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The variational iteration method: A highly promising method for
solving the system of integro-differential equationsI
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Abstract

This paper applies He’s variational iteration method for solving two systems of Volterra integro-differential equations. The
solution process is illustrated and various physically relevant results are obtained. Comparison of the obtained results with exact
solutions shows that the used method is an effective and highly promising method for various classes of both linear and nonlinear
integro-differential equations.
c© 2008 Elsevier Ltd. All rights reserved.

Keywords: Variational iteration method; Integro-differential equation; Approximate solution; System; Volterra

1. Introduction

Integro-differential equations arise in many physical processes, such as glass-forming process [1], nano-
hydrodynamics [2], drop wise condensation [3], and wind ripple in the desert [4]. There are various numerical
and analytical methods to solve such problems, for example, the homotopy perturbation method [5], the Adomian
decomposition method [6], but each method limits to a special class of integro-differential equations. Recently
the variational iteration method [7–10] has been shown to solve effectively, easily, and accurately a large class
of nonlinear problems with approximations converging rapidly to accurate solutions [11–18]. In Refs. [19–22] the
method was applied successfully to solve some integro-differential equations. Xu [20] first applied the variational
iteration method to integral equations, Sweilam [21] applied the method to fourth-order integro-differential equations,
and Wang et al. [19] found that the variational iteration method is an efficient algorithm for solving integro-differential
equations by using some examples. The variational iteration method may be regarded with considerable justification
as a versatile and promising method for solving all kinds of integro-differential equations.

I This research is supported by a grant from Center for Research in Modeling and Computation of Linear and Nonlinear Systems, (CRMCS),
Ferdowsi University of Mashhad, Mashhad, Iran.

∗ Corresponding author.
E-mail addresses: najafi@math.um.ac.ir (J. Saberi-Nadjafi), tamamgar m@yahoo.com (M. Tamamgar).

0898-1221/$ - see front matter c© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2007.12.014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82319268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
mailto:najafi@math.um.ac.ir
mailto:tamamgar_m@yahoo.com
http://dx.doi.org/10.1016/j.camwa.2007.12.014


J. Saberi-Nadjafi, M. Tamamgar / Computers and Mathematics with Applications 56 (2008) 346–351 347

2. Variational iteration method

To illustrate the basic idea of the method, we consider a general nonlinear system as follows:

L(u(t)) + N (u(t)) = g(t), (1)

where L is a linear operator, N is a nonlinear operator and g(t) is a known continuous function. The basic essence of
this method is to construct a correction functional for (1) in the form [7–10]:

un+1(t) = un(t) +

∫ t

0
λ(s)[Lun(t) + Nũn(s) − g(s)]ds, (2)

where λ is a Lagrange multiplier which can be identified optimally via the variational theory [23,24], un is the
approximate solution and ũn denotes restricted variation [9], i.e.

δũn = 0.

For integro-differential equations [19–22],

u(n)(x) = g(x) + f (x)u(x) +

∫ x

0
k(x, t)u(t)dt, (3)

its variational iteration formulation can be expressed in the form:

un+1(t) = un(t) +

∫ t

0
λ(s)[u(n)

n − F(un)]ds, (4)

where F(u) = g(x) + f (x)u(x) +
∫ x

0 k(x, t)u(t)dt.
Now we consider the following integro-differential equation:

dui (t)

dt
= gi (t) +

n∑
j=0

pi j (t)u j +

∫ t

0
ki j (x, s)u j (s)ds,

ui (0) = αi , i = 1, 2, 3, . . . , n,

(5)

where g and pi j are known functions.
According to He’s variational iteration method; an iteration scheme for (5) can be constructed as follows:

uin+1 = uin +

∫ x

0
λ(s)[u′

in(s) − F(Un(s))]ds, n = 0, 1, 2, . . . , (6)

where,

Un = (u1n, u2n, u3n,...)

and

Fi (Un) = gi (t) +

n∑
j=0

pi j u j +

∫ x

0
ki j (x, s)u j (s)ds.

The details of this procedure are explained in Examples 1 and 2.

3. Applications

In this section, in order to illustrate the method, we solve two examples and then we will compare the obtained
results with the exact solutions.
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Example 1. Consider the following system of linear Volterra integro-differential equations
u′

1(t) = 1 + t + t2
− u2(t) −

∫ t

0
(u1(s) + u2(s))ds, u1(0) = 1,

u′

2(t) = −1 − t + u1(t) −

∫ t

0
(u1(s) − u2(s))ds, u2(0) = −1,

(7)

with exact solutions u1(t) = t + et , u2(t) = t − et .
To use the variational iteration formulation illustrated above, we define the following:

F1(un) = 1 + t + t2
− u2n(t) −

∫ t

0
(u1n(s) + u2n(s))ds, n = 0, 1, 2, . . . , (8)

F2(un) = 1 + t + u1n(t) −

∫ t

0
(u1n(s) − u2n(s))ds, n = 0, 1, 2, . . . , (9)

u1 n+1 = u1n +

∫ x

0
λ(t)[u′

1n(t) − F1(un(t))]dt, n = 0, 1, 2, . . . , (10)

u2n+1 = u2n +

∫ x

0
λ(t)[u′

2n(t) − F2(un(t))]dt, n = 0, 1, 2, . . . . (11)

We begin with initial guesses with some unknown parameters in the forms:

u10 = 1 + ax, u20 = −1 + bx, (12)

where a and b are unknown constants which will be determined later on.
Setting n = 0 in (8) and (10), we obtain:

F1(u0) = 1 + t + t2
− u2 0(t) −

∫ t

0
(u1 0(s) + u2 0(s))ds,

u1 1 = u1 0 +

∫ x

0
λ(t)[u′

1 0(t) − F1(u0(t))]dt. (13)

Identification of the Lagrange multiplier results in

λ(t) = −1.

Substituting (12) into Eq. (13) yields the result:

u1 1 = 1 −
1
3

(
−1 +

1
2

a +
1
2

b

)
x3

−
1
2
(−1 + b)x2

+ 2x . (14)

Similarly setting n = 0 in (9) and (11), we have

F2(u0) = 1 + t + u1 0(t) −

∫ t

0
(u1 0(s) − u2 0(s))ds,

u2 1 = u2 0 +

∫ x

0
λ(t)[u′

2 0(t) − F2(u0(t))]dt. (15)

The Lagrange multiplier can be determined as follows:

λ(t) = −1.

Substituting (12) into (15), we obtain

u2 1 = −1 −
1
3

(
1
2

a −
1
2

b

)
x3

−
1
2
(3 − a)x2. (16)

Putting the initial conditions into Eq. (14) and (16), we have{
u1 1(0) = 1,

u21(0) = −1.
(17)
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Table 1
Comparison of the obtained results with exact solutions of Example 1

xi u1 exact u14 HVIM u2 exact u24 HVIM

0.0 1 1 −1 −1
0.2 1.421402758 1.421400010 −1.021402758 −1.021400010
0.4 1.891824698 1.891734699 −1.091824698 −1.091734699
0.6 2.422118800 2.421423883 −1.222118800 −1.221423883
0.8 3.025540928 3.022583085 −1.425540928 −1.422583085
1.0 3.718281828 3.709226190 −1.718281828 −1.709226190

From (17) we can see that the initial conditions are satisfied automatically.
In this case the system (17) is not dependent upon parameters aand b. Therefore, we can choose aand b arbitrarily,

taking a = 1 and b = 1. This selection makes the initial and second approximations in the following form:

u1 0 = 1 + x, u2 0 = −1 + x,

u11 = 1 + 2x, u21 = −1 − x2.

By repeating this procedure we get the other approximations as follows:

u12 = 1 + 2x +
1
2

x2
+

1
3

x3
+

1
12

x4,

u13 = 1 + 2x +
1
2

x2
+

1
6

x3
+

1
12

x4
+

1
60

x5,

u14 = 1 + 2x +
1
2

x2
+

1
6

x3
+

1
24

x4
+

1
1260

x7
+

1
10 080

x8,

u22 = −1 −
1
2

x2
−

1
3

x3
−

1
12

x4,

u23 = −1 −
1
2

x2
−

1
6

x3
−

1
60

x5
−

1
180

x6,

u24 = −1 −
1
2

x2
−

1
6

x3
−

1
24

x4
−

1
1260

x7
−

1
10 080

x8.

Table 1 shows the fourth approximations of the solutions of (7) and its comparison with the exact solutions.

Example 2. As a second example, we consider the following system:
u′

1(t) = −3t2u1(t) + (π − 2t3)u2(t) + 6
∫ t

0
((t − s)u1(s) + (t − s)2u2(s))ds,

u′

2(t) = −(π + 4t3)2u1(t) − 6t2u2(t) + 12
∫ t

0
((t − s)2u1(s) + (t − s)u2(s))ds,

u1(0) + u1(1/4) =
√

2/2, u2(0) + u2(1/4) =
√

2/2,

(18)

with the exact solutions, u1(t) = sin π t and u2(t) = cos π t .
Proceeding the same way as illustrated in Example 1, we obtain:

F1(un) = −3t2u1n(t) + (π − 2t3)u2n(t) + 6
∫ t

0
((t − s)u1n(s) + (t − s)2u2n(s))ds, n = 0, 1, . . . , (19)

F2(un) = −(π + 4t3)u1n(t) − 6t2u2n(t) + 12
∫ t

0
((t − s)2u1n(s) + (t − s)u2n(s))ds, n = 0, 1, . . . , (20)

u1 n+1 = u1 n +

∫ x

0
λ(t)[u′

1 n(t) − F1(un(t))]dt, n = 0, 1, . . . , (21)

u2 n+1 = u2 n +

∫ x

0
λ(t)[u′

2 n(t) − F2(un(t))]dt, n = 0, 1, . . . . (22)
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Table 2
Comparison of the obtained results with exact solutions of Example 2

xi u1 exact u14 HVIM u2 exact u24 HVIM

0.00 0 0 1 1
0.05 0.1564344651 0.1563260778 0.9876883406 0.9877021974
0.10 0.3090169944 0.3080962749 0.9510565163 0.951614638
0.15 0.4539904998 0.4486385966 0.8910065242 0.8916537964
0.20 0.5877852524 0.5684781508 0.8090169943 0.8119976597
0.25 0.7071067813 0.6570929992 0.7071067811 0.7171726094

Further, we set n = 0 in (19) and (20) to get

F1(u0) = −3t2u10(t) + (π − 2t3)u20(t) + 6
∫ t

0
((t − s)u10(s) + (t − s)2u20(s))ds, (23)

F2(u0) = −(π + 4t3)u10(t) − 6t2u20(t) + 12
∫ t

0
((t − s)2u10(s) + (t − s)u20(s))ds. (24)

The initial approximations are assumed to have the forms

u10(t) = aπ t3
+ bπ t, u20(t) = cπ t2

+ d,

where a, b, c and d are unknown constants which will be determined afterwards.
The Lagrange multiplier in this example can be determined easily, which reads λ(t) = −1. After computing

F1(u0), F2(u0) and putting λ(t) = −1 into (21) and (22), the first approximation is obtained as follows:

u11 = aπ x3
−

1
6

(
27
10

aπ +
9
5

cπ

)
x6

−
1
2

bπ x4
−

1
3
(3aπ − cπ2)x3

+ πdx, (25)

u21 = cπx2
+ d −

19
35

aπx7
−

1
5
(5cπ − 3bπ)x5

−
1
4

aπ2 x2
−

1
2
(2cπ + bπ2)x2. (26)

Using the initial conditions in (25) and (26), we have
u11(0) + u11(1/4) = −

9
81920

aπ −
3

40960
cπ −

1
512

bπ +
1

192
cπ2

+
1
4

dπ =

√
2

2
,

u21(0) + u21(1/4) = 2d −
1

1024
cπ −

19
573440

aπ −
3

5120
bπ −

1
1024

aπ2
−

1
32

bπ2
= 1 +

√
2

2
.

(27)

Solving the system (27) by Maple 9, we find that the parameters c and b are free parameters, for simplicity, we choose
c = d = 1, as a result we obtain

a = 808.931869, b = −24.4655243.

Thus the first approximation is determined and the other approximations have also been calculated by Maple 9 and
the results have been illustrated in Table 2.

Remark. The selection of initial approximation is arbitrary but a suitable selection is effective for fast convergence
and fit accuracy. We suggest the initial approximations to be selected well-set with g(x).

4. Conclusion

In this article, first, we have outlined He’s variational iteration method and next we have applied this method to
two systems of Volterra integro-differential equations. In order to illustrate the method, we solve two examples. The
results compared with the corresponding values of exact solutions show that as long as the values of the variable x
become large the accuracy gets weak. To overcome this difficulty, it seems that one needs to increase the number of
iterations in this case. Although the examples given in this paper are linear, it can be applicable to nonlinear integro-
differential equations.
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