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Consider the following equivalent characterizations of associative von Neumann 
regular rings A with unity: ” 

(1) for each Q E A there exists an x E A such that a = axa ; 
(2) every principal left ideal of A is generated by an idempotent e ; 
(3) every principal left ideal of A is a direct summand; 
(4) every left A -module is flat; 
(5) every left A -module is regular; 
(6) every finitely presented left A-module is projective. 
Trying to define regularity of nonassociative rings we notice that (1) can only be 

stated for alternative rings; but’ even in this case it only implies (2) or (3) under 
additional conditions (examples 2,3 in Section 1). However, in any ring A with 
unity properties (2) and (3) are equivalent if we only demand the idempotent e 
occuring in (2) to be in the right nucleus of the ring. Of course, the left-right 
symmetry (which is assured by (1) in the associative case) is lost and so we call a ring 
satisfying (2) left regular. An internal characterization of these rings is given in 
Section 1. 

In the category of submodules of associatively generated A-modules 
(= :A -mod4 ) as introduced in [ 151 we may define flat, regular and finiteZy presented 
objects in a categorical way (Stenstriim [12], I?ieldhouse 161). Within this context 
conditions (4), (S), (6) are equivalent (see Proposition 2.6) a.nd are implied by (2) or 
(3) (see Section 3). If A itself is finitely presented in A mada conditions (2-Q) are 
equivalent (Theorem 3.1). For example left alternative and Jordan rings with unity, 
which are finitely generated modules over their centers, are finitely presented in. 
A -mod‘ (Corollary 3.7). A left regular ring A which is finitely presented in A -mod” 
is a projective generator of A -mod”; if - additionaly - A is a finitely generated 
right module over its right nucleus n(A) then it is a pro e generator of the 

category of modules over the left multiplicationring L(A) orems 3.5,3.6), i.e. 

L(A)-mod is equivalent to n(A)-mod. The categorical background for these 
concepts is given in Section 2. 

The definition of associative biregular rings (every princi al ideal is generated by 
a central idempotent, Arens-Kaplansky 131) can Merally be takkn for nonassocia- 
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tive rings and many of their properties remain valid in the more general situation 
(Proposition’l.7). Applying again the results of Section 2 we study in Section 4 the 
characterization of biregular rings in the category of submodules of central 
bimodules ( = A -bimod” in [ 16)). Equivalences analogous to (2)-(6) are obtained in 
case A is finitely presented in A-bimod” (this is also new for associative rings). 
Biregular rings, which are finitely presented in A -bimod” and finitely generated 
modules over their centers are Azumaya algebtas over a von Neumann regular 
ring (Theorem 4.4). For associative rings this was proved by Wehlen [14] using 
sheaf-theoretic techniques. An alternative ring, which is a finitely generated 
module over its center is biregular if and only if it is left and right regular 
(Theorem 4.5). 

Notations 

R denotes a commwtative and associative ring with unity and A denotes a 
nonassociative R -algebra or ring not necessarily with unity. By an A -module M we 
mean an R -module M together with an R-linear map p : A -+ EndR (M) and we 
shall write p(A) as left operators on M. The nucleus of an A -module M is defined 
asn(M):={m EM I(ab)m = a (bm ) for all a, b E A } and M is called associatively 
generated if R (M) is a generating set for M (see [U]). 

An R-module M is an A-bimodule if there are twc R-linear maps 
p19 p2: A + EndR (M) and we write pr(A) and p2(A) as left and right operators on 
M. The center of M is c(M):-{m EM I(ab)m = a(bm), m(ub)= (ma)b and 

= mu for all a, b E A ) and M is called a central A -bimodule if c (M) is a 
izerating set for M (see [16]). 

With this notation n (A ) will be the right nucleus and c (A) the (usual) center of 
the ring A. 

L(A), R (A ) and M(A) denote the subalgebras of EndR (A ) generated by the 
left or right multiplications and the identity map of A or by the left and right 
multiplications and the identity map of A respectively. 

Jac(A) is the (left) Jacobson radical of A as defined in Brown (41 for 
nonassociative rings. 

For an element a E A we denote by (a 1 or (a) the left ideal or the two-sided 
ideal of A generated by a (and containing a). 

1. Idempotents in a ring 

In this Section we list several properties of rings resulting from the existence of 
idempotents in certain ideals. 

et every left ideal of the ring A contain an ide potent e $0 with 
e E n(A). Then 
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(i) the intersection of the maximal modular left ideals of A is zero ; 

(ii) the Jacobson radical of L (A) is zero. 

Proof. (i) It follows from the proof of Theorem 1 in Brown [Lt] that the intersection 
D of all maximal modular left ideals of A is (left) quasi regular: every d E D is 
contained in the left ideal of A generated by the set {x - xd/x E A }. For any 
idemptotent e E D n n(A) the set {x - xc/x E A} is a left ideal, i.e. for some 
b E A e = b - be, which implies e = 0. 

(ii) For a maximal modular left ideal M in A the factor module A/M is an 
irreducible L (A)-module and the annihilator of A /M in L(A), the set {A E 

L(A)lh(A)sM), is a primitive ideal in L(A). Let {Mi}i,, be the familiy of 
maximal modular left ideals in A and Si the annihilators of A /Mi in L (A ). Then 

A s n SiA G n Mi z(O); 
iEI iEI 

since A is a faithful L (A )-module ni,, Si must be zero. 
In alternative rings the assumption e E n(A) in (1.1) is not necessary; this follows 

from the coincidence of the Kleinfeld and Smiley radical ( = Jacobson radical) in 
these rings. The above proof of (ii) actually shows: 

Proposition 1.2. In an alternative ring A Jac(A ) = (0) implies Jac(L (A )) = (0). 

We call a ring A Zeft regular if every principal left ideal of A is generated by an 
idempotent e E n(A). Clearly left regular rings do hive the properties given in 
(1.1) and for the associative case they are uon Neumann regular rings. A.ccsrdingly 
tight regular rings can be defined In an obvious way. 

Proposition 1.3. For a ring A with unity the following statements are equivalent: 
(i) A is left regular; 

(ii) every finitely generated Left ideal in A is generated by an idempotent 
e En(A); 

(iii) every principal Zeft ideal is a direct summand in A ; 

(iv) every finitely generated left ideal is a direct summand in A ; 

(v) the left principal ideals of A constitute (with respect to sum and intersection) a 
complemente44 modular lattice. 

roof. The equivalence of (i) and (ii) is shown as soon we ktlow that the sum of two 
left principal ideals is again a left principal ideal. Since n(A) is an associative ring 
the proof can be taken from the associative case (von Neumann [9, Lemma 151). 
The remaining equivalences are obtained in a well-known way. 

eft semisimple rings (see [15]) are left regular and left regular rings 
with asFending chain condition on left ideals are left semisimple. 
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Example 2, Smiley studied in [lo] ‘“regular” alternative rings A (for ealch Q E A 
there is an x e A for which Q = axa) without nilpotent elements; in this c&e every 
idempotent e e A has the property ea = eze for all cz E A and by [lo, Lemma 21 
every e with this property is in the nucleus n(A) (i.e. e e c(A)). So these rings are 
left and right regular, 

Example 3. More generally, in Amemiya-Halperin [l] “regular” alternative rings 
A (as in Example 2) are considered, for which every 
(“idempotent-associative”). These rings are also left 

idempotent is in the nucleus 
and right regular. 

Further examples are gGven in Section 3. 

An associatively generatyad A -module 1M is almost &zithful if the annihilator of M 
in A = {a tEA 1 urn = 0 fm- all m e M} does not contain a two-sided ideal of A. 
According to the associat tve case, a ring A is called lefr primitive if there exists an 
almost faithful, associa:k=ely generated, irreducible A -module. It follows from the 
definition that A is left primitive if and only if A contains a modular maximal left 
ideal which1 does not contain a two-sided ideal of A (see Brown[4]). 

Proposition 1.6. Let every ideal of the ring A contuin an idempotent e # 0 with 
e EC(A). Then 

(i) tSte intersection of the muximul modular ideals in A ( = Brown-McCoy 
radical) is zero ; 

(ii) the Jucobson radical of M(A) is zero ; 

(iii) A is Zeft primitive if A is a simple rinc with unity. 

Proof. Using the characterization of the BrfBwn-McCoy radical of nonassociative 
rings (Smiley [ 111) we can apply the proofs of (1 .l) to show (i) and (ii). 

(iii) Let M be an almost faithful, associaVvely generated, irreducible A -module 
with nucleus n(M). For a E A and any central idempotent e in (a) the set 
e.sM=e-(A-n(M))=A(e*n(M)) is an A -submodule of M and therefore e l M = 
M. The ideal D:= {x - xe 1 x E A} has the property D . e = (0) and so D a M = 
D(e l M) = (0); since iM! is almost faithful this means D = (0) and e is the unity of 
A, i.e. A is a simple ring with unity. 

Extending a definition given in Arens-Kaplansky [3] for associative rings we call 
a nonassociative ring A biregulur if every principal (two-sided!) ideal in A is 
generated by a centraf idempotent. This is equivalent to the condition that every 
finitely generated ideal in A is generated by a central idempotent: if the principal 
ideals (a) and (b) in A are generated by the central idempotents e, f then (a) + (b) 
is generated by the central idempotent e -+ f - ef. A ring A with unity is biregular if 
and only if every principal ideal is a direct summand in A. 
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Proposition X.7. A biregular ring A has the following properties : 

(i) etrery homomorphic image of A is biregukzr ; 
(ii) primitive ideals are modular maximal ideuls in A ; 

(iii) euery i&al in A is the intersection of the modular maximal ideals 
containing it ; 

(iv) the Brown-McCoy radical of A and Jac(M(A )) are zero. 

Proof. (i) is easy to see and the other properties are immediate consequences of (i) 
and Propostion 1.6. 

Observe that the Brown-McCoy radical of any ring A is equal to the intersection 
of all ideals B in A for which A/B is a biregular ring. 

c-semisimple rings, i.e. rings which are finite direct sums of simple rings with 
unity [16, Satz (2.3)], ‘are biregular and biregular rings with ascending chain 
condition on (two-sided) ideals are c -semisimple. 

Proposition 1.8. Let A be a ring with unity for which M(A ) is a finiteZy generated 
c (A )-module. Irf A is left and right regular then A is biregular. 

Pro&. Let J be a principal ideal in the left and right regular ring A. J is a finitely 
generated c (A )-module and hence finitely generated as left and right ideal; there 
are idempotents e,f in the right or left nucleus of A respectively with Ae = J = fA 
and from e = fe = f and ea = (ea)e = ae for all Q E A it follows e E c(A). 

Suppose A to be an alternative ring with unity of the type described in example 2 
or 3, whi$h is a finitely generated c(A)-module. Then M’A) is a finitely generated 
c(A)-module and by (1.8) A is biregular. Further examples of biregular rings will 
occur in Section 4. 

2. The categorical framework 

Let S-mod be the category of unitary left modules over an associative ring S with 
unity. We say an object in S-mod is subgenetated by an S-module D, if it is 
contained in an S-module which is generated by D. a[D] denotes the greatest 
subcategory of S-mod for which every object is subgenerated by D. u[D] is a 
Grothendieck category with generator: let fi be the set of all S-homomorphisms 
$I : S *u[D]; then @ ,En$(S) is a generator of a[D]. 

If D is a faithful S-module which is a fintely generated right module over 
Ends (D) (i.e. M is finendo, Faith [5]) with generating elements dl, . . . , dk E D, the 
mapS+Dk,s+s l (d*,..., dk), is a monomorphism and we have S E a[D] which 

implies that S-mo is subgenerated by D. 
An S-module is called a[D]-pr@ectiue if it is projective relative to all short exact 
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sequences in a[D]. It follows from well-known theorems that a ifinitely generated 
S-module is a[D]-projective if and only if it is D-projective (Anderson-Fuller 
[2,§16]). Accordingly we define a[D]-injectiue modules and we get that any 
S-module is a[D]-injective if and only if it is D-injective. 

An object in the category a[D] is finifely generuted (= offinite type) in a[D] if 
and only if it is a finitely generated S-module, A finitely generated F in a[D] is 
finitely presented in o[D], if for every exact sequence 0 --) K + L --) F --) 0 in a[D] 
with L finitely generated it follows that # is finitely generated. Any F in a[D] 
which is finitely presented in S-mod is finitely presented in o[D]. A finitely 
generated D-projective object in a[D] is also finitely presented in a[D]. 

2.1. Let O-, K + E -+ F 40 be *an exact sequence in a[D] with E finitely 
presented in a[D]. If X is finitely generated then F is finitely presented in o[D]. 

Since a[D] is a. locally finitely generated Grothendieck category we have 
(Stenstriim [13, Chap. VI): 

2.2. An object F in a[D] is finitely presented in o[D] if and only if the functor 
Horns (F, - ) commutes with inductive direct limits in cr[D]. 

From Stenstriim [12 and Fieldhouse [6] we are led to the following definitions: 

2.3. A short exact sequence is pure in a[D] if every finitely presented object in 
a[D] is projective relative to it. An object Q is regular in a[D] if every short exact 
sequence with center Q is pure in c[D]. An object V is flat in a[D] if every short 
exact sequence O+K -,L + V-,0 in m[D] is pure in a[D]. 

Proposition 2.4. For an S-module Q in a[D] there are equivalent : 

(i) Q is regular in a[D]; 
(ii) every finitely generuted submodule of Q is pure in a[D]; 
(iii) every finitely presented module in B[D] is Q-projecfive. 
If Q is finitely presented in a[D] these properties are equivalent to: 
(iv) every finitely generated submodule of Q is a direct summand. 

(i) e (iii) follows immediately.from the definition, (i) =+ (ii) is clear and 
(ii) =+> (i) is a consequence of (2.2). (iii) + (iv) is derived from (2.1) and 

( ) iv =I9 (ii) i3 trivial. 

3. Let O-, L --) Q + N -+ 0 be alt exuct sequence in o[D 1. 

ce is pure in (r [ 
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Proof. Using property (3) in (2.4) (i) follows from Proposition (16.12) in 
Anderson-Fuller [2]. (“) 11 can be obtained by applying the Five Lemma. 

As a consequence of (2.5) a direct sum of modules in o[D] is regular if and only if 
every summand is regular in @[II] and we get: 

Proposition 2.6. The following conditions for an S-module D are equivazent : 
(i) D is regular in a[D ]I; 

(ii) every module in a[D] is regular in a[D]; 
(iii) every module in a[D] is flat in a[D]; 
(iv) every short exact sequence in a[D] is pure in a[D]. 

Theorem 2.7. If D is a finitely generated, faithful S-module which is a finitely 
generated right module over Ends (D) then the following statements are equivalent : 

(i) D is regular and finitely presented in cr [D ] ; 
(ii) D is finitely presented in S-mod and S is von Neumann regular ; 

(iii) D is a projective, regular S-module ; 

(iv) D is a projective generator for S-mod and Ends (D) is von INeumann regular. 

Proof. (i) _ (ii) By (2.4) D is D-projective; since D is finitely generated and S is 
subgenerated by D this implies that D is projective in S-mod. By (2.6) S is regular 
in a[D]; S is finitely presented and hence a von Neumann regular ring by (2.4). 

(ii) + (iii) Every module over a von Neumann regular ring is regular (Field- 
house [6]). (iii) + (i) is obvious. 

(iii) + (iv) S is a finitely generated submodule of a projective regular 
S-module Dk (for appropriate k E N) and hence direct summand of D k, i.e. S is 
generatei by D. Horns (D, - ) defines an equivalence between S-mod and 
Ends (D)-mod and S is von Neumann regular; therefore Ends ( 3 is von Neumann 
regular, too. 

(iv) =+ (ii) is shown by a similar argument. 

3. Onesided A- modules 

TO apply the theory just described let A be a nonassociative ring with unity and 
L(A) the left multiplica:ionring of A. Considering A as an L (A )-module, a[A ] is 

the subcategory of L(A)- whose objects are submodules of associatively 
generated A -modules (= : “). The a[A ]-projective and a[A ]-injective 

modules are the a-projectiv -injective L (A )-modules introduced in [ 151. 

According to (2.31 we can define pure short exact sequences, regular and flat 
modules in A- od” and Proposition 2.6 g s a relationship tween these 

s a co;lsequence of (2.4) we know t a left regular ring is regular in 
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From Propositions 1.3, 2.4 and 2.6 we obtain: 

Theorem 3.1. For a ring A with unity, which is finitely presented in A-mod”, the 
following conditions are equivalent : 

(i) A is a reft regular ring ; 
(ii) A is regular in A-mod”; 

(iii) every finitely presented module in A-mod” is a-projective ; 
(iv) every module in A -mod* is regular in A-mod”; 
(v) every module 4n A-mod* is fiat in A -mod*; 
(vi) every short exact sequence in A-mod” is pure in A -moda. 

Any associative riqr with identity is finitely presented and by (3.1) vc .I Neumann 
regular rings are chzaacterized (Pieldhouse 161). More general self-pxtijective rings 
with unity [lS, Satz (3.4)] are finitely presented in A -mod’ and another interesting 
case is given in 

Eemma 3.2. Let A be a left alternative or a Jordan ring with unity which is a finitely 
generated module over its center c(A). Then A is finitely presented in ‘L(A)-mod 
(and hence in A-m@). 

Proof. In the cases under consideration L(A) is a finitely generated c(A)-module. 
The L(A)-epimorphism p : L(A)-, A,p(A):=h(l), splits as c(A)-epimorphism 
and so the kernel of p is a finitely generated c(A)-module and hence finitely 
generated as L (A )-module. Now by (2.1) A is finitely presented in L(A)-mod. 

Lemma 3.3. Suppose A is an R-algebra with unity, A is finitely presented as 
R -module and L (A) is finitely generated as R -module. If R is von Neumann regular 
and L (A) is a Zeft semisimple R -algebra then A is a left regular ring and A is finitely 
presented in L (A )-mod, 

Proof. A principal left ideal J of A is finitely generated as R-module and therefore 
an R -direct summand of A ; since L (A) is left semisimple over R this implies that J 
is an L (A)-direct summand of A. A is a projective R-module anti therefore a 
projective L (A )-module. 

Corollary 3.4. Let A be an alternative or Jordan algebra over a von Neumann 
regular ring R and A finitely presented as R -module. If A is separable over R then A 
is Zeft regular and finitely presented in A -modl”. 

. The Jordan case foliows immediately from (3.3). If A is alternative and 
separable we get under the given circumstances via a separability-criterion (Miiller 
[S, Satz 41) that L(A) is separable and hence semisimple over R. 
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In a left regular ring every left ideal is associatively generated. So we obtain from 
Lemmas 4.1, 4.2 in [ 151 and Theorem 3.1: 

Theorem 3.5. A left regular ring A which is finitely presented in A -mod” is a c 
projective generator of A -mod’. 

This gives an example for the situation described in 115, Satz (4.3)]. Since 
End&A) is isomorphic to the right nucleus n (4) Theorem 2.7 implies: 

Theorem 3.6. For a ring A which is finitely generated as a right n (A )-module the 
following statements are equiwalent : 

(i) A is left regular and finitely presented in A -mod”; 
(ii) A is finitely preSented in L (A )-mod and k (A ) is von Neumann regular ; 

(iii) A is a projective, regular L (A )-module ; 

(iv) A is a projective generator of L (A )-mod and n (A > is von Neumann regular. 

Together with Lemma 3.2 the theorem yields: 

Corollary 3.7. For a left alternative or Jordan ring A which ts a finitely generated 
c (A )-module there are equivalent : 

(i) A is left regular ; 

(ii) L (A) is von Neumann regular ; 

(iii) A is regular in A -mod”. 

4. Two-sided A- modules 

In analogy to the preceding Section we consider the ring A with unity as 
module over its multiplicationring M(A). Then a[A] is the subcategory of 
M(A )-mod whose objects are submodules of central modules (=: A-bimod’) and 
the cr[A]-projective M(A)-modules are the c-projective M(A)-modules in [16]. 

Again we obtain definitions for pure short exact sequences, regular and flat 
modules in A-bimod’ by (2.3) and we know from (2.4) that biregular rings are 
regular in A -bimod’. 

According to (3.1) we have 

For a ring A with unity which is finitely presented in A -binlo 
are equivalent : 

(i) A is a &regular ring ; 

(ii) A is regular in A - c. 
9 

(iii) every finitely presented module iiq A - is c-projective. 

Of course the other equivalent properties is (3.1) might as well be formulated in 
the present case. 
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Contrary to the one-sided situation associative rings A are not projective in 
A -bim& and they need not even be finitely presented in A -bimod”. c-projective 
rings as characterized in [ 16, Satz (2.4)] are finitely presented in A -bimod” and also: 

Lemma 4.2. Let A be an alternative or Jordan ring which is a finitely generated 
module over its center c (A). Then A is finitely presented in M (A )-mod (and hence in 
A -blmod’). f 

\ 

Proof, The Jordan ewe is actually contained in (3.2) yiid the alternative C, : is 
proved in complete analogy to (3.2) since M (A ) is a finitely generated A -module. 

In a biregular ring e ‘cry ideal is a central A -bimodule and from Lemma 3.6,3.7 
in [ 161 and Theorem 4.1 it follows: 

Theorem 43. A bkgular ring with u&y which is finitely presented in A -bimod’ is a 
projective generator of A -bimodY 

Equivalent formulations for the latter condition are given in 116, Satz (3.91. 

Theorem 4.4. If the nng A with unity is a finitely generated c (A )-module the 
following statements aft. equivulent : 

(i) A is biregular and finitely presented in A -bimod’; 
(ii) A is finitely presented in M (A )-mod and M (A ) is von Neumann regular; 

(iii) A is a projective, regular M (A )-module ; 

(iv) A is a projective generator of M (A )-mod and c (A ) is von Neumann regular ; 
. (v) A is a projective c (A)-module, A is separable over c(A) and c(A) is von 
Neumann regular. 

Proof. The first four equivalences follow from Theorem 2.7. (v) characterizes A as 
an Azumaya algebra Over a von Neumann regular ring and it is equivalent to (iv) as 
a consequence of Satz (3.10) in [16]. 

For associative rings the equivalence of (i) and (v) was proved in Wehlen [M, 
Theorem (2.3)] by using sheaf-theoretic techniques. 

Theorem 4.5. For an alternative or Jordan ring A with unity which is a finitely 
generateH c (A )-module the following are equivalent : 

(i) A is biregular ; 
(ii) M(A) is von Neumann regular; 

(iii) A is regular in A - 
(iv) A is a c (A )-Atu 

(v) A is a projective c 
is von Neumann regular; 

ant2 regular ; 
)-algebra and c (A) 
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(vi) A is a projective c(A )-module, L (A) (or R (A )) is a separable c (A )-algebra 

~xd c (A) is von Neumann regular; 

(vii) L (A) and R (A ) are van Neumann regular; 
(viii) A is Zeft and right regular. 

Proof. Under the given conditions A is finitely presented in M(A)-mod (Lemma 
4.2). So the equivalence of (i), (ii) and (iv) follows from Theorem 4.4 and 
(iv) a (v) follows from Satz (3.10) in [16]. (ija (iii) was shown in Theorem 
4.1. 

For Jordan rings (i), (vii) and (viii) are identical and the same is true for (v) and 
(vi). So we assume A to be alternative: (vi) + (viii) is a consequence of Lemma 
3.3 and (viii) e (vii) fo.llows from Corollary 3.7. (viii) + (i) was proved in 
Proposition 1.8. 

(v) e (vi) Using a criterion for separability 
under the given conditions M(A) is separable 

Miiller [8, Satz 4)) we get that 
over c (A) iff L(A) or R (A) is 

separable over c(A). 

Notice that Theorem 4.5 is valid for any class of rings, closed bnder homomor- 
phisms, and having the property: If A is in the ciass and is a fkltely generated 
c (A )-module then 

(1) I., (A ), R {A) and M(A) are finitely generated c (A )-modules; 

(2) if A is a simple ring then A is left and right semisimple. 
For associative rings the equivalence of (i) and (viii) is a consequence of Theorem 

6.3 in Michler-’ Gllamayor [7]. 
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