was associated with an elevated risk of adverse cardiovascular events and mortality. Although inextricable links exist between obesity, type-2 diabetes and cardiovascular disease in the general population, the extent to which findings can be extrapolated to a diabetes-specific population is limited.

AIC and Weight Outcomes Following 6 Months of Analog Basal Insulin in Naïve Patients with Type-2 Diabetes in an Ambulatory Care Setting

McAdam-Marx C, Brunner D*, Ye X, Mursuki D, Fabunmi R*

*University of Utah College of Pharmacy, Salt Lake City, UT, USA; *Eli Lilly and Company, Indianapolis, IN, USA; *Amynil Pharmaceuticals, Inc., San Diego, CA, USA

OBJECTIVES: This study evaluated real world outcomes for type 2 diabetes (T2D) patients treated with analog basal insulin (glargine or detemir) on glycemic control and weight after 6 months in a national electronic medical record (EMR) database. METHODS: Patient data were extracted from the General Electric (GE) EMR database from January 1, 2000 through December 31, 2007. Patients were ≥18 years old with T2D defined by ICD-9 codes, ≥2 fasting blood glucose levels ≥126 mg/dL, or ≥7.0%. Patients had prescription orders in the previous 395 days for metformin, a sulfonylurea or a thiazolidinedione, alone or in combination, or had no prior antidiabetic treatment. Patients were initiated on a basal insulin with no prior insulin use, had no other diabetes medications prescribed within six months of basal insulin initiation, and had at least one additional order for the prescribed basal insulin within six months. Baseline A1C and weight were documented >545 days prior to ≥15 days post basal insulin initiation and at six months post initiation ≥45 days. RESULTS: Of patients with 6 months A1C or weight follow-up data (n = 841 and n = 1817, respectively), mean (SD) baseline A1C was 9.0% ± 1.9% and weight was 99 ± 25.0 kg. Mean BMI was 34.7 ± 4.8 kg/m². The majority were treated with insulin glargine (n = 1754; 91.2%). At six months mean (SEM) A1C reduction was −1.2(0.1)% with 20.0% (n = 393) achieving A1C goal of <7.0%. Mean weight gain was 1.00(1.7) kg (p < 0.001) and 60% (n = 1103) of patients gained weight. CONCLUSIONS: In a real-world setting, most patients (90%) did not reach ADA targets for glycemic control with analog basal insulin treatment. Additionally, the majority of patients (60%) experienced weight gain.

Effects of Sustained-Release versus Immediate-Release Glipizides for Type-2 Diabetes Mellitus: A Systematic Review of 16 Randomized Trials

Wang L, U Xiao*, Sun J, Meng Y, Chenggu, China

*West China Hospital, Sichuan University, Chengdu, China

OBJECTIVES: Sustained-release glipizide has a more appealing pharmacological profile over immediate-release glipizides. However, individual trials have not reliably ascertained its effects. This study systematically reviewed the trials that compared the effects of sustained-release glipizide with the conventional immediate-release glipizide for type 2 diabetes mellitus. METHODS: We searched Medline, EMBASE, the Cochrane Library and three other Chinese databases from their inception to July 2008; as well as screened the reference lists of eligible trials and reviews, and contacted the company (Pfizer) for unpublished data. Two reviewers judged the trial eligibility, assessed the validity, and extracted data independently. We pooled the trial data using the meta-analysis effect model and explored the heterogeneity by the pre-specified variables. RESULTS: A total of 16 trials (n = 1031) were included. Sustained-release glipizide significantly decreased FPG by 0.33mmol/L (weighted mean difference, 95% CI 0.03 to 0.61), postprandial insulin levels by 3.11U/mL (0.89 to 5.47), and C-peptide by 0.12 mmol/L (0.04 to 0.20). Sustained-release glipizide did not reduce the HbA1c (p = 0.02 to 0.15), postprandial plasma glucose (0.38–0.47 to 1.22), fasting insulin levels (1.02–1.14 to 2.54). No statistical differences were found in the change of total cholesterol (0.09–0.06 to 0.23), triglyceride (0.13–0.04 to 0.29), LDL (−0.03, −0.12 to 0.05), HDL (0.04, −0.02 to 0.10), and hyperglycemia (RR 0.79, 95%CI 0.22 to 2.86). No trials reported diabetes-related morbidity and mortality. CONCLUSIONS: Sustained-release glipizide could reduce FPG, postprandial insulin levels, and C-peptide, but has not shown benefits in reducing HbA1c, PFG, and fasting insulin levels when compared to immediate-release glipizide. Uncertainty remained in the benefits of sustained-release glipizide over immediate-release glipizide. This was mainly driven by the small sample size of the trial and lack of long-term morbidity and mortality data.

Metformin Treatment for Improving Outcomes Related to Infection in Poly cystic Ovary Syndrome – A Bayesian Analysis

Perea FN, Malone DC

University of Arizona College of Pharmacy, Tucson, AZ, USA

OBJECTIVES: This study was conducted to determine the usefulness of metformin therapy in improving outcomes related to infertility in patients with polycystic ovary syndrome (PCOS). A Bayesian meta-analytic and mixed treatment comparison (MTC) approach was used. METHODS: An electronic literature search was performed using PubMed and the Cochrane Central Register of Controlled Trials to identify randomized controlled trials that reported at least one of the outcomes of interest – ovulation, pregnancy and live birth in PCOS patients randomized to treatment with either metformin, clomiphene citrate (CC) or combination of these drugs, which included a comparison with either placebo or each other. Reference lists of meta-analyses and reviews were hand searched to identify any additional articles. Bayesian meta-analyses were conducted for each outcome separately and for different therapeutic comparisons with metformin. Additionally, Bayesian MTCs were also conducted for each outcome. Analyses were performed using rjags. RESULTS: A total of 27 RCTs were identified and 24 studies reported outcomes in a usable form for inclusion in the analysis. The total number of patients was 2217. The meta-analyses revealed that metformin was superior to placebo for ovulation induction (median OR = 2.9 with 95% CI [1.6–6.0]). Comparison of metformin and CC alone revealed that combination therapy was superior in both ovulation induction (median OR = 4.2 with 95% CI [1.5–12.3]) and pregnancy (median OR = 5.0 with 95% CI [1.7–22.4]). When live birth was considered there was no significant difference between combination therapy and CC alone, metformin alone and placebo. In the MTC, the efficacy of the therapeutic comparisons for ovulation and pregnancy in descending ranking order was combination therapy, CC alone, metformin alone and placebo.

CONCLUSIONS: Combination therapy with metformin and CC is more effective than CC alone in ovulation and pregnancy outcomes in women with PCOS.