasm that

overlappedwith internalized Celsr1DN-Flag (Figure 2A). Colocal-

ization between Plk1 and Celsr1 was first observed during early

prophase and persisted through metaphase, anaphase, and

telophase (Figure 2A). At cytokinesis, Plk1 localized exclusively

to the cytokinesis furrow, whereas Celsr1 reestablished cortical

membrane localization (Figure 2A). To confirm these dynamics in

living cells, we performed time-lapse microscopy on keratino-

cytes coexpressing Plk1-YFP and Celsr1DN-mCherry. Plk1

and Celsr1 overlap was first detected in prophase and persisted

until midzone formation in early cytokinesis when Plk1 was dis-

placed from Celsr1 endosomes (Figure 2B; Movies S1 and S2).

Endogenous Plk1 also localized to Celsr1 puncta, as detected

by Plk1 antibody staining (Figure 2C). To assess whether Plk1

associated with Celsr1 at the cell surface at newly forming endo-

somes, total internal reflection fluorescence (TIRF) microscopy

was performed on cells coexpressing Plk1-YFP and Celsr1DN-

Flag. Plk1-YFP andCelsr1DN-Flag overlapped at surface puncta

at early prophase (Figure 2D), indicating that Plk1 associates

with Celsr1 from the earliest stages of endosome formation.

These findings are both consistent with previous Plk1 localiza-

tion studies and demonstrate that, upon entry into mitosis,

Plk1 is recruited to sites of Celsr1 internalization.

Celsr1 Contains a PBD-Binding Motif Required for Plk1
Association and Mitotic Internalization
Plk1 is targeted to specific subcellular locations by binding to

proteins harboring a PBD-binding motif with the minimal and

invariant consensus sequence S-pT-P (maximal binding follows

the consensus F/P-F-T/Q/H/M-S-pT/pS-P/X; Elia et al., 2003a,

2003b). It is thought that threonine phosphorylation of PBD-bind-

ing motifs primes the site for Plk1 binding (Lee et al., 2008; Neef

et al., 2007). Close examination of Celsr1’s cytoplasmic domain

revealed the presence of a well-conserved PBD-binding motif

(PAHSTP) (Figures 3A and 3C). Moreover, our MS-based prote-

omic analyses also revealed that Celsr1’s STP site is threonine-

phosphorylated (pT2864), suggesting Plk1 could interact directly

with Celsr1 (Table S3). To determine whether Celsr1’s PBD-

binding motif is required for its internalization, we first generated

truncations of the Celsr1 cytoplasmic tail in the context of an

E-Cadherin-Celsr1-GFP hybrid construct (termed E-Celsr1CT-

GFP henceforth), which encodes a protein chimera fusing the

C terminus of Celsr1 to the extracellular and transmembrane do-

mains of E-Cadherin (Figure 3A). E-Celsr1CT-WT-GFP displays

mitotic internalization into the same endocytic compartment as

full-length Celsr1, indicating that the regulatory sequences con-

tained in Celsr1’s 319-amino acid cytosolic tail are sufficient to

drive mitotic internalization (Devenport et al., 2011). Deletion of

the C-terminal 180 amino acids removed the PBD-binding motif

and blocked Celsr1 internalization (Figures 3B and 3C). How-

ever, inclusion of the PBD-binding motif by reducing the deleted

region to 160 amino acids had no effect, demonstrating that

nearly half of the cytoplasmic tail is dispensable for mitotic endo-

cytosis. The degree of internalization in the E-Celsr1CT mutants

was quantified by calculating the colocalization coefficients

between each mutant and wild-type Celsr1DN-Flag, which was

cotransfected as an internal control. Alanine substitution of
lopmental Cell 33, 522–534, June 8, 2015 ª2015 Elsevier Inc. 523
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Figure 1. Mitosis-Specific Celsr1 Interactors and Phosphorylation Sites Identified by Mass Spectrometry

(A) Single confocal section through basal layer of E15.5 whole-mount backskins labeled with Celsr1 (green), phospho-histone H3, amarker of mitotic progression

(pH3, red), and Hoechst (blue). Anterior is to the left. Note the anterior-posterior enrichment of Celsr1 at cell-cell contacts.

(B) Representative images of Celsr1 localization in basal cells at indicated cell-cycle stages, labeled as in (A).

(C) Cultured keratinocytes stably expressing a truncated form of Celsr1, Celsr1DN-GFP (green), labeled with pH3 or survivin (red), and Hoechst (blue). Repre-

sentative examples of the indicated mitotic stages are shown. Note that upon mitotic entry, Celsr1 is internalized in bulk from the cell surface. Celsr1-containing

endosomes are held within the cytoplasm throughout metaphase and anaphase and recycled to the surface upon cytokinesis.

Scale bars, 10 mm.

(D) Venn diagram shows selected Celsr1-associated proteins enriched in synchronized (blue), asynchronous (yellow), or both populations of keratinocytes (green)

as identified by coimmunoprecipitation and MS. Selected proteins (including Plk1) displayed the highest number of spectral counts compared with controls,

excluding metabolic enzymes and ‘‘housekeeping’’ proteins. See Tables S1 and S2 for complete list.

(legend continued on next page)
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the threonine alone (T2864A) also reduced internalization of both

the E-Celsr1CT-GFP chimera and Celsr1DN-GFP, demon-

strating a functional requirement for the PBD-binding motif (Fig-

ure 3B). This result was initially unexpected because previous

deletion mapping in the context of full-length Celsr1 narrowed

the sequences required for internalization to a smaller region of

the cytoplasmic tail that lacked the PBD-binding domain (Fig-

ure S2; Devenport et al., 2011). Closer inspection of this deletion

mutant, Celsr1D2754–3034-GFP, revealed a partial defect in mitotic

internalization that was rescued by the addition of excess

full-length Celsr1-Flag (Figure S2). Rescue is not observed in

Celsr1 variants lacking the N-terminal extracellular domain (De-

venport et al., 2011), suggesting the redundancy is mediated

by N-terminal cis-interactions. We conclude that Celsr1’s PBD-

binding domain is important for internalization, but its function

can be bypassed when wild-type full-length Celsr1 is present

(Figure S2).

To assess whether the PBD-binding motif is required for

the Celsr1-Plk1 interaction, we tested the ability of the Celsr1

cytoplasmic tail containing the T2864A mutation to coim-

munoprecipitate Plk1-GFP. Immunoprecipitation of wild-type

E-Celsr1CT-Flag efficiently coprecipitated Plk1-GFP from trans-

fected keratinocyte lysates, but the T2864A mutant showed

substantially reduced efficiency (Figure 3D). Furthermore, immu-

noprecipitation of Plk1-GFP efficiently coprecipitated wild-type

E-Celsr1CT-Flag, but not the T2864A mutant (Figure 3D).

These findings suggest that a PBD-dependent interaction be-

tween Celsr1 and Plk1 is an important step in Celsr1 mitotic

internalization.

Plk1 Phosphorylates the Celsr1 Cytoplasmic Domain
In Vitro
The PBD-dependent interaction between Celsr1 and Plk1 sug-

gested that Plk1 might promote mitotic endocytosis by directly

phosphorylating Celsr1’s dileucine sorting motif. To test this

possibility, we performed an in vitro kinase assay between

bacterially expressed GST-Celsr1CT and His-tagged Plk1.

Plk1 demonstrated specific and robust kinase activity toward

the 319-amino acid cytoplasmic domain of Celsr1 (Figure 3E).

Analysis of in vitro phosphorylated Celsr1 peptides by MS/MS

identified 14 S/T residues phosphorylated by Plk1, five of

which were located near the dileucine motif including S2741,

T2750, and S2752, which we found to be phosphorylated at

higher levels during mitosis (Figures 3E and 1F; Table S5).

Four of the 14 Plk1 phosphosites conform to the classical Plk1

substrate consensus sequence D(E)XpS/T (Nakajima et al.,

2003), but most do not, including T2750 and S2752, consistent

with a broad consensus for Plk1 substrates (Kettenbach et al.,

2011; Santamaria et al., 2011). Together, these results sug-

gest a model in which Plk1 triggers Celsr1 internalization by

binding to its PBD-binding motif, phosphorylating residues adja-

cent to its dileucine sorting signal, and activating its clathrin-
(E) Schematic of Celsr1 and Celsr1DNprotein domain structure, with the C-termin

residues in Celsr1DN-GFP identified by MS. See Tables S3 and S4 for complete li

S/T residues, three of which (S2741, T2750, and S2752, red lines) were different

(F) Extracted ion chromatograms of phosphopeptides containing S2741, T2750,

following normalization by the intensities of their non-phosphorylated analogs

abundance in synchronous versus asynchronous cells. See Table S4 and Figure

Deve
dependent endocytosis in a mitosis-specific manner. If this

model is correct, the earliest steps of Celsr1 endocytosis should

rely on Plk1.

Inhibition of Plk1 Blocks Mitotic Internalization
To test whether Plk1 is required for mitotic endocytosis, kerati-

nocytes stably expressing Celsr1DN-GFP were treated with

BI2536, a potent and selective inhibitor of Plk1 (Lénárt et al.,

2007; Steegmaier et al., 2007). Whereas control cells treated

with DMSO displayed normal mitotic endocytosis of Celsr1DN-

GFP, treatment with BI2536 led to prometaphase arrest and

completely blocked Celsr1DN-GFP internalization (Figures 4A

and 4B). To rule out the possibility that the failure to internalize

Celsr1 was due to mitotic arrest, we compared Plk1-inhibited

cells with keratinocytes treated with an inhibitor targeting Aurora

A and B (VX-680). Treatment with Aurora A/B inhibitor led to

mitotic arrest in prometaphase, but internalization of Celsr1

was not affected (Figures 4A and 4B). Additionally, transferrin

internalized normally in BI2536-arrested cells demonstrating a

specific requirement for Plk1 in Celsr1 mitotic internalization

(Figure 4C).

We then performed time-lapse TIRF microscopy of Celsr1

recruitment into clathrin-coated vesicles (CCVs) to determine

which step of endocytosis requires Plk1. In control cells treated

with DMSO, bright Celsr1DN-GFP puncta formed at the surface

of mitotic cells that colocalized with m2-mRFP (marking the AP2

adaptor complex) and DsRed-Clathrin (Figures 4D and 4E). In

Plk1-inhibited cells, m2-mRFP and DsRed-Clathrin localized to

punctate structures that internalized with normal kinetics, but

Celsr1DN-GFP never coalesced into surface puncta, remaining

smoothly localized to the plasma membrane (Figures 4D and

4E; Movie S3). These results demonstrate that Plk1 acts at the

earliest stages of endocytosis to induce clustering and recruit-

ment of Celsr1 cargo into AP2-CCVs. This function is selective

for Celsr1-containing cargo, as AP2-CCVs appear to form nor-

mally at the cell surface upon Plk1 inhibition, whereas Celsr1 fails

to be recruited into them.

Plk1 Function Is Required in the Skin Epithelium for
Celsr1 Mitotic Internalization and Asymmetric
Localization
We next examined the role of Plk1 in the developing skin epithe-

lium. Mouse embryonic skin explants (E14.5) were grown ex vivo

in the presence of DMSO or mitotic inhibitors for 4 hr. Consistent

with our in vitro findings, explants treated with Aurora A/B or Plk1

inhibitors displayed an accumulation of basal cells arrested in

prometaphase, but only inhibitionofPlk1blockedCelsr1 internal-

ization (Figures 5A–5D). Thecortical retention ofCelsr1 inPlk1-in-

hibitedmitotic cells allowed us to address whether the cell shape

changes that accompany mitosis have any effect on the mainte-

nance of Celsr1 asymmetry. Indeed, whereas Celsr1 localized

with bipolar asymmetry to anterior and posterior borders of basal
al cytosolic domain expanded below. Black lines represent phosphorylated S/T

st. The dileucine motif (turquoise, sequence shown below) is surrounded by six

ially phosphorylated in mitosis.

and S2752 from synchronous and asynchronous samples are shown overlaid

present in each LC/MS run. R value = normalized ratio of phosphopeptide

S1 for MS1 and MS/MS spectra.
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Figure 2. Plk1 Localizes to Celsr1-Containing Endosomes during Mitosis

(A) Keratinocytes were cotransfected with plasmids encoding Plk1-YFP (green) and Celsr1DN-Flag (red). Nuclei were labeled with Hoechst (blue). Representative

images at the indicated stages of mitosis are shown. Insets show 23 magnified single and merged channels. Celsr1 and Plk1 colocalize at endosomes during

prophase, metaphase, and anaphase/telophase. By cytokinesis, the two proteins no longer colocalize.

(B) Time-lapse images from Plk1-YFP (green) and ECad-Celsr1DN-mCherry (red) coexpressing keratinocyte. Insets show magnified single channels. Top:

prophase tometaphase. Bottom: telophase to cytokinesis. Note that Plk1 dissociates fromCelsr1-containing endosomes during cytokinesis. See alsoMovies S1

and S2.

(C) Endogenous Plk1 colocalizes with Celsr1DN-GFP in mitosis. Anti-Plk1 polyclonal antibody is shown in red and Celsr1DN-GFP in green.

(D) Mitotic keratinocyte expressing Plk1-YFP (green) and Celsr1DN-Flag (red) in early prophase imaged by TIRF microscopy. The two fluorescent proteins

colocalize at surface puncta at the earliest stages of mitosis.

Scale bars, 10 mm
cells in interphase, mitotically arrested cells with a rounded ge-

ometry often lost their polarity and displayed unipolar and non-

polar Celsr1 distributions (Figure 5C). To quantify this phenotype,

Celsr1 pixel intensities were plotted relative to their polar coordi-

nates. Whereas the majority of Celsr1 pixels in interphase cells

clustered around their anterior-posterior axes, Celsr1 was more

randomly distributed in Plk1-inhibited mitotic cells (Figure 5E).
526 Developmental Cell 33, 522–534, June 8, 2015 ª2015 Elsevier In
To assess whethermitotically arrested cells influenced the polar-

ity of their interphase neighbors, wemeasuredCelsr1 polarity ne-

matics of interphase cells in DMSOandBI2536-treated explants.

In contrast to the non-autonomous polarity defects caused by

transgenic expression of Celsr1LLtoAA (Devenport et al., 2011),

Plk1 inhibitiondid not causea significant alteration inCelsr1 inter-

phase polarity (Figure 5F). Thus, while cortically retained Celsr1
c.
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Figure 3. Plk1 Interacts with Celsr1 via a Conserved Polo-Box Domain (PBD)-Binding Motif and Directly Phosphorylates Celsr1

(A) Schematic of Celsr1 domain structure with the PBD-binding motif (consensus S-pT-P) highlighted in yellow. Mutations were generated in GFP-tagged,

chimeric proteins between E-Cadherin (extracellular and transmembrane domains, orange) and the cytoplasmic domain of Celsr1, as diagrammed below.

E-Celsr1CTD2855–3034 lacks the PBD and 180 C-terminal amino acids. E-Celsr1CTD2875–3034 retains the PBD but lacks the C-terminal 160 amino acids.

E-Celsr1CTT2864A and Celsr1DNT2864A substitute alanine for the phosphorylated threonine in the PDB domain.

(B) Phenotypic analysis of PBDmutants as indicated in Figure 3A. Note that deletion of the PBD or alanine substitutions within the PBD impair Celsr1 endocytosis

during mitosis. The mean percent colocalization between the E-Celsr1CT mutants and wild-type Celsr1 (co-transfected Celsr1DN-flag) during mitosis was

calculated as M1 coefficients. n = 8–14 mitotic cells for each mutant (unpaired t test, error bars denote ± SEM).

(C) Alignment of amino acids 2,838 to 2,866 of the cytosolic domain of mouse Celsr1. The PBD is highlighted in pink and is highly conserved among vertebrates

and in Drosophila.

(D) Coimmunoprecipitation of Plk1-GFP and E-Celsr1CT. Keratinocytes were transfected with expression vectors encoding Plk1-GFP and either wild-type or

PBD mutant E-Celsr1CT-Flag. Reciprocal immunoprecipitations were performed from cell lysates as indicated. Coimmunoprecipitates were separated by SDS-

PAGE and western blots were performedwith the antibodies indicated. Note the reduced interaction between Plk1-GFP and E-Celsr1CT when the PBD is mutant

(T2864A).

(E) Plk1 phosphorylates Celsr1. Kinase assay between purified Plk1 and GST alone or GST-Celsr1CT is indicated. The representative autoradiograph of

incorporated g32P-ATP is shown. Plk1 phosphorylation sites on the Celsr1 cytoplasmic tail were identified by MS. Plk1 phosphorylated 5 S/T residues sur-

rounding Celsr1’s endocytic motif plus nine additional sites. See also Table S5.

Scale bars, 10 mm
lost polarity in mitosis, this was insufficient to produce non-

autonomous polarity defects, at least over the short timescales

studied here. It may be that cells must progress through cytoki-

nesis for polarity defects to be propagated to neighboring cells.

Nevertheless, the loss of Celsr1 asymmetry in Plk1-inhibited

mitotic cells suggests that PCP asymmetry is particularly vulner-

able during mitosis.
Deve
Mutations that Prevent Dileucine Motif Phosphorylation
Impair Mitotic Internalization
To investigate the importance of S/T phosphorylation on mitotic

endocytosis, we performed site-directed mutagenesis on the six

conserved S/T residues surrounding Celsr1’s dileucine motif

(Figure 6A). Regretfully, we had previously reported that these

six residues were dispensable for Celsr1 internalization, but
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Figure 4. Plk1 Is Essential for Mitotic Inter-

nalization

(A) Keratinocytes stably expressing Celsr1DN-

GFP were treated for 8 hr with mitotic kinase

inhibitors or DMSO as indicated. Representative

images of inhibited cells are shown. Both Aurora

A/B and Plk1 inhibitors arrest cells in prom-

etaphase. Whereas Celsr1 internalization pro-

ceeds normally upon treatment with VX-680,

internalization is blocked upon Plk1 inhibition.

(B) Quantification of the percentage of mitotic

keratinocytes containing Celsr1 endosomes

treated with DMSO or inhibitor of kinase indicated.

Plk1 inhibition blocks internalization completely.

(C) Plk1 inhibition does not block transferrin

internalization (red), which accumulates normally

in BI2536-arrested cells.

(D and E) Analysis of clathrin-coated pit formation

upon Plk1 inhibition.

(D) Celsr1DN-GFP (green) keratinocytes coex-

pressing m2-mRFP (red) were imaged by TIRF

microscopy. Separate channels are shown to the

right of the merged images. Control cells in

mitosis (DMSO) display characteristic bright

Celsr1-puncta at the cell surface that colocalize

with m2-mRFP. In Plk1-inhibited mitotic cells

(300 nM BI2536, 3 hr), Celsr1DN-GFP fails to

coalesce into punctate structures at the cell sur-

face and remains uniformly localized similar to the

surrounding interphase cells. Note that m2-mRFP

still forms cell surface puncta in the presence of

BI2536. Widefield image of the same Bl2536-treated cell is shown to the right confirming the imaged cell was in mitosis.

(E) TIRF images of control and Plk1 inhibited (300 nM BI2536, 3 hr) keratinocytes in mitosis coexpressing Celsr1DN-GFP (green) and clathrin-dsRed (red).

Whereas clathrin puncta form normally at the surface of Plk1-inhibted cells, Celsr1 is not recruited to them. Widefield image of the same Bl2536-treated cell

labeled with pH3 (blue) confirms the cell was in mitosis. See also Movie S3.

Scale bars, 10 mm.
revisiting the original mutant construct revealed an error in the

sequence (Devenport et al., 2011, correction). To reexamine

the function of Celsr1 S/T phosphorylation, alanine substitutions

were introduced singly or in combination into the E-Celsr1CT-

GFP hybrid construct, and keratinocytes were cotransfected

with wild-type Celsr1DN-Flag as an internal control for quantifi-

cation. Mutation of all six S/T residues (STTTTS/6A) completely

blocked internalization in mitosis, closely mimicking the dileu-

cine mutant defect (Figures 6B and 6C). To further map essential

phosphosites, we separately mutated the four proximal (STTT/

4A) and two distal (TS/2A) S/T residues flanking the dileucine

sequence. Whereas E-Celsr1CT-4A-GFP internalized similar to

wild-type, internalization of E-Celsr1CT-2A-GFP was strongly

inhibited, though not to the full extent of the 6A mutant (Figures

6B and 6C). Single alanine substitutions for T2750 or S2752

alone produced only minimal effects on internalization (Fig-

ure 6C), suggesting functional redundancy between the phos-

phorylated sites. These results were confirmed in the context

of Celsr1DN-GFP (Figure S3), confirming that E-Celsr1CT

chimeras provide a useful tool to examine Celsr1 endocytic

regulation.

Phosphorylation of Celsr1’s Endocytic Sorting Motif Is
Mitosis Specific and Plk1 Dependent
Next,wegeneratedaphospho-specificantibodyagainstp-T2750

to investigate the spatial and temporal distribution of phosphory-
528 Developmental Cell 33, 522–534, June 8, 2015 ª2015 Elsevier In
lated Celsr1. Purified polyclonal antibodies raised against pep-

tides containing p-T2750 recognized only the phosphorylated

version of the peptide in dot blots and do not immunolabel the

Celsr1 T2750A cytoplasmic tail mutant, demonstrating the phos-

pho-specificity of the antibody (Figure S4). Next we performed

immunostaining of Celsr1DN-GFP expressing keratinocytes

with anti-Celsr1-pT2750. The antibody specifically labeled the

internalized pool of Celsr1 in mitotic cells, beginning at prophase

and persisting through telophase (Figures 6D and S4). By

contrast, anti-Celsr1-pT2750 did not detect membrane-localized

Celsr1 during interphase or in mitotic cells treated with the

Plk1 inhibitor (Figures 6D and S4). This localization pattern

was corroborated in vivo, where Celsr1-pT2750 colocalized with

a subset of Celsr1-containing endosomes in mitotic cells, but

not with cortical, asymmetrically localized Celsr1 in interphase

(Figure 6E). The spatial and temporal localization pattern of

Celsr1-pT2750closelymirrored that of endosomal Plk1 (Figure 2),

suggesting that Plk1 may be responsible for T2750 phosphoryla-

tion. Indeed, inhibiting Plk1 eliminated Celsr1-pT2750 labeling in

mitosis (Figure 6D).

To further assess whether Celsr1 phosphorylation is Plk1

dependent, we analyzed Celsr1DN-GFP phosphopeptides in

the presence of Plk1 inhibitor by MS and found a 10-fold reduc-

tion in the pS2741 peptide abundance compared with DMSO

treated controls (Figure S5 and Table S4). Although peptides

containing T2750 and S2752 were unfortunately not recovered
c.
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Figure 5. Ex Vivo Inhibition of Plk1 Inhibits PCP Mitotic Internalization and Impairs Celsr1 Asymmetry

(A–C) Backskin explants from E14.5 embryos were cultured and treated with (A) DMSO, (B) Aurora A/B inhibitor VX680, or (C) Plk1 inhibitor BI2536 for 4 hr.

Representative images of interphase and mitotic cells are shown. Many cells arrest in mitosis upon both Plk1 and Aurora A/B inhibition. Note that while VX680-

treated mitotic cells internalize Celsr1, the mitotic cells treated with BI2536 display aberrant Celsr1 localization, here classified broadly as bipolar, unipolar, or

non-polar. This is different from the anterior-posterior localization of Celsr1 seen in interphase cells.

(D) Percentage of mitotic cells containing Celsr1 endosomes in explants treated with DMSO (n = 54), Plk1 inhibitor (n = 388), or Aurora inhibitor (n = 269).

(E) Roseplots (top) and scatterplots (bottom) of Celsr1 pixel intensities and their corresponding angles in interphase (n = 86) versus mitotic (n = 76) cells in Plk1-

inhibited explants. Note that mitotic cells display a more uniform distribution of Celsr1 around the cell perimeter than interphase cells.

(F) Angular distribution of Celsr1 polarity in interphase cells borderingmitotic cells in DMSO (n = 183) and BI2536-treated explants (n = 218). The anterior-posterior

axis is horizontal and anterior is to the left.

Scale bars, 10 mm.
in the Plk1-inhibited MS run, we found a 2.5-fold reduction in the

SpTP-containing peptide (T2864), suggesting Plk1 may ‘‘self-

prime’’ Celsr1’s PBD-binding motif (Figure S4). In sum, our

data demonstrate that dileucine motif phosphorylation is mitosis

specific, Plk1 dependent, and essential for Celsr1 mitotic

internalization.

Phosphomimetic Mutations Uncouple Celsr1
Internalization from Mitosis and Bypass the
Requirement for Plk1
To determine whether phosphorylation of the endocytic motif is

sufficient for Celsr1 internalization, we generated phosphomi-

metic versions of Celsr1DN-GFP and examined their localization
Deve
dynamics in interphase. Although just two alanine mutations

(T2750A and S2752A) were sufficient to inhibit internalization in

mitosis, replacing these two sites with glutamate (TS/2E) failed

to induce Celsr1 endocytosis during interphase (Figure 7A). Mu-

tation of all six S/T residues surrounding the dileucine motif (6E),

however, caused a dramatic redistribution of interphase Celsr1.

Whereas wild-type Celsr1DN-GFP displayed smooth plasma

membrane localization in interphase, the Celsr1DN-6E-GFP

mutant displayed a striking punctate distribution with a con-

comitant loss of diffuse membrane localization (Figure 7A). A

subset of Celsr1DN-6E-GFP interphase puncta colocalized

with Rab5-dsRed, a marker of early endosomes (Figure 7B). To

confirm Celsr1DN-6E-GFP puncta were indeed endosomes,
lopmental Cell 33, 522–534, June 8, 2015 ª2015 Elsevier Inc. 529
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Figure 6. Celsr1 Phosphorylation during Mitosis Is Required for Its Mitotic Internalization

(A) Alignment of the cytosolic domain (R2724-T2765) of mouse Celsr1 and other indicated species. The dileucine and surrounding S/T residues are highly

conserved across vertebrates. Asterisks denote residues targeted for mutagenesis. The dileucine is highlighted in blue, and phosphorylated S/T residues are

shaded in pink.

(B) Mutagenesis of S/T residues. Keratinocytes were transfected with E-Celsr1CT constructs as indicated. Spindles are labeled with b-tubulin (red) and nuclei

labeled by Hoechst (blue). Mutations targeting S/T residues surrounding the dileucine motif are indicated above representative images. E-Celsr1CT-6A contains

alanine mutations corresponding to amino acids S2741, T2743, T2744, T2747, T2750, and S2752 in full-length Celsr1. E-Celsr1CT-4A is mutated to alanine at

positions corresponding to S2741, T2743, T2744, and T2747. E-Celsr1CT-2A contains alanine mutations at positions corresponding to T2750 and S2752.

(C) Quantification of colocalization (M1 coefficients averaged across 16–25 mitotic cells for each mutant) between S/T mutants and cotransfected wild-type

Celsr1DN-flag during mitosis, as described in Figure 3. Unpaired t test, error bars denote ± SEM. Note that internalization is most strongly inhibited in the 6A and

2A mutants, as well as the T2864A mutant (shown in Figure 3B).

(D) Localization of phospho-T2750Celsr1. ACelsr1 phospho-specific polyclonal antibodywas raised against peptides containing phospho-T2750. Keratinocytes

stably expressing Celsr1DN -GFP were immunolabeled with purified anti-phospho-T2750 (red) and Hoechst (blue). Note that the phospho-specific antibody

labels Celsr1 endosomes in mitosis, but not cortical Celsr1 during interphase or in Plk1-inhibited mitotic cells.

(E) Whole-mount backskin from K14-H2BGFP transgenic E14.5 embryo labeled with anti-phospho-T2750 (red) and Celsr1 (green) antibodies. A single confocal

plane through the basal layer is shown.

Scale bars, 10 mm.
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Figure 7. Phosphomimicking Mutations Uncouple Celsr1 Internalization from Mitosis

Serine or threonine residues surrounding the dileucine motif were mutated to glutamic acid in Celsr1DN-GFP (green) as indicated.

(A) Interphase keratinocytes transfected with the indicated phosphomimicking mutations. Nuclei were labeled by Hoechst (blue). Whereas both wild-type Celsr1

and the 2E mutant display smooth plasma membrane localization during interphase, the 6E mutant accumulates in punctate structures.

(B) Confocal image of interphase keratinocyte coexpressing the early endosome marker Rab5-dsRed (red) and Celsr1DN6E-GFP (green) showing colocalization

during interphase.

(C) Interphase keratinocytes coexpressing clathrin-dsRed (red) and Celsr1DNWT-GFP or Celsr1DN6E-GFP (green) were imaged by TIRF microscopy. Interphase

Celsr1DN6E-GFP puncta colocalize with clathrin-dsRed at the cell surface. Quantification of clathrin-positive puncta seen by TIRF on the cell surface of interphase

cells expressing wild-type Celsr1 (n = 8) and Celsr1DN6E-GFP (n = 10). See also Movie S4.

(D) Localization of Celsr1DN6E-GFP in mitosis. Keratinocytes cotransfected with Celsr1DN6E-GFP (green) and Celsr1DNWT-flag (red) in the presence (300 nM

BI2536, 6 hr) or absence (control) of Plk1 inhibitor. Whereas Celsr1DNWT-flagmitotic internalization is Plk1 dependent, Celsr1DN6E-GFP remains punctate even in

the presence of BI2536.

Scale bars, 10 mm.
we performed time-lapse TIRF imaging of clathrin-dsRed/

Celsr1DN-6E-GFP coexpressing cells and observed accumula-

tion of GFP puncta that colocalized with clathrin at the surface,

remarkably similar to wild-type Celsr1DN during mitosis (Fig-

ure 7C; Movies S3 and S4). These results strongly suggest that

phosphorylation of Celsr1’s endocytic sorting signal restricts

the timing of its internalization to mitosis.

Finally, to determine whether the requirement for Plk1 in

Celsr1 internalization can be bypassed by mimicking dileucine

motif phosphorylation, we examined the mitotic localization of

Celsr1DN-6E-GFP in cells treated with BI2536. Cotransfection

of Celsr1DN-WT-Flag served as an internal control and upon

Plk1 inhibition, was retained at the membrane. In contrast, the

Celsr1DN-6E-GFP mutant did not require Plk1 for its internaliza-

tion and remained punctate even in BI2536-treated cells (Fig-

ure 7D). These results indicate that the major function of Plk1

in regulating mitotic internalization is the phosphorylation of

Celsr1’s endocytic sorting motif. Together these data support

a model where Plk1-dependent phosphorylation of Celsr1’s di-

leucine motif activates the endocytic sorting signal to induce

mitosis-specific internalization.
Deve
DISCUSSION

Mitosis is perhaps the most vulnerable time in a cell’s life. Dur-

ing division, the cell dismantles much of its interphase architec-

ture to segregate the chromosomes and organelles into two

daughter cells. This is potentially detrimental for cells assem-

bled into complex epithelial patterns, whose integrity must

simultaneously be maintained while allowing for tissue growth

and homeostasis. Epithelial disorganization is invariably associ-

ated with carcinomas, and loss of polarity is strongly associ-

ated with metastatic behavior (Martin-Belmonte and Perez-

Moreno, 2012). Our previous study identified selective mitotic

endocytosis of PCP proteins as a mechanism to preserve

PCP in a rapidly dividing epithelium. We proposed that mitotic

endocytosis enables asymmetrically distributed PCP proteins

to be equally segregated to daughter cells irrespective of the

plane of division while preventing dividing cells from sending

or receiving PCP cues as they change shape and rearrange

(Devenport et al., 2011). Consistent with this notion, we find

that when mitotic endocytosis is blocked via Plk1 inhibition,

cortical Celsr1 often loses bipolar asymmetry, suggesting
lopmental Cell 33, 522–534, June 8, 2015 ª2015 Elsevier Inc. 531



PCP localization may be particularly sensitive to changes in cell

shape.

To ensure that PCP is not dismantled at inappropriate times,

we hypothesized that bulk endocytosis of PCP proteins should

be carefully coordinated with mitotic progression. Here we

demonstrate that the process is controlled directly by the mitotic

machinery, through Plk1-mediated phosphorylation of residues

near Celsr1’s dileucine sorting motif. Our data indicate that dur-

ing interphase, the dileucine motif is inactive and unable to be

recognized by the AP2 adaptor complex. Upon Plk1 activation

during theG2/M transition, Plk1 binds to Celsr1 via its PBD-bind-

ing motif and phosphorylates the endocytic motif, activating the

site for AP2/clathrin recognition and bulk internalization. Priming

of the PBD-binding motif by threonine-phosphorylation may add

another layer of mitotic specificity to Celsr1 endocytosis, as

PBD-binding domains are phosphorylated by Cdk1 or by Plk1 it-

self, events that occur strictly in mitosis (Lee et al., 2008). By

directly activating Celsr1’s endocytic motif, Plk1 ensures that

bulk PCP internalization is timed precisely with mitotic entry.

The conservation of serines and threonines surrounding the

dileucine motif suggests that cell-cycle-regulated endocytosis

is likely a common mechanism for Celsr1 regulation, at least

across vertebrates. The Drosophila homolog, Fmi, has not

been reported to undergo mitosis-specific internalization, and

consistently, none of the critical endocytic sorting residues are

conserved in Fmi. The PBD-binding domain, on the other

hand, is conserved in Drosophila, suggesting Fmi might interact

with Plk1 for another function during mitosis.

PCP-containing endosomes are retained intracellularly

until cytokinesis, suggesting their recycling may also be under

tight cell-cycle control. Consistent with this notion, we find

that inhibiting Plk1 during prophase leads to premature recy-

cling of internalized endosomes at metaphase (data not

shown), suggesting an additional role for Plk1 in endosome

retention. Interestingly, Plk1 remains colocalized with Celsr1

endosomes until the onset of cytokinesis, suggesting Plk1

dissociation from mitotic endosomes may be a prerequisite

for endocytic recycling. We predict cell-cycle-regulated phos-

phatases may also be required to deactivate the dileucine

sorting motif and reset Celsr1 for interphase (Wurzenberger

and Gerlich, 2011).

Only a handful of mitotic kinases including Cdk1, Aurora A/B,

and Plk1 regulate multiple events required for cells to commit

to, enter, and progress through mitosis (Nigg, 2001). Plk1 is

known to phosphorylate hundreds of proteins required for cen-

trosome maturation, spindle assembly, and kinetochore attach-

ment (Elia et al., 2003a, 2003b; Santamaria et al., 2011). We can

now add PCP and endocytosis to the list of Plk1-regulated pro-

cesses. Proteomic analyses of Plk1 substrates list endocytic

components as Plk1 targets (Lowery et al., 2007; Oppermann

et al., 2012), suggesting other endocytic events could also be

regulated by Plk1. Our study demonstrates that Plk1 localizes

to endocytic vesicles, where it is positioned to regulate a range

of intracellular trafficking proteins.

Our study also provides a proteomic analysis of Celsr1-asso-

ciated proteins and PTMs. Prior to this, few proteins were

known to physically associate with Celsr1 and no functionally

important Celsr1 PTMs had been characterized. Our data

show that at least three Celsr1 PTMs have a dramatic effect
532 Developmental Cell 33, 522–534, June 8, 2015 ª2015 Elsevier In
on Celsr1 localization, and provide a list of 17 other sites that

may provide additional regulation. Moreover, our catalog of

Celsr1-associated proteins provides a resource for future

studies focusing on Celsr1 interactions in other systems. This

study helps illuminate how cells coordinate the spatial dy-

namics of cell polarity with the temporal progression of mitosis.

Furthermore, our demonstration that polarity is regulated

directly by the mitotic machinery may help to explain why in

cancer, loss of polarity and uncontrolled proliferation are so

closely intertwined.

EXPERIMENTAL PROCEDURES

Animals

Mice were housed in an AAALAC-accredited facility in accordance with the

Guide for the Care andUse of Laboratory Animals. All procedures involving an-

imals were approved by Princeton University’s Institutional Animal Care and

Use Committee (IACUC).

Cell Culture and Drug Treatment

Mouse keratinocytes were cultured and maintained in E-media with 15%

serum and 0.05 mM Ca2+. Cells were transfected using Effectene transfection

reagent (QIAGEN), and then processed for immunofluorescence as described

in the Supplemental Experimental Procedures.

For inhibition of mitotic kinases, cells were shifted to high-Ca2+ E-media with

the following inhibitors for 3–8 hr (cultured cells) or 4 hr (explants): for Plk1,

BI2536 (Selleck Chemicals, 300 nM); and for AuroraA/B, VX-680 (Selleck

Chemicals, 700 nM). For transferrin internalization, 3 ug/ml transferrin-

Alexa546 was added to cells that had been treated with 300 nM BI2536 or

DMSO for 2 hr. After 30 min incubation at 37 degrees, cells were washed three

times in cold PBS and fixed with 4% paraformaldehyde.

Antibodies

Primary antibodies were used at the following dilutions: GFP (chicken, Abcam),

1:2,000; b-tubulin (mouse, Sigma), 1:500; Flag (mouse, Stratagene), 1:2,000;

Celsr1 (guinea pig, Devenport and Fuchs, 2008), 1:500; E-cadherin (rat,

Thermo Pierce), 1:1,000; and phospho-histone H3-Ser10 (rabbit, Upstate),

1:1,000. The phospho-specific antibody against Celsr1 pT2750 was custom-

generated by 21st Century Biochemicals (Marlboro, MA) by immunizing rabbits

with the peptide ATTRATLL[pT]RSLN. Serum was affinity purified to ensure

phosphospecificity and used at 1:1,000.

Imaging

Confocal images were acquired with an inverted A1 or A1R-Si on a Nikon

Eclipse Ti (Nikon Instruments) equipped with GaASP detectors and a 603 oil

objective (numerical aperture, NA 1.4) using NIS-Elements software (Nikon).

Images shown are maximum projections of z stacks, created and processed

using NIS-elements. TIRF images were acquired on a Nikon TIRF illuminator

on Ti-E (Nikon) with a 603 oil objective (NA 1.49) and an iXon Ultra (Andor)

camera using NIS-Elements. Green and red channels were acquired sequen-

tially every 20–100 ms for 5–10 min. Live imaging was performed on a Ti-E (Ni-

kon) with a Yokogawa spinning disc (CSU-21) with a 603 oil objective (NA 1.4),

equipped with Hamamatsu ImageM back thinned EMCCD detector, using

NIS-Elements. The z stacks (15 slices, 0.3 mm) were collected at every 2 min

for 45–90 min, or until the cell completed mitosis.

Image Analysis and Quantification

Quantification of mitotic internalization was performed by calculating M1 coef-

ficients representing the colocalization of Celsr1/E-Celsr1CT puncta per cell,

using ImageJ plugin JaCoP. Celsr1 asymmetry in BI2536-treated explants

was quantified using ImageJ by calculating Celsr1 mean intensities at their

corresponding pixel angles relative to the cell centroid. Pixel angles were

plotted against intensities in a rose diagram using MATLAB.

Celsr1 asymmetry in cells bordering mitotic cells in BI2536-treated explants

was calculated using Packing Analyzer V2 (Aigouy et al., 2010) and as further

described in the Supplemental Experimental Procedures.
c.



Mass Spectrometry

Celsr1DN-GFP was immunoprecipitated from keratinocytes using anti-GFP

antibodies as described in the Supplemental Experimental Procedures.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses

were performed on a high-resolution, high-mass-accuracy, reversed-phase

nano-UPLC-MS platform, consisting of an Easy nLC Ultra 1,000 nano-UPLC

system coupled to an Orbi Elite mass spectrometer (ThermoFisher Scientific)

equipped with a Flex Ion source (Proxeon Biosystems, Odense, Denmark).

Analysis was performed as described in the Supplemental Experimental

Procedures.

Plk1 In Vitro Kinase Reaction

1 mg of substrate (GST only or GST-tagged Celsr1CT) was incubated with

100 ng of His-tagged Plk1 in kinase buffer (20 mM HEPES, 70 mM NaCl,

5 mM MgCl, 4 mM DTT, 10% glycerol, and 3 mCi g32P-ATP) in 10 ml total

volume at 30�C for 30min. The reaction was stopped by the addition of sample

buffer and proteins were separated on a 7.5% SDS gel. The incorporation of

g32P-ATP was visualized by phosphorimaging on a Typhoon FLA-7000 (GE

Healthcare).

For details on constructs and methods, see the Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, five tables, and four movies and can be found with this article on-

line at http://dx.doi.org/10.1016/j.devcel.2015.03.024.
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