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Heegaard structures of manifolds in the Dehn "lling space

Yo'av Rieck*
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Abstract

We prove that after Dehn "lling an incompressible torus in the boundary of an a-cylindrical 3-manifold the
Heegaard genus degenerates by at most one for all but "nitely many "llings. We do so by proving that for all
but "nitely many "llings the core of the attached solid torus can be isotoped into the minimal Heegaard
surface of the "lled manifold, we say that these manifolds are `gooda. For these "llings, after stabilizing the
Heegaard surface once, it becomes a Heegaard surface of the original manifold. We show that any two
Heegaard surfaces in di!erent "llings, into which the core is not isotopic, can be isotoped to intersect
essentially. Using this, a bound on the distance between "llings containing such surfaces is given in terms of
the genera of the Heegaard surfaces. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Heegaard structures for 3-manifolds have been around for a long time ([7]). Much progress has
been made understanding Heegaard structures of manifolds with certain geometric structure
(Seifert Fiber Spaces, graph manifolds), but little is known about manifolds that are given as
a Heegaard structure (unless the genus is 2 or less).

Ever since Thurston used Dehn surgery to construct hyperbolic 3-manifolds ([13]) viewing
3-manifolds as originating from Dehn surgery has proven very pro"table. In this paper we show
that the Heegaard structures of a manifold behave quite nicely under Dehn "lling: if M is obtained
from X by a Dehn "lling, it is clear that any Heegaard surface for X is a Heegaard surface for
M (see Section 4 for details). In Sections 5 and 6 we will prove theorems needed to show that the
converse is usually true (in a sense that we describe in the sequel).

*Corresponding author. Oklahoma State University, Department of Mathematics, 401 Mathematical Sciences,
Stillwater, OK 74078, USA Tel.: #1-405-744-6296; fax: #1-405-744-8275.

E-mail address: yoav@math.okstate.edu (Y. Rieck)

0040-9383/00/$ - see front matter ( 2000 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 4 0 - 9 3 8 3 ( 9 9 ) 0 0 0 2 6 - 9

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82319088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In [9] Moriah and Rubinstein studied the Heegaard structure of negatively curved manifolds
using analytical techniques. They proved the "niteness result we obtain in Corollary 4.2 (compare
with Theorem 0.1 of [9]). The main intent of this paper is to prove this result using purely
topological techniques. We do that using Theorems 5.2 and 6.2. We quote Corollary 4.2 here,
rephrased to avoid terminology that has not yet been introduced. It is given as a "niteness result; in
the body of the paper we will give a concrete upper bound (in terms of the genus).

Corollary 4.2. Let X be an a-cylindrical 3-manifold, ¹LLX an incompressible torus. Fix g and pick
Heegaard surfaces (one or more) of genus at most g for each of the manifolds obtained by xlling ¹.

Then for all but xnitely many of the xlled manifolds the core of the attached solid torus is isotopic into
all the chosen Heegaard surfaces.

Considering "lled manifolds with pre-chosen Heegaard surfaces for them, our main concept is
that of a good Dehn "lling, this being one where the core of the attached solid torus (assuming for
now we "lled just one boundary component) is isotopic into all the given Heegaard surfaces. (Such
curves play a role similar to that of geodesics in the study of hyperbolic 3-manifolds.) We show that
most "llings are good, and for these "llings one can `pusha the Heegaard surface back into X after
at most one stabilization, thus increasing the genus by at most 1.

Using this and Corollary 4.2 we obtain Corollary 4.4, where g( ) ) denotes Heegaard genus.

Corollary 4.4. For all but xnitely many manifolds M resulting from the xlling of an incompressible
boundary component ¹ of an a-cylindrical manifold X:

g(X)!1)g(M))g(X).

We discuss this and other geometric interpretations of our work in Sections 3 and 4.
The main theorem which enables us to achieve these goals is Theorem 6.2. This theorem is

proven in Section 6 independently of the work done in the rest of this paper. We quote it here,
noting to the reader less familiar with this type of technique that essential intersection is de"ned in
Section 2 and is slightly non-standard, as we ignore simple closed curves of intersection entirely,
concentrating only on arcs of intersection.

Let (X,¹) be a manifold with ¹LLX a collection of c tori. Pick ¹
j0

a component of ¹. Let M be
a result of "lling X along ¹

j0
(or simply a xlling of (X,¹

j0
)). Let R be a Heegaard surface for M. We

say that M is `¹
j0
-bada w.r.t R if the core of the solid torus attached to ¹

j0
is not isotopic into R.

Theorem 6.2. Let X be a 3-manifold, ¹"6c
j/1

¹
j
LLX a collection of c tori. Let j

i,j
(i"

1,2, j"1,2,c) be slopes on ¹
j

and j
i
"6c

j/1
j
i,j

. Let M
i
"X(j

i
) be xllings of (X,¹), both ¹

j0
-bad

with respect to R
i
, i"1,2.

Then the surfaces R
i
can be isotoped so that RH

i
LX intersect essentially while meeting the boundary

component ¹
j0
.

The structure of the paper is as follows: In Section 2 we give the necessary de"nitions and
standardize the notation. In Section 3 we go over the well-known construction of 3-manifolds via
Dehn surgery (see, e.g. [11, pp. 275}277]). Our goal is to show that the procedure of Dehn surgery
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can be done (using our notion of `good linksa) while respecting a given Heegaard structure. The
main theorems and their corollaries are stated and proven in Section 4. The proofs of the technical
theorems are in Section 5 (the combinatorial theorem) and 6 (the Cerf-theoretic argument, which
poses the main technical di$culty).

2. Preliminary notations

Except where otherwise stated, all surfaces and manifolds considered are orientable. Let R
g
be

the surface of genus g. For a submanifold A, let N(A) denote a normal neighborhood of A.
A manifold pair (A,B) is a 3-manifold A and a surface B embedded in A (possibly in the interior of
A, possibly in the boundary of A). A manifold pair (N,R

g
) is called a compression body if it is

obtained by attaching two and three handles to (R
g
]I, R

g
]M1N), I"[!1, 1], where no attach-

ment is performed along R
g
]M1N. The boundary of a compression body1 is partitioned into two

parts, L
`
NXL

~
N. The surface L

`
N"R

g
]M1N is called the attaching region (the reason for this

terminology is that we use this region to attach the compression body to another compression
body to construct manifolds). A compression body for which LN"L

`
N is a handlebody } view it

up-side-down. A closed surface R embedded in M is a Heegaard surface if M cut open along
R consists of two compression bodies with the two copies of R as their attaching regions.

Every compression body (N, R) contains an embedded graph C (not unique) so that
N!(CXL

~
(N)) is a product R](!R,0]. (Existence of such a C is easily proven by induction on

the number of two and three handles.) CXL
~

(N) is called a spine. Let M be a 3-manifold and
R a Heegaard surface for it. A spine for (M,R) is de"ned as a union of spines of the two
complementary compression bodies. Note two things:

f the complement of the spine is R]R.
f the spine is LM union of an one-dimensional set, so other one-dimensional objects in the interior

of M will miss it by transversality.

An important notion for many of our corollaries is stabilization (e.g. [15]). Let R be a Heegaard
surface for M. In De"nition 2.1 we use the product structure R]I in a neighborhood of R in order
to discuss a small straight tube. A tube (i.e. a homeomorph of S1]I) is said to be small and straight
if S1]M!1N bounds a disk in R, and for every point p3S1 the arc MpN]I is monotonic w.r.t. the
projection of R]I into I.

De5nition 2.1. Let c be a (closed) curve that cobounds an annulus with R, a Heegaard surface of M.
Stabilizing R along c to get Sc(R)"S(R) means attaching the torus ¹"LN(c) to R by a small
straight tube2 as shown in Fig. 1.

1We allow LN to have S2 components.
2Traditionally, stabilization is de"ned without respect to a curve, in which case the procedure is unique (up to isotopy

of the stabilized surface). The particulars of the construction given in Figure 1 are important for our work in M!N(c).
We will never stabilize without specifying a curve along which we stabilize (although the subscript c will often be omitted).
In order for the resulting surface to be a Heegaard surface this curve must be parallel to R.
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Fig. 1. Stabilization of R along c.

Let RH
1

and RH
2

be surfaces with boundary properly embedded in some manifold. An arc of
intersection a is called boundary parallel in RH

i
(for either i"1 or 2) if there exists a disk from

RH
i

whose boundary consists of two arcs meeting at their endpoints, one being a and the other from
LRH

i
. No requirements about the intersection of that disk with RH

3~i
are made.

The following is a technical de"nition which is essential for everything we do, and is therefore
singled out here.

De5nition 2.2. Let (RH
i
,LRH

i
)L(X,¹), i"1,2 be properly embedded surfaces, so that

f LRH
i
O0;

f each component of LRH
1

meets each component of LRH
2

minimally;
f no arc of LRH

1
WLRH

2
is boundary parallel on either surface.

Then RH
1

and RH
2

are said to intersect essentially.

Let ¹ be a torus boundary component of X. M is called Dehn xlling of (X,¹) if it is the result of
attaching a solid torus< to X along ¹. The di!eomorphism class of M is determined by the isotopy
class of j, the meridian of <, in ¹. The set of all manifolds obtained by this procedure is called the
Dehn Surgery Space of X with respect to ¹, denoted D(X,¹).3 After choosing a basis for H

1
(¹) (or

a framing) D(X) is parameterized by QM "QXM1/0N. More generally, if ¹ is a union of c tori, after
choosing a basis for H

1
(¹), D(X,¹) is parameterized by QM c.

The distance between slopes p/q and p@/q@ in H
1
(¹) (or between the corresponding manifolds in

D(X)) is de"ned to be DD(p/q, p@/q@)D"Dpq@!p@qD, where D( , ) is the algebraic intersection form on
H

1
(¹). It is well known that a bounded set in D(X) is "nite.
A subset of D(X) is called a line if it is of the form Mna#bDn3ZN, for some a, b3H

1
(¹) with

DD(a,b)D"1. This line is in fact all curves on ¹ that intersect a once. We say that this line is
determined by a.

Let c be a knot (or a link component) in some 3-manifold M that can be isotoped into a surface
R. Isotope c to be parallel4 to R. For convenience we will use the following parameterization of

3Often, ¹ will be suppressed from notation D(X).
4Let R]I be a product neighborhood of R"R]M0N. We will name a knot `parallela to a R, denoted cDDR, if it lies on

a level R]MeN for some non-zero e.
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Fig. 2. Parameterization of N(c).

Fig. 3. Good Heegaard surfaces survive 1/n surgery.

H
1
(LN(c)) (see Fig. 2): 1/0 is the meridian in M; 0 is the surface framing (i.e. the curve that cobounds

an annulus with the surface).5 Thus the curves that meet the surface framing exactly once are called
1/n (for some n) with respect to R. These curves form the line determined by 0/1 (or by the surface
framing).

Let (M,R) be a manifold and a Heegaard surface for it. Let c be a curve parallel to R. Let A be an
annulus with one boundary component c, the other on R, so that int(A)WR"0. Our reason for
picking the framing described above is that performing a 1/n surgery on c (with respect to R) is
equivalent to the following procedure (see [11] for details), see Fig. 3: cut M open along R to obtain
N

`
, N

~
. Say cLN

`
. Cut N

`
open along the annulus A. Glue A after n Dehn Twists, and "ll the

manifold along the 1/0 curve, as c was before. Glue R back as before. The resulting manifold is the
same as performing a 1/n surgery on c. This new manifold can also be obtained by deforming the
map between the attaching regions of the compression bodies by n Dehn twists along the curve on
R parallel to c.

The main point to remember from the paragraph above is that R will remain a Heegaard surface
for the manifold obtained by a 1/n surgery on c.

Let A be a surface or a 3-manifold with boundary. An arc a properly embedded in A is called
boundary parallel if there exists a disk embedded in A whose boundary consists of two arcs
intersecting at their endpoints, one arc being a and the other on LA.

By an essential surface in X we mean a surface F properly embedded in X with the following two
properties: n

1
(F) injects into n

1
(X) under the homomorphism induced by inclusion, and every arc

properly embedded in F that is boundary parallel in X is boundary parallel in F.

5Note that the 0 framing depends not only on the c and the R but also on the particular embedding of c into R chosen.
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A manifold pair (X,¹) is called a-cylindrical if there does not exist an essential annulus
(S1]I, S1]S0) embedded in (X,¹).

A virtually xnite set will be de"ned as follows: let G"(<,E) be an oriented in"nite tree so all
edges are pointing away from the root. Assume the number of edges pointing away from each
vertex is in"nite (except the leaves where it is zero) and the number of edges pointing towards
a vertex is one (except the root where it is zero). Choose E

0
LE, a set of edges, so at each vertex

v we pick only "nitely many edges, all pointing away from v. Let<
0

be the set of all vertices that are
successors of some edge in E

0
, where by succesor we mean a vertex that can be reached from E

0
by

a path that is always oriented forward. Any subset of <
0

is called virtually xnite. Note that the
complement of a virtually "nite set is always in"nite.

3. Families of manifolds

Manifold pairs (M
1
, R

1
) and (M

2
, R

2
) (where R

i
is a Heegaard surface for M

i
) are called sisters

(or cousins of the xrst degree) if there exist knots c
i

parallel to R
i
, i"1, 2 so that

M
1
!N(c

1
)+M

2
!N(c

2
)"X, and (in X) Sc1(R1

) is isotopic to Sc2
(R

2
). (Recall that by Sc(R) we

mean the stabilization of R along c, as described in Fig. 1, Section 2.) X is called the parent manifold.
Note that the condition c

i
DDR

i
is equivalent to both M

1
and M

2
being good "llings of X. In this

section we will describe the tree obtained by "lling multiple boundary components, and see how
Heegaard surfaces behave with respect to that structure.

Generally, (M
1
,R

1
) and (M

2
,R

2
) are said to be cousins of degree c if there exist knots

c
i
DDR

i
, i"1, 2 so that (M!N(c

i
), Sci(Ri

)) are cousins of degree c!1. We will show that any two
closed manifolds with any two Heegaard splittings for them are cousins (of some degree). (If the
Heegaard surfaces do not have the same genus stabilize the surface with the lower genus } along
any set of curves parallel to it*until the genera are equal.)

So our next goal is to compare two Heegaard surfaces of the same genus, in either the same or
di!erent manifolds. The basic techniques we employ in this section have been used in [8] to show
that any two manifolds di!er by Dehn surgery on a link. We extend them here (using the idea of
good links) to show that this can be performed while respecting the Heegaard structures. See, e.g,
[11] for more details. First we de"ne one of our main concepts:

De5nition 3.1. A link in a manifold M is called good with respect to R (where R is a Heegaard
surface for M) if all of its components are isotopic into R (perhaps not simultaneously).

Theorem 3.2. Let (M
1
, R

1
), (M

2
, R

2
) be manifold pairs with Heegaard surfaces of the same genus g.

Denote the compression bodies of M
i

cut open along R
i

by (N`
i
, R

i
) and (N~

i
, R

i
), i"1, 2.

If (N`
1

, R
1
)+(N`

2
, R

2
) and (N~

1
, R

2
)+(N~

2
,R

2
) then there exist good links ¸

i
"6c

j/1
c
i,j
L

M
i
(i"1, 2) so that

(M
1
!N(¸

1
), Sc

L1
(R

1
))+(M

2
!N(¸

2
), Sc

L2
(R

2
)).

Moreover, the xlling of each component c
j

is 1/n
i,j

( for some n
i,j
3Z) with respect to Sj(R).

Remark. Although the notion of stabilization was de"ned along knots (and not links), in the proof
we will show that it extends naturally.
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Fig. 4. Pushing the stabilization under the Heegaard surface.

Proof. Let (M
1
, R

1
) and (M

2
, R

2
) be two manifolds and Heegaard surfaces of the same genus } say

g } for them. Assume N`
1

+N`
2

and N~
1

+N~
2

(of course, this assumption always holds for closed
manifolds).

We follow [8] (where it was shown that any two closed manifolds di!er by a Dehn surgery).
Consider N`+N`

1
and N~+N~

1
as two abstract manifolds. Each of these is embedded in both

M
1

and M
2
. The embedding of the attaching region of N` into M

1
followed by the inverse of the

embedding of the attaching region of M~ into M
1

yields a homeomorphism f
1

of the surface of
genus g. Similarly we obtain f

2
.

As with any homeomorphism of a surface, f
2
f ~1
1

is a composition of Dehn twists (see [2,1]).
Name the set of curves along which we twist Mf

j
Nc
j/1

(in order). Pick ¸
1

to be the link whose
components c

1,j
lie one above the other, all above R

1
, and c

1,j
DD f

j
. (For the notion of height use the

structure of R
i
]R in a neighborhood of R

i
.)

Note that (as mentioned in Section 2) performing a 1/n
j
Dehn surgery on ¸

1
will deform f

1
into f

2
.

As shown in Fig. 1, Section 2 stabilize R
1

along c
1
. Call the surface thus obtained Sc1(R1

)"R
1,1

.
Clearly, c

1
is a core of a handle of a compression body of M cut open along R

1,1
, so R

1,1
is

a Heegaard surface for M
1,1

"M
1
!N(c

1
).

By induction, having obtained (M
1,j~1

, R
1,j~1

) with c
j
DDR

1,j~1
, we stabilize R

1,j~1
along c

j
to

obtain R
1,j

. We then drill out c
j
. Finally we obtain (X, R)+(M

1
!6c

j/1
c
j
, Sc

L1
(R

1
)).

To justify the inductive step we need to show that c
j
can be isotoped to lie on R

1,j~1
. To see that,

we perform as isotopy described in Fig. 4. After performing this isotopy j!1 times, once per
stabilization, the surface R

1,j~1
will look (from above) exactly like R

1
, with 2(j!1) punctures in it.

Having c
j
(which `hoversa over R

1,j~1
) miss these punctures is now a generic condition.

So we have ascended in the tree of the Dehn "lling space from M
1

to X. Next we need to descend
down to M

2
. Note that the "lling needed for that is 1/n

j
(the numbers n

j
given by the description of

f
2
f ~1
1

as a composition of Dehn twists above) on each component of ¸. After each "lling
a destabilization6 is performed by cutting the stabilized surface along D

j
a meridional disk of the

6Destabilization is the inverse operation to stabilization. It can be performed whenever we "nd two disks meeting at
one point. We need to specify the disk we cut open along, see Fig. 5.
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Fig. 5. Destabilization along D
j
.

attached solid torus (see Fig. 5). Thus we end up with a procedure leading us to (M
2
,R

2
) which is the

exact opposite of the one used when ascending the tree. h

Remark. We make the following remark to emphasize the analogy between geodesics in hyper-
bolic manifolds and good links. In the realm of complete hyperbolic manifolds of "nite volume,
de"ne a Dehn drilling (resp. "lling) to be hyperbolic if the link drilled (resp. "lled) consist entirely of
geodesics (all manifold involved being hyperbolic). A hyperbolic Dehn surgery is a hyperbolic
drilling followed by hyperbolic "lling. By analogy to the work done in this section, we can de"ne
hyperbolic manifolds to be hyperbolic cousins if they are related by a hyperbolic drilling followed by
a hyperbolic "lling. The set of all hyperbolic manifolds of volume bounded by <

0
forms a single

extended family. In this family every pair of manifolds are hyperbolic cousins. Of course, any "nite
collection of hyperbolic manifolds has a bound on their volume and hence are all cousins. See
J+rgensen's Theorem, Theorem 5.11.2 in [13].

4. Main corollaries of Theorem 6.2.

Fix (X,¹) an a-cylindrical manifold pair with ¹ a collection of c incompressible tori in its
boundary. For each M3D(X,¹) pick Heegaard surfaces R. Everything we do from now on is done
with respect to these surfaces.7

The objects of our desire are `good a "llings. We de"ne that notion from two points of view, one
in (M,R) and the other in X. The reader will readily see the connection to good links (see De"nition
3.1).

De5nition 4.1. Let ¹LLX be a collection of tori and (M,R) be a "lling of (X,¹). (M,R) is called
good (or M is good with respect to R) if the cores of the attached solid tori are isotopic into
R (although not necessarily simultaneously).

7Results in this section about "niteness of slopes yielding `bada Dehn "llings require discussing Heegaard surfaces of
bounded genus. We may pick surfaces for all the manifolds in D(X) to be of bounded genus: the Heegaard genus of all
these manifolds is bounded above by g(X). However, we never restrict the number of surfaces picked for any manifold and
do not even assume "niteness.
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Remark.

f Equivalent to De"nition 4.1 is the following condition: after pushing the cores o! R and drilling
them out, for each ¹

j
(a component of ¹) we can "nd two parallel curves, one on ¹

j
and the

other on R (i.e. the two cobound an annulus in X), with the meridian intersecting the curve on
¹

j
once exactly. The annulus may be punctured by other components of ¹, and the punctures

have meridional slope.
f A "lling (M,R) which is not good is called bad.
f The assumptions that X is a-cylindrical and ¹ incompressible are used only in the combinatorial

work (Section 5), and not in the Cerf-Theoretic work (Section 6). The precise assumption we need
is that there exists no essential MoK bius band embedded in (X,¹) with its boundary essential in ¹.
In Section 5 we prove Lemma 5.1, where we show that if X is a-cylindrical and ¹ incompressible
then ¹ supports no essential MoK bius bands.

Given two bad "llings (M
i
, R

i
) (i"1, 2) Theorem 6.2 demonstrates that the two Heegaard

surfaces R
i
can be isotoped so that the punctured surfaces RH

i
"R

i
WX intersect essentially while

meeting ¹.
Theorem 5.2 tells us that when D¹D"1 the distance between curves bounding (non-closed)

surfaces that intersect essentially is bounded in terms the genera of those surface by a quadratic
polynomial f (g

1
, g

2
), where g

i
is the genus of R

i
. Hence the distance between two bad "llings

(M
1
, R

1
) and (M

2
, R

2
) is bounded by f (g

1
, g

2
). f is given explicitly in Eq. (5), Section 5. Hence there

are only "nitely many slopes yielding bad surgeries of bounded genus.
We get:

Corollary 4.2. Let (X,¹) be an a-cylindrical 3-manifold, ¹LLX an incompressible torus. Then the
distance between bad xllings of genera g

1
and g

2
is bounded by f (g

1
, g

2
). In particular, there are only

xnitely many bad surgeries of bounded genus.

It may, of course, happen that a good R is a Heegaard surface for X, but that need not be the
case: consider a knot lying on a Heegaard torus in a Lens space (or even in S3). However, we have
seen before that after stabilizing R along c we obtain Sc(R) for which c is a core of a handle (recall
De"nition 2.1). This means Sc(R) can be pushed back into X"M!N(c): after drilling c, Sc(R) is
still a Heegaard surface!

Thus we get:

Corollary 4.3. Let (M, R) be a good xlling of a manifold X. Then Sc(R) is a Heegaard surface for X.

By picking a minimal genus Heegaard splittings for each manifold in D(X), and combining
Corollaries 4.2 and 4.3 we get (recall that the genus of the "lled manifold never exceeds the genus of
the original manifold):

Corollary 4.4. Let X be an a-cylindrical manifold and ¹LLX an incompressible torus. Then for all
but xnitely many manifolds M3D(X) the following holds:

g(X)!1)g(M))g(X). (1)
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Moreover, the distance between xllings for which the genus drop by two or more is bounded by
f (g(X)!2, g(X)!2).

For bad "llings the genus may, of course, drop down to zero: we may be getting S3.
Let (M,R) be a good "lling with R not a Heegaard surface for X. As discussed in Section 2, R will

be a Heegaard surface for all manifolds obtained by 1/n surgery on c (which is isotopic into R by
assumption). Thus "llings containing such Heegaard surfaces are arranged on lines. Since these
Heegaard surfaces are the result of destabilizing a Heegaard surface for X these lines are sometimes
call destabilization lines.

To illustrate our point, we pick the minimal genus Heegaard splitting for the manifolds in D(X)
and get:

Corollary 4.5. Let (X,¹) be an a-cylindrical manifold pair with ¹LLX an incompressible torus.
If the Heegaard genus drops for two xllings of distance f (g(X)!1, g(X)!1) or more, it will drop for

all the manifolds on at least one line.

Example 4.6. Let X be the trefoil knot exterior.8 It is of genus 2. Consider the manifolds in D(X) with
their minimal genus Heegaard splittings. Most are of genus 2 as well. On one line the manifolds are
of genus 1 or less (lens spaces) and are all good but one. That manifold } S3 } is of genus zero and
corresponds to a bad "lling. So we get a "nite set (with one element) of bad "llings. If you view S3 as
a lens space with the genus one splitting (or with any other positive genus splitting) the "lling will
be good. Doubling the Seifert surface for the trefoil gives the standard genus-2 surface in S3 with
surface framing given by the longitude, i.e. the standard framing. All the 1/n surgeries with respect
to that framing will have an extra Heegaard surface of genus 2. (These surfaces are usually called
horizontal Heegaard surfaces; we make no claim as to whether or not the horizontal Heegaard
surfaces are isotopic to the `regulara ones or genuinely new.)

Our "nal remarks for this section is that all we have done can (virtually) be done when "lling
more than one boundary component. The construction (below) is done by "lling all boundary
components but one, and then considering the last "lling as a "lling of a single torus. If
¹"M¹

j
Nc
j/1

, we view the Dehn Fillings Space D(X,¹) as a tree (see Fig. 6), with X as its root.
Oriented edges originating from the root correspond to the di!erent slopes on ¹

1
. These edges

terminate on vertices that form D(X,¹
1
). Edges originating on D(X,¹

1
) correspond to slopes on ¹

2
,

where we see each slope appearing once exactly from each vertex. These edges terminate on the set
D(X,¹

1
X¹

2
), and so on until we reach the leafs that correspond to D(X,¹)"D(X,6c

j/1
¹

j
).

With each drilling we will need to exclude a "nite set of "llings (hence our de"nition of a virtually
"nite set, see Section 2). As before, we use minimal genus Heegaard surfaces to demonstrate our
techniques, which are in fact valid for any collection of Heegaard surfaces for D(X,¹) with bounded
genus.

8The trefoil knot exterior is cylindrical, however the conclusions of all the theorems hold.
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Fig. 6. Tree structure for D(X,¹).

Corollary 4.7. Let (X,¹) be a-cylindrical manifold pair with T a collection of c incompressible tori in
LX. Then for all but virtually xnitely many manifolds in D(X,¹) we get

g(X)!c)g(M))g(X). (2)

Proof. Order the components of ¹ as M¹
j
Nc
j/1

. Pick a minimal genus Heegaard surface R for each
manifold in D(X,¹). Then by our discussion above c

c
, the core of the solid torus attached to ¹

c
, is

isotopic into the chosen Heegaard surface in each manifold in D(X,6c~1
j/1

¹
j
)* unless it belongs to

a bounded (and hence "nite) set of bad "llings. Exclude that set. For the good "llings, stabilize
R along c

c
to obtain Scc

(R) which is a Heegaard surface for M!N(c
c
)3D(X,6c~1

j/1
¹

j
). Now drill out

c
c~1

and proceed in reverse order, the structure of the set we exclude is that of a virtually "nite
set.9 h

As there are good "llings for which the genus degenerates, (see, e.g., Example 4.6) the inequality
in Eq. (1) is the best possible. Similarly, by taking a manifold (M,R) of genus g and drilling out
c curves parallel to R but not isotopic to a core in the complementary compression bodies one can

9The set of bad slopes we obtain when "lling ¹
k

(kO1) is "nite for each manifold in D(X,6k~1
j/1

¹
j
), but we cannot

conclude that union of these sets is "nite. At the last step, when "lling ¹
1
, even though we exclude a "nite set of slopes

from ¹
1
, not all "llings of other slopes are good all the way down to every manifold that succeeds them in D(X): we may

start with a good "lling of ¹
1

and continue to a bad "lling of another component. Hence, unlike Thurston's Hyperbolic
Dehn Surgery Theorem, we cannot conclude that avoiding a "nite set of each cusp will guarantee that the "lling is good.
This conclusion was obtained by Moriah and Rubinstein in [9] using analytic techniques, and it will be interesting to "nd
a combinatorial technique that will retrieve that result.
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easily construct an examples of good "llings where the genus drops by c for any c, thus showing
that the inequality 2 is the best possible as well.

5. The combinatorial bound

We start by proving the following lemma:

Lemma 5.1. Let (X,¹) be an a-cylindrical manifold pair with ¹LLX an incompressible torus.
Then there does not exists a Mo( bius band embedded in X with its boundary essential in T.

Proof. Assume F is an essential MoK bius band in (X,¹), we will show that this implies that
¹ compresses, thus contradicting our hypothesis.

A neighborhood of F in X is a solid torus N (twisted I bundle over the MoK bius band), which
meets ¹ in an annulus. Let FI be the complementary annulus cl(LN!¹). The boundary of this
annulus de"nes the same slope as LF, and hence is essential in ¹. As (X,¹) is a-cylindrical by
assumption, FI must compress or boundary compresses. IF FI copresses so does ¹, contradicting
our assumption. Hence FI boundary compreses. Let D be the disk de"ning this boundary compres-
sion. Since the boundary of FI is homotopic to a square of the generator of the solid torus N, we
may assume int(D)WN"0. Let NM "N(D)XN(F) a neighborhood of DXF. NM is still a solid torus,
now meeting the boundary in a punctured torus. Hence a collar neighborhood of the boundary
union NM is a punctured solid torus, and ¹ compresses, contradiction. h

The rest of this section is devoted to proving the following theorem:

Theorem 5.2. Let (X,¹) be an a-cylindrical 3-manifold pair, ¹LLX an incompressible torus. Let
(RH

i
,LRH

i
), i"1, 2, be two surfaces of genus g

i
(w.l.o.g. g

1
*g

2
), both with non-empty boundary,

properly embedded in (X,¹). Assume that each boundary component of RH
i

dexnes a non-trivial slope
j
i
on ¹.
If RH

1
intersects RH

2
essentially then the intersection number of j

1
and j

2
satisxes:

D(j
1
, j

2
)(f (g

1
, g

2
), (3)

where

f (g
1
, g

2
)"f

1
(g

1
, g

2
)"36g

1
g
2
#36g

1
#18g

2
#18. (4)

If, in addition, we know that DLRH
i
D*2 for both surfaces, f (g

1
, g

2
) can be taken to be

f (g
1
, g

2
)"f

2
(g

1
, g

2
)"18g

1
g
2
#18g

1
#18g

2
#18. (5)

Remark.

f For our main purposes we do know that DLRH
i
D*2 for both surfaces as Heegaard surfaces

separate, so the stronger, symmetric bound given by Eq. (5) holds.

630 Y. Rieck / Topology 39 (2000) 619}641



f Recall (De"nition 2.2) that surfaces are said to intersect essentially if each component of LRH
1

meets each component of LRH
2

minimally, and their intersection contains no arc that is boundary
parallel in either of them. Recall also that an arc properly embedded in RH

i
is called boundary

parallel in RH
i

if it cobounds a disk with LRH
i
. We do not require that this disk misses RH

3~i
in its

interior.
f In [14], Torisu, using a lemma of Gordon and Litherland (see [5]), proved a similar bound for

boundary slopes of embedded incompressible, boundary incompressible surfaces.

Proof. Recall our assumption that all surfaces are orientable.
Endow ¹ with an (arbitrary) #at metric and pull all components of LRH

1
and LRH

2
tight to be

straight lines. More precisely, each boundary component lifts to a straight line in the universal
cover E2. This can be done without changing the topology of the surfaces and their intersection. We
will therefore assume the intersection remains essential.

Pick a maximal set of non-parallel, non-boundary parallel arcs on each surface. Denote the
number of arcs in each family by e

i
and the number of boundary components of each surface by p

i
.

Our "rst goal is to bound e
i
. Note that RH

i
is not a MoK bius band by assumption of orientability, nor

a disk by assumption that ¹ is incompressible. If RH
i

is an annulus e
i
"1. This easily yields a much

stronger bound than the case s(RH
i
)(0. We will not show that here, assuming from now on that

s(RH
i
)(0.

After pinching LRH
i
, so the punctures become vertices in the closed surface that we call R

i
, we

obtain the following from an Euler characteristic count (with f
i
denoting the number of faces):

1. 2e
i
"3f

i
(maximality of e

i
, and s(RH

i
)(0

2. p
i
!e

i
#f

i
"s(R

i
).

Combining the two and solving for e
i

we obtain that the maximal number of non-parallel
non-boundary parallel arcs is

e
i
"6g

i
#3p

i
!6.

Thus every collection of k(6g
i
#3p

i
!6)#1 arcs on RH

i
contain a family of k#1 parallel arcs.

Assume then that the total number of arcs of intersection is at least

(6g
1
#3p

1
!6)(6g

2
#3p

2
!6)#1.

Then on RH
1

we have a set of (6g
2
#3p

2
!6)#1 parallel arcs. Viewing these as arcs on RH

2
, we get

that at least two of these are parallel there. Name those arcs a
1

and a
2
. The arcs a

1
and a

2
cobound

disks D
i
on RH

i
. Pasting these two discs together we obtain a surface F which is either a MoK bius

band or an annulus. By passing to an innermost annulus/MoK bius band, and deleting simple closed
curves via disk swaps, we can obtain an annulus/MoK buis band F that is embedded. (Since the arcs
a
1

and a
2

cut F to disks, no essential simple closed curve of self intersection can exist in F.)
We shall need the following `parity rulea (see [5]), which is an orientation argument. Choose an

orientation for the j
i
's and orient the surfaces RH

i
. Each boundary component of each RH

i
inherits an

orientation from RH
i
; we call it `clockwisea if it agrees with the orientation of j

i
, counter-clockwise

otherwise. The parity rule states that the arcs a
1

and a
2

will connect two boundary components
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Fig. 7. Lifts of LF (F an annulus).

Fig. 8. LF is essential (F an MoK bius strip.)

with the same orientation } say clockwise } on one surface and two with opposite orientation on
the other.

We "rst rule out the case where F is an annulus. This is characterized by DLFD"2. Note that each
boundary component consists of two arcs, one in direction $j

1
and the other in direction $j

2
.

Since the two boundary components are parallel their liftings to E2 de"ne the same slope (see Fig.
7). Hence if the lifting of the "rst (after shifting it to start at (0,0)) ends at some point (p,q) and the
second (after shifting it to start at (0,0) as well) will terminate at either (p,q) or (!p,!q). Each
boundary component corresponds to a linear combination of the vectors j

1
and j

2
, the "rst

yielding (p,q) and the second $(p,q), say (!p,!q). As j
1

and j
2

are linearly independent
(equivalent to the slopes being di!erent), the coe$cient of j

1
in the "rst combination has opposite

sign to that in the second. So a
1

connects boundary components of opposite signs. A similar
argument for the coe$cients of j

2
shows that a

2
connects components of opposite signs as well,

contradicting the parity rule. In case the lifting of the second boundary component terminates at
(q,p) a similar argument demonstrates that a

1
connects boundary components of the same sign on

both surfaces, again contradicting the parity rule.
Next, we show that if F is a MoK bius band then its boundary is essential in ¹ (hence in M). If

F were a MoK bius band its boundary would have lifted to four segments. The "rst and the third in
direction $j

1
, the second and fourth in $j

2
. By the parity rule one pair-say the "rst and third

segments } will have the same sign, while the other pair opposite signs. The reader will easily verify
that such curve cannot be closed. See Fig. 8.

Lemma 5.1 excludes such MoK bius bands.
We conclude that on RH

1
we cannot have (6g

1
#3p

1
!6)(6g

2
#3p

2
!6)#1 arcs. As the total

number of arcs is
DD(j

1
, j

2
)Dp

1
p
2

2
, we get

DD(j
1
, j

2
)Dp

1
p
2

2
((6g

1
#3p

1
!6)(6g

2
#3p

2
!6)#1.
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After distributing the right-hand side, we may use the term !18(p
1
#p

2
) to cancel #37 (since

(p
1
#p

2
)*3 for homological reasons) and remove negative terms to get:

DD(j
1
, j

2
)D(

72g
1
g
2

p
1
p
2

#

36(p
2
!2)

p
1
p
2

g
1
#

36(p
1
!2)

p
1
p
2

g
2
#18.

As p
i
*2 for some i (say i"2, however to side with caution we must assume g

1
*g

2
) so we plug

p
1
p
2
*2 and get (we also round the number down to an integer):

DD(j
1
, j

2
)D)36g

1
g
2
#36g

1
#18g

2
#18. (6)

If, in addition, we know that each surface has at least two boundary components we can use
p
1
p
2
*4 and get the improved and symmetric bound:

DD(j
1
, j

2
)D)18g

1
g
2
#18g

1
#18g

2
#18. h (7)

6. The Cerf theory

Recall that all manifolds and surfaces are assumed to be orientable.
We can apply Theorem 5.2 in various situation. One is } f (g

1
, g

2
) bounds the distance between

slopes supporting (non-closed) incompressible, boundary incompressible surfaces of genera g
1

and
g
2

(similar to [14]). Another application that follows immediately from Gabai's thin position
argument (see [4]) is bounding the distance between boundary slopes of essential surfaces and
slopes of bad surgeries.

Theorem 6.1. Let (X,¹) be an a-cylindrical 3-manifold, ¹LLX an incompressible torus. Let j
1

be
a boundary slope of an incompressible, boundary incompressible surface (with non-empty boundary) of
genus g

1
. Let j

2
be a slope yielding a manifold (X(j

2
),R) with a Heegaard surface of genus g

2
so that

the xlling is bad.
Then DD(j

1
) j

2
)D(f

1
(g

1
,g

2
).

This was proven in [10].
The applications we are after were given in Section 4. They all follow from the following theorem

(for them we need c"1 only). This theorem concerns the surfaces RH
i
, which are the part of

R
i
which exists in X. These surfaces depend both on R

i
and on the way it is embedded in M

i
and are

not invariant under isotopy of R
i
in M

i
. We shall be using techniques of Cerf Theory (see [3,6]).

Fix a boundary component ¹
j0
3¹. For Theorem 6.2 we need to assume that the "llings are

¹
j0
-bad, which simply means the core of the solid torus attached to the component ¹

j0
is not

isotopic into the pre-chosen Heegaard surfaces. The only case that we use of this Theorem is when
c"1. In that case, specifying a particular boundary component is, of course, meaningless.

Theorem 6.2. Let X be a 3-manifold, ¹"6c
j/1

¹
j
LLX a collection of c tori. Let j

i, j
(i"

1,2, j"1,2,c) be slopes on ¹
j

and j
i
"6c

j/1
j
i, j

. Let M
i
"X(j

i
) be xllings of (X,¹), both ¹

j0
-bad

with respect to R
i
, i"1,2.
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Fig. 9. Surface in the neighborhood of the boundary torus.

Then the surfaces R
i
can be isotoped so that RH

i
LX intersect essentially while meeting the boundary

component ¹
j0
.

Proof. By our assumption, c
i, j0

are both bad w.r.t. R
i
.

We brie#y de"ne the notion of thin position. For more detail see [4]. Given c a set of curves
embedded in a 3-manifold M and a height function h on M, assume hDc (h restricted to c) is Morse.
De"ne the width of the embedding as follows: between every two consecutive critical points of hDc
choose a regular level and count the number of times that level intersects c (this is clearly
independent of choice). The sum of these numbers is called the width.

Any embedding that minimizes the width is called thin position.10
Let C

i
be a spine for (M

i
, R

i
). Recall that M

i
!C

i
is foliated as R

i
]R.

Let c
i
"6c

j/1
c
i, j

be the set of cores of the attached solid tori in M
i
. Isotope the foliations R

i
]R

("xing c
i
) so that both c

i
's are in thin position. Some components c

1, j
may have width zero } if they

were isotoped into a level } but not c
i, j0

. Any such component will be ignored from now on.
A fat layer in M

i
is a stack of the form R

i
][a,b], where h

i
Dc
i
has a minimum at a and a maximum

at b, and no other critical value a and b. Choose a fat layer meeting c
i, j0

in each of the two
manifolds. Parameterize the fat layers as R

i
]I, I"[!1,1]. Our levels are now parameterized by

two parameters, say s3I and t3I. The "rst picks the level R
1
]MsN"R

1
(s) and the second R

2
(t).

View the two fat layers in X. Let h
i
be restriction of the height function in M

i
to X. The fat layer

from M
i
is bounded above by a maximum and below by a minimum of h

i
. Near that maximum

(minimum resp.) bend the fat layer from M
3~i

downwards (upwards resp.), and away from these
points `straightena that fat layer, so locally the surfaces near the boundary are modeled on the
three types seen in Fig. 9.

Perturb the foliations slightly so that h
2
is Morse on RH

1
(s) for all but "nitely many values of s. On

the square I]I mark all points corresponding to surfaces RH
1
(s) and RH

2
(t) that do not intersect

transversely. This set is called the Graphic. Equivalently, view the Graphic as the set:
M(s,t)3I]IDRH

1
(s) has a critical point at height t (with respect to h

2
)N. So long as the parameter (s,t)

varies within a region11 (away from the Graphic), the height functions h
1

and h
2

are both Morse
without critical points so the topology of the two surfaces and their complements will not change.

10To achieve thin position one needs to isotope c or, equivalently, change the height function. We will take the second
point of view, and will see the height function as de"ned by the level surfaces. Thus we will isotope the surfaces in
M

i
instead of c. The advantage of this semantic change is that is allows us to view our work entirely in X.

11By a `regiona we mean a connected component of the complement of the Graphic.
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Fig. 10. High and low disks.

The concept required for connecting the assumption (thin position) with the desired outcome
(essential intersection) is that of a high (resp. low) disk: pick two level surfaces by picking
(s
0
,t
0
)3I]I. A disk DLRH

2
(t
0
) is called a high (resp. low) disk for RH

1
(s
0
) if the boundary of

D consists of two arcs (meeting at their endpoints), one along RH
1
(s
0
) and the other along

j0
¹ entirely

above (resp. below) the level RH
1
(s
0
). We de"ne a high (low) disk for RH

2
(t
0
) in a similar manner. See

Fig. 10.
A boundary parallel arc bounds a disk that shall call one sided. An outermost one sided disk is

either high or low. Therefore RH
1
(s
0
) and RH

2
(t
0
) intersect essentially if and only if there do not exist

high and low disks for either surface, and the entire proof now boils down to showing existence of
(s
0
, t

0
)3I for which neither high nor low disk exists.12

We cannot have a high and a low disk at the same level (and for the same surface) else the width
can be reduced (see Gabai's original argument in [4]). Hence the following labeling system is well
de"ned: label each region by two letters, each being L,H or N, in the following way:

f L (H) stands for low (high) disk;
f N stands for neither a high nor a low disk exists;
f the "rst letter refers to a high/low disk for RH

1
from RH

2
, the second } for RH

2
from RH

1
;

In case a label is unknown or is not relevant, the label X will be used, so labeling a region LX, for
instance, means there exists a low disk for RH

1
from RH

2
, but we do not know (or do not care about)

the label for RH
2
.

Thus our goal is to prove the existence of a region marked NN.
Since we bent the surfaces near the boundary (recall Fig. 9), we know much about the labels

around the perimeter. This information is given in Fig. 11.
In order to see how the labels change as we pass from one region to another, we will study what

happens as we cross the Graphic. Each singular curve in the Graphic is either a saddle or
a minimum/maximum, henceforth a center. Passing through a center does not change the existence
or non existence of high/low disks. However, passing across a saddle could change the labels, as we
may be attaching a 1-handle to the high/low disk.

12 In its interior the high (resp. low) disk may get below (resp. above) the given level, and so meet the other surface. Thus
eliminating high and low disks corresponds to eliminating boundary parallel arcs without requiring that the one sided
disks have no simple closed curves of intersection in their interior. It is exactly these arcs we must eliminate in order to use
Theorem 5.2.
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Fig. 11. The labels along the boundary.

Fig. 12. The dual to the Graphic and the Range Space.

From Gabai's argument it follows that adjacent regions cannot be labeled LX and HX (resp. XL
and XH) by thin position of c

1
(resp. c

2
). Hence a region labeled LX, for instance, may change into

NX but never to HX. However, we may have LN change into NH since the "rst L represents a low
disk for RH

1
, and the second H represents a high disk for RH

2
.

We simplify the Graphic slightly by removing any component not connected to the boundary.
(We do that in order to ensure that the dual hypergraph will embedded naturally in the disk.) The
label given to the new region is the label we had near its boundary before. A vertex in the Graphic
will be a point where two edges cross; all vertices have valence 4.

At this point (following the presentation of Rubinstein and Scharlemann in [12]), assume no
region is labeled NN. We construct a map / from the dual hypergraph to the Graphic to the cell
complex `the Rangea, given in Fig. 12. To be speci"c, the dual hypergraph is a two-dimensional cell
complex consisting of a vertex for each region in the Graphic, an edge for each edge and a face for
each vertex. Label each vertex of the dual hypergraph by the label of the corresponding region in
the Graphic. / maps each vertex to the point in the Range with the same label.

It is clear that / extends over all edges: the Range is path-connected. For each edge of the dual,
we choose an extension that hits no vertices of the Range in its interior. However, it is not at all
clear that this map extends over all faces.

Claim 6.3. The map / extends over all faces, and hence is dexned globally.

In order to prove this claim we only need to check how the labels change as we go around
a vertex of the Graphic. Let us try and construct the only possible vertex around which the map
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Fig. 13. The labels around (s
0
,t
0
).

Fig. 14. (a) `Almost disjointa disks; (b) not `almost disjointa disks.

/ does not extend. This vertex } say (s
0
,t
0
) } is the crossing of two singular points, both saddles. (We

are motivating Fig. 13.) Number the regions of the parameter square adjacent to (s
0
, t

0
) 1, 2, 3, 4.

Since the label NN does not exist by assumption, assume w.l.o.g. that the label in region 1 is LX.
We can only have a problem continuing the map if its image is not simply connected, so the label
HX must appear. Since crossing one curve of the Graphic cannot change LX to HX (by thin
position) HX must be the label in region 3 while regions 2 and 4 are labeled NX.

Using again the fact that NN does not appear, region 2 is labeled NL or NH, say NL. If XH
never appears, the regions 1,2,3,4 are mapped into a simply connected region, hence the map
extends. So XH appears, and the only available region for it is 4. Thus region 4 is labeled NH. This
information is summarized in Fig. 13.

We now describe the set up for the rest of our work. There are four disks involved, one in each of
the regions 1}4: a high disk and a low disk for RH

1
and a high disk and a low disk for RH

2
. In this

order, name them H
1

(in region 3), ¸
1

(in region 1), H
2

(in region 4) and ¸
2

(in region 2). The vertex
in Fig. 13 corresponds to two saddles. Name them S

1
, S

2
. In Fig. 13 we see two ways to move out of

each of the regions 1}4 by crossing an edge of the Graphic. Moving out of any region destroys the
high/low disk that exists there, hence each of the two saddles is a point on the boundary of each of
the four disks H

1
, ¸

1
, H

2
, ¸

2
.13

Let a
1
be the arc component of H

1
WRH

1
(s
0
), and b

1
be the arc component of ¸

1
WRH

1
(s
0
). Similarly

de"ne the arcs a
2

and b
2
. As we move (s,t) across an edge of the Graphic the surfaces will cross one

saddle, and as (s,t) crosses (s
0
,t
0
) the surfaces cross both saddles. When viewing the intersection

pattern on the surfaces, crossing a saddle corresponds to replacing two little horizontal arcs by two
little vertical arcs or vice versa.

Two disks are called `almost disjointa if their boundaries meet in a way that allows common
boundary arcs to be pushed away from each other by a small perturbation, e.g. Fig. 14(a). In many

13We refer to disks H
i
and ¸

i
(and in the next paragraph arcs a

i
and b

i
in their boundary) but in fact we are discussing

families of disks and arcs. As we move within a region } say labeled HN } every point (s,t) in that region corresponds to
surfaces RH

1
(s) and RH

2
(t) where a high disk for RH

1
(s) exists. We will not distinguish between disks and arcs corresponding

to di!erent values for (s,t) within a region as the surfaces are di!eomorphic. When discussing the way di!erent arcs meet,
or saying `S

j
3a

i
a, we are referring to the limit disks and arcs at the point (s

0
,t
0
). The limit disks are embedded in their

interior but their boundary have exactly two double points.
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cases our strategy is to show that either H
1

and ¸
1

are `almost disjointa or H
2

and ¸
2

are. In the
"rst case the width of c

1
can be reduced, in the second that of c

2
: given two almost disjoint disks

} say H
1

and ¸
1
} after perturbing one of them slightly (say H

1
) near its boundary, we get two

disjoint disks that can be used to reduce the width of c
2

(see [4]), contradicting our assumption of
thin position.

Remark. In the sequel we will provide "gures of intersection between RH
1

and RH
2
. The following

rules will be used: the curves studied are pictured in solid bold lines; dashed lines are used for parts
of these curves where the only relevant information is which 2 arcs are connected by the dashed
lines, not where the dashed line is on the surface. Dotted lines, when appear (in Fig. 18), indicate
other curves of intersection we know of, and are given as a reference point only. Small circles
indicate boundary component; we use them to indicate we know an arc ends at the boundary,
whenever we know it is not a part of a simple closed curve of intersection.

We will now check all possible con"gurations for a
i
and b

i
, and reach a contradiction in each of

them. Consider the level (s
0
,t
0
#e), slightly above t

0
, for very small e. Since for e"0 we have

S
1
, S

2
3a

1
, as eC 0 there are two arcs from RH

1
(s)WRH

2
(t) approaching a

1
.

These two arcs may or may not be subarcs from a
1

itself. If they are we will say that a
1
`folds on

itselfa. Assume an arc folds on itself. Orient the arc. The following Lemma will enable us to use
orientation of X conveniently:

Lemma 6.4. If an arc g folds on itself, the segments meeting at the saddle meet with opposite
orientation.

Proof. (See Fig. 15 for illustration of this lemma). Let gLRH
1
WRH

2
be an arc on RH

1
. Consider the

following two vector "elds:

f Let v
0
(t) be a tangent vector to g(t). By assumption, v

0
(0) is parallel to v

0
(1).

f Let v
2
(t) be a vector "eld along g which, together with v

0
(t), constitutes a basis for RH

2
. Note that

as v
2
is normal to the Heegaard surface R

1
, we may assume that v

2
(0) is parallel to v

2
(1), as seen in

Fig. 15 (a).

Just above or below RH
1

lies S (say above), the saddle. In the neighborhood of S RH
1

intersects
RH
1

as Mz"x2#y2N intersects Mz"!eN (for small e) near the origin in R3. Thus we can add a little
`arca from RH

2
to obtain Fig. 15 (b). The reader can now see that RH

2
contains an embedded MoK bius

band, contradicting our assumption of orientability. h

The arc a
1

can take various forms. There are eight di!erent cases which respect Lemma 6.4,
arranged according to whether the two arcs approach a

1
from the same side, whether a

1
folds on

itself or not and the order in which we encounter the saddles as we travel along a
1
. Cases 1}5 are

given in Fig. 16. This is the local picture on RH
1
, in the neighborhood of a

1
. Cases 6}8 are when

a
1

folds on itself twice. They di!er in the order that one encounters the saddles S
1

and S
2

as one
travels along a

1
. (Say we meet S

1
"rst.) When considering them keep Lemma 6.4 in mind.
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Fig. 15. Arc folding on itself with the orientation agreeing.

Fig. 16. a
1
: the "rst "ve cases.

We demonstrate the di!erent cases by order of reduction. (The crucial case seems to be case 2.) In
each of these cases we will compare the four arcs (a

1
, b

1
, a

2
, b

2
). Recall that we get from one to

another by crossing one or two of the saddles S
1
, S

2
. W.l.o.g., we call the top saddle in Fig. 16 S

1
.

f Case 1: After crossing both saddles, we see that the arc b
1

is almost disjoint from a
1
.

f Case 4: Crossing S
1

only: for a
2

or b
2

the picture is reduced to case 1.
f Cases 5: After crossing S

1
we see that there is no arc (candidate for a

2
or b

2
) which involves both

saddles, which we know there must be.
f Case 7: S

1
S
2

S
2

S
1
. Much like case 5, after crossing S

1
we see that either a

2
or b

2
does not

involve S
2
.

f Case 2: See below (reduced to cases 1 and 5).
f Case 3: Reduced to case 2 by crossing S

1
(again for a

2
or b

2
).

f Case 6: S
1

S
1

S
2

S
2
. Cross both saddles: reduced to case 1 or 2 (for b

1
).

f Case 8: S
1

S
2

S
1

S
2
. It is easy to see that the only two con"gurations possible are the two shown

in Fig. 17 (recall Lemma 6.4). In subcase 8(i) crossing both saddles reduces to case 1 for a
2

or b
2
,

and in subcase 8(ii) crossing both saddles reduces to case 1 or 2 for b
1
.

It now all boils down to case 2 in Fig. 16. Note that we may reduce this case to cases 1 and 5 as
planned: those have been proven without using case 2.

After crossing S
1
or S

2
in case 2 (note the symmetry in this case) we get eight di!erent possibilities

b
2
. These are summarized in Fig. 18. We now treat each of them. Note that subcase 2.vi forces us to
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Fig. 17. The two possibilities for case 8.

Fig. 18. b
2

in case 2.

view a
1

and b
1
again, but now we have more information about them, as we know how the arcs are

connected.

f Subcases 2(i) and 2(vii) are case 1.
f Subcase 2(ii) is case 5.
f Subcases 2(iii) and 2(v) violate orientability (recall Lemma 6.4).
f In subcase 2(iv) the arc a

2
is as in case 1.

f In subcase 2(vi) a
1

and b
1

are almost disjoint.
f In subcase 2(viii) the arc a

2
is as in case 5.

This completes the proof of the claim. h
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Claim 6.5. / cannot be dexned globally.

Proof. This follows from the fact that going around the boundary of the Graphic, counter-
clockwise starting at the south-west corner, our image will "rst run along the bottom of the Range,
then along the right side of it, the top, and back along the left side (see Figs. 11 and 12). Thus we
have mapped a disk into the Range with its boundary mapping to a non null homotopic curve.
Absurd. h

The observant reader will notice that Claims 6.3 and 6.5 imply a contradiction, hence we have
proved the existence of a region labeled NN and correspondingly two surfaces which meet
essentially, as desired. h
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