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Introduction

The following theorem is the main result of this paper.

Theorem 0.1. Let φ be an automorphism of a finitely generated free group Fn.

• There exists an explicit algorithm that, given two elements u, v ∈ Fn, decides whether there exists some
exponent N such that uφN = v.

• There exists an explicit algorithm that, given two elements u, v ∈ Fn, decides whether there exists some
exponent N such that uφN is conjugate to v.

If such an exponent N exists, then the algorithms will compute N as well. The words u, v are specified as words
in the generators of Fn, and φ is specified in terms of the images of generators.

The results in this paper was motivated by work that first appeared in [Bri03]. Theorem 0.1 plays
a role in the computation of fixed subgroups of free group automorphisms [Mas03], and it constitutes
one part of the recent solution of the conjugacy problem in free-by-cyclic groups due to Bogopolski,
Maslakova, Martino, and Ventura [BMMV06].
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Our main technical tool is an algorithmic extension of the theory of relative train track maps
[BH92,BH95]. Specifically, we present algorithmic (and possibly even practical) ways of finding efficient
relative train track maps that share many the properties of improved relative train track maps as
introduced (in a nonconstructive fashion) in [BFH00].

One intriguing aspect of our argument is that it suggests that the detection of orbits in free groups
and the computation of efficient maps are closely related problems. Orbit detection and computation
of efficient maps leapfrog each other, with orbit detection providing a crucial step in the computation
of efficient maps, and efficient maps enabling the detection of orbits.

In Section 1, we review well-known results on homotopy equivalences of finite graphs, with an
emphasis on computational aspects of the constants involved. Section 2 contains a brief review of
the theory of relative train track maps, including first steps towards improvements. Section 3 con-
tains the first part of our construction of efficient train track maps. Section 4 presents an algorithm
that detects orbits of paths, and Section 5 builds upon the results of Section 3 and Section 4 to pro-
vide the last, and most difficult, step in our construction of efficient maps, the detection of fixed
points of certain lifts of homotopy equivalences of finite graphs. Finally, in Section 6, we translate our
results from the realm of homotopy equivalences of graphs to the realm of automorphisms of free
groups.

1. Quasi-isometries and bounded cancellation

The results in this section are well known. We list them here, with detailed proofs, because explicit
computations of the constants involved do not seem to appear in the literature.

Let f : G → H be a homotopy equivalence of finite connected graphs, which we equip with the
usual path metric (denoted by | · |), and let g : H → G be a homotopy inverse of f .1 We denote the
set of vertices of G by V (G) and the set of edges by E (G). Throughout this paper, we only consider
homotopy equivalences that map vertices to vertices and edges to edge paths of constant (but not
necessarily identical) speed. We may assume that there exists some vertex v̄0 such that v̄0 f g = v̄0.

Let f̃ : G̃ → H̃ be a lift of f to the universal covers, with a lift v0 of v̄0. Given x, y ∈ G̃ , we denote
the unique geodesic path connecting x and y by [x, y]. For brevity, we write |x, y| for |[x, y]|. We
define [x, y] f̃ = [x f̃ , y f̃ ].2

The lift f̃ extends to a homeomorphism of the boundaries ∂ G̃, ∂ H̃ . Let g̃ : H̃ → G̃ be a lift of g
such that satisfies v0 f̃ g̃ = v0, and note that f̃ g̃ induces the identity on ∂ G̃ .

Arguments involving universal covers are generally nonconstructive. The universal cover of a finite
connected graph, however, is a tree, and we can construct arbitrarily large subtrees as well as partial
lifts of maps to these subtrees, which is enough for the computations we will encounter. We describe
this construction here, with the tacit understanding that all computations in universal covers will
require it as a preliminary step.

Construction 1.1. Fix some vertex v̄0 ∈ G . Let v0 ∈ G̃ be a lift of v̄0 and w0 ∈ H̃ a lift of w̄0 = v̄0 f .
We let T0 = {v0} and U0 = {w0} and define f̃0 : T0 → U0 in the only possible way.

Now, suppose we have subtrees T0 ⊆ T1 ⊂ G̃ and U0 ⊆ U1 ⊂ H̃ as well as a partial lift f̃1 : T1 → U1,
i.e., f̃ |T1 = f̃1. Our goal is to enlarge T1 and U1 and extend f̃1 accordingly.

There is a bijective relationship between vertices of G̃ and edge paths in G originating at v̄0.3 Let
ρ be an edge path in G originating at v̄0. We want to construct T2 so that it contains a lift of ρ . To
this end, starting with v0 and the first edge of ρ , we keep track of a current vertex v and a current
edge E . If T1 already contains an edge E ′ originating at v that projects to E , we make the other
endpoint of E ′ our current vertex and move on to the next edge of ρ . If no such edge exists, we

1 Given f , we can easily compute g (see, for instance, [LS77]).
2 Note that the composition of the path [x, y] and f̃ is not, in general, an immersion. The path [x f̃ , y f̃ ] is the unique

immersed path that is homotopic relative endpoints to this composition.
3 In our computations, we will always be given such paths for those vertices of G̃ that we are interested in.
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attach a new edge at v and map it to E . Then we move on to the terminal endpoint of the new edge
and the next edge in ρ .4

Now, for each vertex v of T2 \ T1, we compute the image ρv of the path [v0, v] in G , and we
construct a lift of ρv f to the universal cover. Like before, we construct U2 by extending U1 such that
it includes these lifts, obtaining a larger subtree of H̃ as well as a partial lift f̃2 : T2 → U2.

Proceeding in this fashion, we can build arbitrarily large subtrees of G̃ and H̃ along with partial
lifts of f . If G = H , we can and will arrange that T2 ⊆ U2.

The lift f̃ is a quasi-isometry, i.e., there exist constants K f , D f such that for all x, y ∈ G̃ , we have

|x, y|
K f

− D f � |x f̃ , y f̃ | � K f |x, y| + D f . (1)

We need to compute suitable constants K f , D f . To this end, define the size of f to be S f =
maxE∈E (G){|E f |}.

Lemma 1.2. We can compute a number B f g satisfying

B f g � max
x∈G̃

{|x, x f̃ g̃|}.

Proof. We first compute B = maxv∈V (G̃){|v, v f̃ g̃|}. Let γ be a deck transformation of G̃ . Since f̃ g̃

extends to the identity on ∂ G̃ , we have γ f̃ g̃ = f̃ g̃γ .
For v ∈ V (G̃), we have |vγ , vγ f̃ g̃| = |vγ , v f̃ g̃γ | = |v, v f̃ g̃|, so that we only need to check one

representative of each orbit of vertices. The distance |v, v f̃ g̃| is the length of the path obtained by
concatenating [v, v0] and [v0, v f̃ g̃] and tightening. Hence, we can compute B .

Now consider some point x ∈ G̃ . Then there exists some vertex v ∈ V (G̃) such that |x, v| < 1, so
that |x, x f̃ g̃| � 1 + |v, v f̃ g̃| + S f g � 1 + B + S f g . �
Lemma 1.3. Inequality (1) holds with K f = max{S f , S g} and D f = 2B f g

K f
.

Proof. Let x, y ∈ G̃ . By definition of K f , we have |x f̃ , y f̃ | � K f |x, y|, so that the upper bound in
Inequality (1) holds.

Similarly, we have |x f̃ g̃, y f̃ g̃| � K f |x f̃ , y f̃ |. The triangle inequality implies that |x, y| � |x, x f̃ g̃| +
|x f̃ g̃, y f̃ g̃| + |y f̃ g̃, y| � |x f̃ g̃, y f̃ g̃| + 2B f g � K f |x f̃ , y f̃ | + 2B f g . We conclude that |x, y| − 2B f g �
K f |x f̃ , y f̃ |, and the claim follows. �

Thurston’s Bounded Cancellation Lemma [Coo87] is a fundamental tool in the theory of free group
automorphisms. We present a proof here because we require an explicit bound on the constant in-
volved.

Let p, x, y be points in G̃ and let α = [p, x] and β = [p, y]. We denote the common (possibly
trivial) initial segment of α and β by α ∧ β . If α is a prefix of β , we write α � β .

Lemma 1.4 (Bounded Cancellation Lemma). Let C f = (B f g + D g + S g)K g . If |α ∧ β| = 0, then

|α f̃ ∧ β f̃ | � C f .

4 An alternative approach is to attach an entire lift of ρ at v0 and then fold as necessary [Sta83].
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Proof. Let L = |α f̃ ∧ β f̃ |. Inequality (1) implies that |(α f̃ ∧ β f̃ )g̃| � L
K g

− D g , so that |α f̃ g̃ ∧ β f̃ g̃| �
L

K g
− D g − S g . Now Lemma 1.2 implies that

|α ∧ β| � L

K g
− D g − S g − B f g .

Hence, if L > C f , then |α ∧ β| > 0. �
Finally, we record a basic property of homotopy equivalences of graphs.

Lemma 1.5. Let f : G → G be a homotopy equivalence of a finite graph. If α is a path in G whose endpoints
are fixed by f , then there exists some path β with the same endpoints satisfying β f = α.

Proof. Let v be the initial endpoint of α. Then there exists some loop σ based at v so that α f is
homotopic (relative endpoints) to the concatenation σα. Since f is a homotopy equivalence, there
exists a loop σ ′ satisfying σ ′ f = σ , and we conclude that (σ̄ ′α) f = α. �
2. Relative train track maps

In this section, we review the theory of relative train tracks maps [BH92,DV96] as well as first
steps towards our take on improvements of relative train track maps.

Given an automorphism φ ∈ Aut(F ), we can find a based homotopy equivalence f : G → G of a
finite connected graph G such that π1(G) ∼= F and f induces φ. This observation allows us to apply
topological techniques to automorphisms of free groups. In many cases, it is convenient to work with
outer automorphisms. Topologically, this means that we work with homotopy equivalences rather that
based homotopy equivalences.

Oftentimes, a homotopy equivalence f : G → G will respect a filtration of G , i.e., there exist sub-
graphs G0 = ∅ ⊂ G1 ⊂ · · · ⊂ Gk = G such that for each filtration element Gr , the restriction of f to Gr
is a homotopy equivalence of Gr . The subgraph Hr = Gr \ Gr−1 is called the r-th stratum of the filtra-
tion. We say that a path ρ has nontrivial intersection with a stratum Hr if ρ crosses at least one edge
in Hr .

If Hr = {E1, . . . , Em}, then the transition matrix of Hr is the nonnegative m × m-matrix Mr whose
i j-th entry is the number of times the f -image of E j crosses Ei , regardless of orientation. Mr is said
to be irreducible if for every tuple 1 � i, j � m, there exists some exponent n > 0 such that the i j-th
entry of Mn

r is nonzero. If Mr is irreducible, then it has a maximal real eigenvalue λr � 1 [Gan59]. We
call λr the growth rate of Hr .

Given a homotopy equivalence f : G → G , we can always find a filtration of G such that each
transition matrix is either a zero matrix or irreducible. A stratum Hr in such a filtration is called zero
stratum if Mr is a zero matrix. Hr is called exponential if Mr is irreducible with λr > 1, and it is called
nonexponential if Mr is irreducible with λr = 1.

An unordered pair of edges in G originating from the same vertex is called a turn. A turn is called
degenerate if the two edges are equal. We define a map D f : {turns in G} → {turns in G} by sending
each edge in a turn to the first edge in its image under f . A turn is called illegal if its image under
some iterate of D f is degenerate; otherwise, it is called legal.

An edge path ρ = E1 E2 · · · Es is said to contain the turns (E−1
i , Ei+1) for 1 � i < s; ρ is legal if all

its turns are legal, and it is r-legal if ρ ⊂ Gr and no illegal turn in ρ involves an edge in Hr .
Let ρ be a path in G . In general, the composition ρ ◦ f k is not an immersion, but there is a unique

immersion that is homotopic to ρ ◦ f k relative endpoints. We denote this immersion by ρ f k , and we
say that we obtain ρ f k from ρ ◦ f k by tightening. If σ is a circuit in G , then σ f k is the immersed
circuit homotopic to σ ◦ f k .

Theorem 2.1. (See [BH92, Theorem 5.12].) Every outer automorphism of F is represented by a homotopy equiv-
alence f : G → G such that each exponential stratum Hr has the following properties:
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1. If E is an edge in Hr , then the first and last edges in E f are contained in Hr .
2. If β is a nontrivial path in Gr−1 with endpoints in Gr−1 ∩ Hr , then β f is nontrivial.
3. If ρ is an r-legal path, then ρ f is an r-legal path.

We call f a relative train track map. A detailed, explicit algorithm for computing relative train track
maps appeared in [DV96].

We conclude this section with the introduction of some terminology that will be needed later.
A path ρ is a (periodic) Nielsen path if ρ f k = ρ for some k > 0. In this case, the smallest such k is

the period of ρ . A Nielsen path ρ is called indivisible if it cannot be expressed as a concatenation of
shorter Nielsen paths.

A decomposition of a path ρ = ρ1 · ρ2 · · · · · ρs into subpaths is called a k-splitting if ρ f k =
ρ1 f k · · ·ρs f k , i.e., there is no cancellation between ρi f k and ρi+1 f k for 1 � i < s. Such a decom-
position is a splitting if it is a k-splitting for all k > 0. We will also use the notion of k-splittings of
circuits σ = ρ1 · ρ2 · · · · · ρs , which requires, in addition, that there be no cancellation between ρs f k

and ρ1 f k .
The r-length of a path ρ in G , denoted by |ρ|r , is the number of edges in Hr that ρ crosses.

A path ρ in G is said to be of height r if ρ is contained in Gr but not in Gr−1. If Hr = {Er} is a
nonexponential stratum, then basic paths of height r are of the form Erγ or Erγ E−1

r , where γ is
a path in Gr−1.

Definition 2.2. We say that a relative train track map f : G → G is normalized if the following proper-
ties hold:

1. For every vertex v ∈ V (G), v f is a fixed vertex of f .
2. Every nonexponential stratum Hr contains only one edge Er and Er f = Erur for some path ur

in Gr−1.
3. If Hr = {Er} is a nonexponential stratum, ur is of height s, and s < t < r, then Ht is nonexponen-

tial and ut is also of height s.
4. If E is an edge in an exponential stratum Hr , then |E f |r � 2.
5. Every isolated fixed point of f is a vertex.
6. If C is a noncontractible component of some filtration element Gr , then C = C f .

Lemma 2.3. Every outer automorphism O has a positive power Ok that is represented by a normalized relative
train track map f : G → G. Both k and f can be computed.

Proof. First, we compute a relative train track map f ′ : G ′ → G ′ representing O [BH92,DV96]. We eas-
ily read off an exponent k such that f ′k satisfies the first, fourth, and sixth properties of normalized
maps, and we have E f ′k = v E w for every edge E in a nonexponential stratum Hr .

After replacing f by a power f k , we may need to refine the filtration of G because an irreducible
matrix may have reducible powers. We may also need to permute some filtration elements in order
to achieve the desired alignment of nonexponential strata.

If v is nontrivial and w is trivial, we reverse the orientation of E . If both v and w are nontrivial,
we split E into two edges E ′ , E ′′ such that E = Ē ′E ′′ and E ′ f ′k = E ′ v̄ and E ′′ f ′k = E ′′w .

By refining the filtration of G ′ so that each nonexponential stratum contains exactly one edge and
subdividing at isolated fixed points if necessary, we obtain a normalized representative f : G → G
of Ok . �
Lemma 2.4. Let f : G → G be a normalized relative train track map with an exponential stratum Hr . If C is a
noncontractible component of Gr−1 and v is a vertex in Hr ∩ C, then v = v f .

Proof. This argument is contained in the proof of [BFH00, Theorem 5.1.5]. We repeat it here because
it is short.
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Let v be a vertex in Hr ∩ C . Since f is normalized, we have C = C f , so that there exists a path α
in C that starts at v and ends at v f . The vertex v f is fixed, and there exists some path β in C that
starts and ends at v f such that α f = β f . Then (αβ̄) f is trivial, so that αβ̄ is trivial because of the
second property of relative train track maps. �
Lemma 2.5. Let f : G → G be a normalized train track map with a nonexponential stratum Hr . If ρ is a path
in Gr , then it splits as a concatenation of basic paths of height r and paths in Gr−1 .

Proof. This is essentially [BFH00, Lemma 4.1.4]. The lemma follows immediately from the second
property of normalized train track maps. �
Lemma 2.6. Let f : G → G be a normalized train track map with an exponential stratum Hr . If ρ is a circuit or
edge path of height r containing an r-legal subpath of r-length L > 2C f (where C f is the bounded cancellation
constant of f ), then ρ f contains an r-legal subpath of r-length greater than L.

Proof. This is an immediate consequence of Lemma 1.4 and the fourth property of normalized maps,
which implies λr � 2. �

We will need the following consequence of [Bri00, Proposition 6.2].

Lemma 2.7. Let f : G → G be a relative train track map with an exponential stratum Hr . If ρ is an edge path
of height r and L0 > 0, then at least one of the following three possibilities occurs:

• ρ f M contains an r-legal segment of r-length greater than L0 .
• ρ f M contains fewer r-illegal turns than ρ .
• ρ f M is a concatenation of indivisible Nielsen paths of height r and paths in Gr−1 .

3. Improving nonexponential strata

In [BFH00], the authors improve the behavior of nonexponential strata in a nonconstructive fash-
ion. We retrace some of their steps here, replacing the nonconstructive parts by constructive argu-
ments.

Let Hr = {Er} be a nonexponential stratum of a normalized train track map f : G → G , and let ρ be
a path in Gr−1 originating at the terminal vertex of Er . We define a new map f ′ : G ′ → G ′ by remov-
ing Er and adding an edge E ′

r whose initial vertex is the initial endpoint of Er and whose terminal
vertex is the terminal vertex of ρ . We obtain u′

r by tightening ρ̄ur(ρ f ), so that E ′
r f ′ = E ′

ru′
r . There is

an obvious homotopy equivalence g : G → G ′ that sends Er to E ′
r ρ̄ . With this marking, f ′ induces the

same outer automorphism as f . We say the E ′
r is obtained from Er by sliding along ρ .

Let f̃ : G̃ → G̃ be a lift of f that fixes the initial endpoint of a lift Ẽr of Er . Then f̃ leaves invariant
a copy H of the universal cover of the connected component of Gr−1 that contains ur . Let h = f̃ |H ,
and let v0 be the terminal endpoint of Ẽr . Note that v0 ∈ H , and that [v0, v0h] projects to ur .

Lemma 3.1. There exists a slide of Er to E ′
r with E ′

r f ′ = E ′
r if and only if h fixes a point in H.

Proof. If h fixes v ∈ H , then sliding Er along [v0, v] yields a fixed edge E ′
r . Conversely, if there exists

a path ρ such that sliding Er along ρ yields a fixed edge, then the terminal endpoint of the lift of ρ
is fixed by h. �

In Section 5, we present an algorithm for detecting fixed points of h.

Lemma 3.2. Assume that h has no fixed points. Let Uk = [v0, v0hk] and Vk = Uk ∧ Uk+1 for k � 0. Then Vk
is a proper prefix of Vk+1 .



P. Brinkmann / Journal of Algebra 324 (2010) 1083–1097 1089
Proof. This follows from the discussion of preferred edges in the proof of [BFH00, Proposi-
tion 5.4.3]. �

As an immediate consequence of Lemma 3.2, we obtain the following lemma.

Lemma 3.3. If h has a periodic point, then h has a fixed point.

The following proposition is the main result of this section; it replaces a nonconstructive argument
in [BFH00].

Proposition 3.4. Assume that h has no fixed points. We can compute a vertex in v ∈ H and an exponent m � 1
such that sliding Er along [v0, v] yields E ′

r( f m)′ = E ′
r · u′

r and u′
r is a closed path starting and ending at a fixed

vertex.

Proof. Let vk equal the terminal vertex of the path Vk (Lemma 3.2),5 and let wk = [vk, vk+1]. The
path wk+m is a subpath of wkhm for all k,m � 0.

The idea of the proof is to compute w0, w1, w2, . . . , wk until we identify a suitable vertex v
in wk . Since wk+1 is a subpath of wkh, we have height(wk+1) � height(wk), so that the height of
the paths wk has to stabilize eventually. The following procedure assumes that the height remains
constant; should the height drop while the procedure is in progress, we simply start over.

Assume the height stabilizes at r. This means that Hr cannot be a zero stratum. Now, if Hr is
nonexponential, we have |wk+1|r � |wk|r . We keep iterating until we find wk such that |wk|r =
|wk+1|r � 1. Let v be the initial endpoint of an occurrence of Er in wk . Then v has the desired
properties (and we do not need to replace f by a higher power in this case).

Now, assume that Hr is exponential. If we encounter a path wk that contains an r-legal subpath
of r-length at least 2(C f + 1), then wk+1 contains a vertex v that projects to a fixed vertex of f and
whose r-distance from the closest r-illegal turn is at least C f . Now Lemma 1.4 yields that v has the
desired properties.

Assume that the length of r-legal subpaths remains bounded below 2(C f + 1). The number of
illegal turns cannot go up and must stabilize eventually, so that eventually we will end up in the
third case of Lemma 2.7 and see a composition of Nielsen paths of height r and paths in Gr−1. We
can detect this case in a brute-force fashion, by checking all subpaths of wk in order to see whether
they are Nielsen.

Let v be the initial point of one of the Nielsen paths. Then v is periodic of period m, so that sliding
Er along [v0, v] yields the desired improvement of f m . �
Definition 3.5. Let f : G → G be a normalized relative train track map with a nonexponential stratum
Hr = {Er}. We say that Hr is efficient:

1. if Er f splits as Er · ur and ur is a closed path in Gr−1,
2. if ur is a periodic Nielsen path, then its period is one (in this case, we say that Er is linear), and
3. if ur is nontrivial, then there exists no slide of Er to E ′

r such that E ′
r f ′ = E ′

r .

We say that a relative train track map is efficient if it is normalized, all its nonexponential strata are
efficient, and the nonexponential strata are sorted in such a way that if ur and us are of the same
height but ur is Nielsen and us is not, then s > r.

Lemma 3.6. There exists a slide of Er to E ′
r with E ′

r f ′ = E ′
ru′

r and u′
r a periodic Nielsen path if and only if

h commutes with a nontrivial deck transformation.

5 This agrees with our original definition of v0.
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Proof. This lemma follows from [BFH00, Proposition 5.4.3]. �
Remark 3.7. Lemma 3.6 implies that if Hr is efficient and ur is nontrivial and non-Nielsen, then there
exists no slide that takes ur to a periodic Nielsen path.

An infinite ray ρ starting at a fixed vertex v0 is a fixed ray if ρ f = ρ . It is attracting if there exists
some N such that if η is a ray starting at v0 and |ρ ∧η| > N , then η f n converges to ρ , i.e., |ρ ∧η f n|
goes to infinity. A repelling fixed ray is an attracting fixed ray for a homotopy inverse of f . See [LL04]
for a detailed discussion attracting and repelling fixed points for free group automorphisms.

Lemma 3.8. Let f : G → G be an efficient relative train track map with a nonexponential stratum Hr = {Er}
that is neither linear nor constant. Let

Rr = Erur(ur f )
(
ur f 2) · · · .

Then Rr is the unique attracting fixed ray of the form Erγ , for γ ⊂ Gr , and there are no Nielsen paths of the
form Erγ . In particular, we have limk→∞ ρ f k = Rr for all basic paths ρ of height r.

Proof. This lemma follows from the proof of [BFH00, Lemma 5.5.1]. The assumptions of [BFH00] are
stronger that our assumptions, but a close inspection of the proof shows that only our assumptions
are needed for the results that we use here. �

If ρ is a path starting and ending at fixed points, then we can find at most one path ρ ′ with the
same endpoints such that ρ ′ f = ρ . In this case, we write ρ ′ = ρ f −1. We define ρ f −k in the obvious
fashion. If ρ is closed, then ρ f −k exists for all k.

Lemma 3.9. Let f : G → G be an efficient relative train track map with a nonexponential stratum Hr = {Er}
that is neither linear nor constant. Let

Sr = Er
(
ūr f −1)(ūr f −2) · · · .

Then Sr is the unique repelling fixed ray of the form Erγ , for γ ⊂ Gr . In particular, we have limk→∞ ρ f −k = Sr

for all basic paths ρ of height r.

Proof. Lemma 3.8 implies that h only has one repelling fixed ray. Since Sr is clearly fixed, it is the
unique repelling fixed ray. �
4. Detecting orbits of paths

If Hr is an exponential stratum and ρ is a path of height r, we let ιr(ρ) equal the number of
r-illegal turns in ρ .

Lemma 4.1. Let f : G → G be an efficient relative train track map. If ρ is a circuit or edge path in G, then we
can determine algorithmically whether ρ is a periodic Nielsen path; if ρ is Nielsen, then we can compute its
period as well.

Proof. Assume inductively that we can detect periodic Nielsen paths and circuits in Gr−1. We want
to show that if ρ is of height r, then we can determine whether ρ is Nielsen.

We first assume that Hr = {Er} is nonexponential. Then ρ splits as a concatenation of basic paths
of height r and paths in Gr−1 (Lemma 2.5), and it is Nielsen if and only if each of these constituent
paths is Nielsen. Hence, we may assume that ρ is a basic path of height r, i.e., ρ = Erγ or ρ =
Erγ Ēr for some γ ∈ Gr−1. If Er f = Er , then ρ is Nielsen if and only if γ is Nielsen so that we
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are done by induction. If Er is neither constant nor linear, then Lemma 3.8 yields that ρ cannot be
Nielsen.

This leaves the case that Er is linear. If ρ = Erγ , then it cannot be Nielsen (if Erγ were Nielsen,
then Lemma 3.3 would imply that we can slide Er to a constant edge, in violation of efficiency of f ).
Clearly, a path of the form Erγ Ēr can only be Nielsen if γ is a (possibly negative) power of ur , which
completes the proof for nonexponential Hr .

Now, assume that Hr is exponential. If an endpoint of ρ is not fixed, then ρ cannot be Nielsen.
If both endpoints of ρ are fixed, we compute ρ,ρ f ,ρ f 2, . . . until one of the following three cases
occurs:

• We encounter some image ρ f k that contains an r-legal path whose length exceeds 2C f . Then
Lemma 2.6 implies that ρ is not Nielsen.

• We encounter some image ρ f k that contains fewer r-illegal turns than ρ . Since f does not
increase the number of r-illegal turns, ρ is not Nielsen.

• We can express ρ as ρ = α1β1α2β2 · · ·αmβm , where the αi are Nielsen paths of height r, and the
βi are subpaths in Gr−1, such that we encounter some ρ f k = α1(β1 f k) · · ·αm(βm f k). In this case,
ρ is Nielsen if and only if the βi are Nielsen.

One of these three cases must occur eventually, and we can detect the third case in a brute-force
way by checking all possible decompositions of ρ .

Finally, if Hr is a zero stratum, then ρ cannot possibly be Nielsen, so that the proof is complete. �
If u is a closed path and ρ is an arbitrary edge path, we let pu(ρ) equal the largest exponent m

so that um is a prefix of ρ .

Lemma 4.2. Let f : G → G be a relative train track map with an exponential stratum Hr and a closed Nielsen
path u of height r. If ρ is an edge path of height r and k � 0 an exponent such that pu(ρ) = m and pu(ρ f k) = l,
then ιr(ρ) � (2m − l − 1)ιr(u).

Proof. We express ρ as ρ = umγ . Since we have pu(ρ f k) = l, we conclude that pū(γ f k) � m − l − 1,
so that ιr(γ f k) � (m − l − 1)ιr(u). Since f does not introduce new illegal turns, we have ιr(γ ) �
(m − l − 1)ιr(u), so that ιr(ρ) � (2m − l − 1)ιr(u). �
Lemma 4.3. Let f : G → G be an efficient train track map and let ρ be a non-Nielsen path whose endpoints
are fixed. Then for any L > 0, we can compute an exponent k0 > 0 such that |ρ f k| > L and |ρ f −k| > L (if
ρ f −k exists) for all k � k0 .

Proof. We assume inductively that the lemma holds for the restriction of f to Gr−1. We first assume
that Hr = {Er} is a nonexponential stratum. Then ρ splits as a concatenation of basic paths of height r
and paths in Gr−1, so that we may assume that ρ is a non-Nielsen basic path of height r, i.e., ρ =
Erγ Ēr or ρ = Erγ .

Assume that Er is neither constant nor linear. Then we can find a prefix R of Rr as well as a
prefix S of Sr (see Lemmas 3.8 and 3.9) of length greater than L for which |R f | > |R| + C f and
|S f −1| > |S| + C f . Now Lemmas 3.8, 3.9, and 1.4 imply that we can find some exponent k0 such that
R is a prefix of ρ f k and S is a prefix of ρ f −k for all k � k0. We conclude that |ρ f ±k| > L for all
k � k0.

If Er is constant, then the inductive hypothesis applied to γ completes the proof. This leaves the
case that Er is linear. Let s be the height of γ . If s is smaller than the height of ur , we conclude
that no copy of ur will cancel completely in ρ f k for any k > 0, so that we have |ρ f ±k| > L for all
k > L.

If s equals the height of ur and Hs is nonexponential, then no more than |γ | copies of ur can-
cel in |ρ f k|, so that we have |ρ f ±k| > L for all k > L + |γ |. If Hs is exponential, then for all
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k � 0, the number of copies of ur that cancel in ρ f k is bounded by ιs(γ ), so that |ρ f k| > L if
k > L + ιs(γ ).

We still need to study the length of ρ f −k for k � 0. Let m = pur (γ f −k) and l = pur (γ ). Then
Lemma 4.2 implies that ιr(γ f −k) � (2m − l − 1)ιr(ur). This implies that ιr(ρ f −k) � kιr(ūr) + (2m −
l − 1)ιr(ur) − 2mιr(ur) = (k − l − 1)ιr(ur), so that |ρ f −k| > L if k > L + l + 1.

If s exceeds the height of ur , then, by definition of efficiency, Hs is also linear, and ρ splits into
subpaths of the form Erη, Esη, and Erη Ē s , where η ⊂ Gs−1. The first two cases are done by induction
on s, so that we only need to consider the case Erη Ē s . This case is essentially the same as the previous
one (we need to apply Lemma 4.2 to both η and η̄), except we need to consider the possibility
that there is a closed Nielsen path τ such that ur = τ a , us = τ b , and η = τ c . In this case, we have
a = b (or else Er Ēs would be Nielsen, in violation of efficiency), so that |(Erη Ē s) f k| � k − c, so that
|(Erη Ē s) f k| > L if k > L + c.

Finally, assume that Hr is exponential. In this case, we compute ρ,ρ f , . . . until we either find
some k0 such that ρ f k0 has an r-legal subpath of r-length greater than L + 2C f (in which case
Lemma 2.6 yields that |ρ f k| > L for all k � k0), or, by Lemma 2.7, we encounter some k such that
ρ f k is a composition of indivisible Nielsen paths of height r and paths in Gr−1. Since ρ is non-
Nielsen, one of the subpaths in Gr−1 must be non-Nielsen, so that we are done by induction.

In order to understand lengths under backward iteration, we need to consider two cases: If ρ is
not a composition of indivisible Nielsen paths of height r and paths in Gr−1, then Lemma 2.7 implies
that the number of r-illegal turns has to go up under backward iteration. In this case, we simply
compute ρ f −1,ρ f −2, . . . until we find some k0 for which ρ f −k0 contains L r-illegal turns, and we
conclude that |ρ f −k| > L for all k � k0.

If ρ is a concatenation of indivisible Nielsen paths of height r and paths in Gr−1, then one of
the subpaths γ in Gr−1 is not Nielsen, so that the inductive hypothesis applies to γ . Lemma 1.5
guarantees that γ f −k exists for all k � 0, so that we are done. �
Proposition 4.4. Let f : G → G be an efficient train track map, and let ρ1 and ρ2 be paths whose endpoints
are fixed. Then we can determine algorithmically whether ρ2 is the image of ρ1 under some power of f k , and
we can compute the exponent k if it exists.

Proof. Using Lemma 4.1, we determine whether ρ1 is a periodic Nielsen path. If it is, we simply
enumerate all distinct images of ρ1 and check whether ρ2 is among them. If ρ1 is not Nielsen, we
apply Lemma 4.3 with L = |ρ2| to obtain an exponent k0. Now we compute ρ,ρ f , . . . , ρ1 f k0 and
check whether ρ2 is contained in this list.

If ρ2 is contained in this list, we obtain a positive answer as well as the desired exponent k. If not,
we switch ρ1 and ρ2 and repeat the argument. �
Theorem 4.5. Let f : G → G be an efficient train track map with an exponential stratum Hr . Then we can
compute all indivisible periodic Nielsen paths of height r as well as their periods.

Proof. Let α be an indivisible Nielsen path of height r. Then α contains exactly one r-illegal turn, and
the r-length of its two r-legal subpaths is bounded by C f (Lemma 1.4). Moreover, the first and last
(possibly partial) edges of α are contained in Hr .

For an edge E in Hr , let P E be the set of maximal subpaths in Gr−1 of E f , and let P = ⋃
E∈Hr

P E .

If β is a maximal subpath in Gr−1 of α, then there exists some γ ∈ P and k � 0 such that β = γ f k .
Let γ be a path in P . If γ is Nielsen, we let Lγ = maxk{|γ f k|}. If γ is not Nielsen, Lemma 4.3

with L = C f yields an exponent k0 such that |ρ f k| > L for all k � k0. We let Lγ = max0�k<k0 {|ρ f k|}.
Let M = maxγ ∈P {Lγ } and observe that α has no subpaths in Gr−1 whose length exceeds M . Let Q

be the set of all edge paths ρ such that ρ contains exactly one r-illegal turn, the r-length of r-legal
subpaths is bounded by C f , the length of subpaths in Gr−1 is bounded by M , and the first and last
edges are contained in Hr . Clearly, if α is an indivisible Nielsen path of height r, then α is a subpath
of some ρ ∈ Q .
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Fig. 1. Looking for fixed points.

We define a map g : Q → G ∪ {∗}6 by letting ρg equal the unique maximal subpath of ρ f con-
tained in Q if ρ f contains an r-illegal turn, and we let ρg = ∗ if ρ f contains no r-illegal turn.

For each ρ ∈ G , we compute ρ,ρg,ρg2, . . . until we either encounter ∗ (in which case ρ has no
Nielsen subpath) or we find that ρgk = ρgm for some 0 � k < m. Then ρgk contains an indivisible
Nielsen subpath α, and we can easily compute the endpoints of α. Moreover, if k and m are as small
as possible, then m − k is the period of α. Since all indivisible Nielsen paths of height r show up in
this fashion, the proof is complete. �
Corollary 4.6. Given an efficient relative train track map f : G → G, we can compute an exponent k � 1 such
that all periodic Nielsen paths of f k have period one.

5. Detecting fixed points

Let f : G → G be a normalized relative train track map with a nonexponential stratum Hr = {Er}.
Assume that the restriction of f to Gr−1 is efficient. The purpose of this section is to present an
algorithm for determining whether Er has a slide to a constant edge (Proposition 5.6). This is the last
missing piece in our computation of efficient maps (Theorem 5.7).

We have Er f = Erur , and we want to express ur as the path obtained by tightening ρ̄(ρ f ) for
some path ρ in Gr−1, if possible. To this end, choose a fixed vertex v̄0 ∈ Gr−1. The main idea is to
perform a breadth-first search of edge paths ρ originating at v̄0, keeping track of the paths obtained
by tightening ρ̄(ρ f ) until we either encounter ur or we determine that further searching will not
yield ur . If we encounter ur along the way, then sliding Er along ρ̄ will turn it into a constant edge.

It will be convenient to work in the universal cover H of Gr−1, constructing partial lifts h of f as
we go along (Construction 1.1), beginning with T0 = U0 = {v0}. For a vertex v in H , we define ρv to
be the path [v0, v] and w v to be the projection of [v, vh]. Note that w v is the projection of the path
obtained by tightening ρ̄v(ρvh).

We let Mv = |v0, v| − |[v0, v] ∧ [v0, vh]| and Nv = |v0, vh| − |[v0, v] ∧ [v0, vh]| (Fig. 1). Note that
|w v | = Mv + Nv .

The following is a partial list of conditions under which we need not extend our search beyond a
vertex v:

• The path w v was encountered before in our search. In this case, searching beyond v will not
yield any new results.

• If |w v | > |ur | + C f , Mv ′ > 0 and Nv ′ > C f for some vertex v ′ ∈ [v0, v], then Lemma 1.4 implies
that |w v ′ | > |ur | for all vertices v ′ beyond v , so that we will not encounter ur if we search
beyond v .

Assume that there exists an infinite sequence v0, v1, v2, . . . such that vk = vk+2, |vk, vk+1| = 1 for
all k, and none of the two cases above occurs. Then |w vk | goes to infinity (or else there would be some
repetition along the way), and we have Mvk = 0 or Nvk � C f for all k. In fact, we have Mvk = 0 for

6 ∗ is merely some termination symbol.
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all k or Nvk � C f for all k (otherwise we would encounter a fixed interior vertex, i.e., a vertex vk = v0
for which w vk is trivial, so that we would have reached our first termination criterion because w v0 is
trivial). In the first case, the vk define an attracting fixed ray of h. In the second case, they define a
repelling fixed ray of h.

5.1. Attracting fixed rays

If v0, v1, v2, . . . is an attracting fixed ray with no interior fixed vertices, then this sequence is
determined by v0 and v1 alone because the first edge of [vk, vkh] is the same as the edge [vk, vk+1];
otherwise we would encounter a trivial wk along the way. For the same reason, the edge [v0, v1]
cannot project to a constant edge. In other words, we need to consider at most one attracting fixed
ray for each nonconstant edge originating at v0, and we can easily compute arbitrarily long prefixes
of each ray.

In order to determine when to stop following an attracting ray, we will identify some k0 such that
|vk, vkh| > |ur | + C f for all k � k0. This implies that |w vk | > |ur | + C f for all k � k0. Moreover, if v is
a vertex such that vk0 ∈ [v0, v], then Lemma 1.4 implies that |w v | > |ur |, so that we can terminate
our search at vk0 .

First, assume that the edge bounded by v0 and v1 is contained in an exponential stratum Hs . Then
[v0, vk] projects to an r-legal path for all k, and we have |vk, vkh|r � |v0, vk|r because f is normal-
ized. Hence, we only need to compute v0, . . . , vk until the r-length of [v0, vk] exceeds |ur | + C f .

Now, assume that [v0, v1] projects to a nonexponential edge Es . Since v0, v1, . . . is a fixed ray,
[v0, v1] cannot project to Ē s , and so limk→∞[v0, vk] equals Rs . If Es is linear, then we reach our first
termination criterion after at most |us| steps, so that we may assume that Es is neither constant nor
linear.

Lemma 5.1. Let L > 0 and assume that v is a vertex in H such that |v, vh| � L, |vh, vh2| � L, and vh ∈
[v, vh2]. Then, for all x ∈ [v, vh], we have

|x, xh| � 2L

K f + 1
− D f .

Proof. Let t = |x, v|. Then Inequality (1) implies that |xh, vh| � t
K f

− D f and |xh, vh2| � K f (L − t) +
D f . We conclude that |x, xh| � L − t + max{ t

K f
− D f , L − K f (L − t) − D f }. The minimum of the right-

hand side of this inequality is attained for t = LK f
K f +1 , and substituting this value yields a lower bound

of 2L
K f +1 − D f . �
We choose L such that 2L

K f +1 − D f > |ur | + C f . Now Lemma 4.3 yields an exponent k0 such that

|us f k| > L for all k � k0. We only need to compute v0, . . . , vk until [v0, vk] projects to Esus · · · (us f k0 ),
and Lemma 5.1 guarantees that |w v | > |ur | + C f for all v beyond vk . This completes our algorithm in
the case of attracting fixed rays.

5.2. Repelling fixed rays

In the attracting case, we construct fixed rays edge by edge, and an attracting fixed ray that con-
tains no interior fixed points is determined by its first edge. In the repelling case, the situation is more
complicated, but the following lemma still give us a way of computing successive edges in potential
fixed rays given a sufficiently long prefix.

Lemma 5.2. Let v0, v1, . . . , vk be a sequence such that Nv j � C f for all 0 � j � k and Mvk > C f . Then
at most one vertex v adjacent to vk, other than vk−1 , can be contained in a repelling ray originating at v0 ,
and we can find v algorithmically or determine that there is no such v. Moreover, if v ′ is a vertex satisfying
vk ∈ [v0, v ′] and v /∈ [v0, v ′], then Mv ′ � Mvk + |vk, v ′| − C f .
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Fig. 2. Finding repelling fixed rays.

Proof. Using Inequality (1), we find some L > 0 such that if ρ is a path of length at least L, then
|ρ f | � 2C f + 1. Now we enumerate all vertices p1, . . . , pm such that |vk, pi | = L and vk ∈ [v0, pi] for
all i (Fig. 2). Lemma 1.4 yields that |[vk, pi]h ∧ [vk, p j]h| � C f if |[vk, pi] ∧ [vk, p j]| = 0.

If pi and p j are contained in fixed rays, then N pi < C f and N p j < C f . This implies that |[vk, pi]h ∧
[vk, p j]h| > C f , so that |[vk, pi] ∧ [vk, p j]| > 0. Hence, if there exists some pi such that |[vk, pi]h ∧
[vk, vkh]| > C f , then the second vertex v in [vk, pi] is uniquely determined by this property.

The last claim is an immediate consequence of Lemma 1.4. �
Another complication in the repelling case is that the height may go up as we apply Lemma 5.2

to compute subsequent vertices. The following lemmas provide a means of handling this possibility.

Lemma 5.3. Assume that Hs is an exponential stratum and let C = S f (1 + #E (G)). If η is a repelling fixed ray
of height s with a maximal prefix α in Gs−1 , then |α f | + C � |α|.

Proof. If the initial vertex v0 is contained in a contractible component of Gs−1, then the claim is
trivial, so that we may assume that v0 is contained in a noncontractible component of Gs−1. By
Lemma 2.4, the terminal endpoint of α is fixed.

Choose β so that η = αβ . By definition, the first edge in β is contained in Hs . Let γ be the
maximal subpath in Gs−1 of β f . It suffices to show that |γ | � C .

If γ is a subpath of E f for some edge E ⊂ Hs , then |γ | � S f . If γ is the image of some subpath
γ ′ ⊂ Gs−1 of β , then Lemma 2.4 implies that γ ′ is contained in a contractible component of Gs−1,7

so that |γ ′| � #E (G). This implies that |γ | � S f #E (G). �
Lemma 5.4. If Hs is an exponential stratum and the sequence v0, v1, . . . defines a repelling fixed ray η of
height s without interior fixed points, then ιs(w vk ) is an unbounded nondecreasing function of k.

Proof. Since η has no interior fixed points, it cannot be a concatenation of Nielsen paths of height r
and subpaths in Gr−1. This implies that η contains infinitely many r-illegal turns. Now Lemma 2.6
implies that the distance between two r-illegal turns is bounded by some constant L. Since η is
repelling, |w vk | is unbounded, which proves the claim. �
Lemma 5.5. Assume that Hs is a nonexponential stratum and that η is a repelling fixed ray of height s with no
fixed interior vertices. Then η = Ss.

Proof. This is an immediate consequence of Lemmas 2.5 and 3.9. �
7 Otherwise β would have an initial subpath η of height s, starting and ending at fixed vertices, so that η f is trivial. This is

impossible because f is a homotopy equivalence.
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Lemma 5.5 implies that if the height goes up as we follow a potential repelling fixed ray, then the
height must eventually stabilize at an exponential stratum.

We now continue our breadth-first traversal of vertices in H . If we encounter a vertex vk such that
[v0, vk] satisfies the hypotheses of Lemma 5.2, then we need to consider the possibility that [v0, vk]
is a prefix of a repelling fixed ray. In this case, we use Lemma 5.2 to compute subsequent vertices v .
(In this process, Mv may drop below C f , so that Lemma 5.2 no longer applies; in this case, we simply
continue our breadth-first search. This is not a problem, however, because it can only happen finitely
many times before we encounter our first termination criterion.)

Let s be the height of the potential repelling ray computed so far. If Hs is nonexponential, then
our ray must converge to Ss . Using arguments similar to those in the attracting case, we follow Ss
until we recognize a vertex k0 such that for all vertices v beyond vk0 , we have Mv > max{C, |ur |}
(where C is the constant from Lemma 5.3). Mv > C guarantees that we are not following a prefix of
a ray of greater height, and Mv > |ur | implies that we will not encounter ur as we follow the ray.

If Hs is exponential, then we follow our ray until we encounter a vertex v for which ιs(w v) >

max{C, |ur |}. Once again, Lemma 5.3 guarantees that the height will not go up if we continue follow-
ing our ray, and we will not encounter ur if we continue our search. Hence, our algorithm terminates
in all possible cases.

5.3. Picking up the pieces

Proposition 5.6. If Hr = {Er}, then we can determine algorithmically whether there exists a path ρ ⊂ Gr−1
such that ur is obtained by tightening ρ̄(ρ f ), and we can compute ρ if it exists.

Proof. If ρ exists, then its initial vertex is a fixed vertex in Gr−1. Repeating the procedure above for
each fixed vertex in Gr−1 yields the desired algorithm. �
Theorem 5.7. Given an outer automorphism O of Fn, we can compute an efficient relative train track map
f : G → G as well as an exponent k � 1 such that f represents Ok.

Proof. We can compute an exponent k � 1 and a normalized relative train track map f : G → G
representing Ok . Now we assume inductively that the restriction of f to Gr−1 is efficient. If Hr is
zero or exponential, then there is nothing to do. If Hr = {Er} is nonexponential, then we first use
Proposition 5.6 to determine whether there exists a slide of Er to a constant edge. If no such edge
exists, we use Proposition 3.4 to achieve efficiency of Hr . �
6. Proof of the main result

Lemma 6.1. Let f : G → G be an efficient relative train track map. There exists an algorithm that, given a
circuit σ in G and a constant L > 0, determines whether σ is Nielsen. If σ is not Nielsen, then the algorithm
finds an exponent k0 such that |σ f k| > L for all k � k0 .

Proof. Lemma 4.1 takes care of the detection of Nielsen circuits. If σ is not Nielsen, then we consider
the height r of σ . If Hr is nonexponential, then it splits as a concatenation of basic paths of height r
(Lemma 2.5), so that Lemma 4.3 completes the proof in this case.

If Hr is exponential, then we compute σ ,σ f , σ f 2, . . . until we encounter an image σ ′ = σ f k

for some k > 0 such that σ ′ contains an r-legal path of length greater than 2(C f + 1) or σ ′ is a
concatenation of Nielsen paths of height r and paths in Gr−1.

We can recognize both possibilities algorithmically. In the first case, σ ′ f splits at a fixed vertex in
a long r-legal subpath. In the second case, σ ′ splits at the terminal endpoint of a subpath in Gr−1. In
either case, Lemma 4.3 completes the proof. �
Theorem 6.2. Let φ be an automorphism of Fn. The exists an algorithm that, given two elements u, v ∈ Fn,
determines whether there exists some exponent N such that uφN is conjugate to v. If such an N exists, then
the algorithm will compute N as well.
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Proof. Theorem 5.7 yields an exponent k and an efficient relative train track map f : G → G that
represents the outer automorphism defined by φk . We can find some constant Q � 1 such that if σ
is a circuit in G representing a conjugacy class ω in Fn , then 1

Q |ω| � |σ | � Q |ω|.8
Represent the conjugacy class of u by a circuit σ . If σ is a Nielsen circuit of period p, then we

conclude that uφkp is conjugate to u. Now we compute u, uφ, . . . , uφkp−1 and check whether any
conjugate of v is in this list.

If σ is not Nielsen, we let L = Q · Sk
φ · |v|, and we find some exponent k0 such that |σ f j| > L for

all j � k0. We conclude that the length of the conjugacy class of uφ j exceeds |v| for all j � kk0. Now
we list u, uφ, uφ2, . . . , uφkk0−1 and check whether any conjugate of v is in this list. If no conjugate
is contained in this list, then we exchange u and v and repeat the argument. This completes the
proof. �
Theorem 6.3. Let φ be an automorphism of Fn. The exists an algorithm that, given two elements u, v ∈ Fn,
determines whether there exists some exponent N such that uφN = v. If such an N exists, then the algorithm
will compute N as well.

Proof. We use a trick from [BFH97]. Let F ′ = Fn ∗ 〈a〉 and define ψ ∈ Aut(F ′) by letting xψ = xφ if
x ∈ Fn and aψ = a. If w ∈ Fn , then wa is cyclically reduced in F ′ , so that uφN = v if and only if
(ua)ψN is conjugate to va. Now Theorem 6.2 completes the proof. �
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