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a b s t r a c t

Self-stabilizing distributed control is oftenmodeled by token abstractions. A systemwith a
single token may implement mutual exclusion; a systemwith multiple tokens may ensure
that immediate neighbors do not simultaneously enjoy a privilege. In models of process
control, tokensmay represent physical objectswhosemovement is controlled. Theproblem
studied in this paper is to ensure that a synchronous system withm circulating tokens has
at least d distance between tokens. This problem is first considered in a ring where d is
given whilst m and the ring size n are unknown. The protocol solving this problem can
be uniform, with all processes running the same program, or it can be non-uniform, with
some processes acting only as token relays. The protocol for this first problem is simple,
and can be expressed with a Petri net formalism. A second problem is to maximize dwhen
m is given, and n is unknown. For the second problem, this paper presents a non-uniform
protocol with a single corrective process.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Distributed computing deals with the interaction of concurrent entities. Asynchronous models permit irregular rates
of computation whereas pure synchronous models can impose uniform steps across the system. For either mode of
concurrency the application goals may benefit from controlled reduction of some activity. Mutual exclusion aims to reduce
the activity to one process at any time; some scheduling tasks require that certain related processes not be active at the same
time. System activation of a controlled functionality is typically abstracted as a process having a token, which constitutes
permission to engage in some controlled action. Many mechanisms for regulating token creation, destruction, and transfer
have been published. This paper explores a mechanism based on timing information in a synchronous model. In a nutshell,
each process has one or more timers used to control how long a token rests or moves to another process. An emergent
property of a protocol using this mechanism should be that tokens move at each step, tokens visit all processes, and no two
tokens come closer than some given distance (or, alternatively, that tokens remain as far apart as possible). The challenge,
as with all self-stabilizing algorithms, is that tokens can initially be located arbitrarily and the variables encoding timers or
other variables may have unpredictable initial values.

One motivating application is the domain of embedded control problems, where data obtained by sensors is fed into the
computation of decisions about how physical processes should be controlled. Analysis of such systems often builds upon
traditional formalisms of control, such as Petri nets. Part of the vision for cyber-physical systems [23] includes self-corrective
behavior in response to transient failures, which motivates a self-stabilizing system design. As an example, one can imagine
a closed network where some objects are conveyed from place to place, with some physical processing (loading, unloading,
modifications to parts) done at each place. For the health of the machinery it may be useful to keep the objects at some
distance apart, so that facilities at the different places have the time to recharge resources between object visits. Improper
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This figure shows a large ring and two smaller
rings, where each smaller ring is connected by a
joint transition (which can only fire when a token
is present on each of its inputs) to the larger ring.
On the right side a portion of the larger (clockwise)
token ring is represented, with three tokens shown
resting together at the same place. Two other smaller,
counterclockwise rings are partially shown on the left
side, each with one token. The joint transition will
prevent the three resting tokens from firing until the
token on the smaller ring completes its traversal. Thus
the smaller rings, each having exactly one token in
any state, behave as delaymechanisms. The algorithm
given in Section 5 uses conventional process notation
instead of a Petri net, and the smaller rings are
replaced by counters in a program.

Fig. 1. Petri net embodiment.

deployment, misplaced parts, or other events can put the system in an unhealthy state. An abstract model of the system is
a Petri net where the tokens represent physical objects. Fig. 1 partially illustrates such a situation, with an unhealthy initial
state (three objects are together at one place). The circuit of the moving objects is a ring for this example. The formalism of
Petri nets allows us to add additional places, tokens and transitions so that a self-stabilizing network can be constructed:
eventually, the objects of interest will be kept apart by some desired distance. Section 5 presents a self-stabilizing algorithm
for this network.

Another motivating application comes from wireless sensor networks, where power management is important. A strat-
egy for limiting power consumption is to limit the number of sensors that are on at any time, presumably selecting enough
sensors to be on for adequate coverage of a field of interest, yet rotatingwhich nodes deploy sensors over time, to extend the
lifetime and to improve robustness with regard to variation in sensor calibration. One solution to this problem would be to
use clock synchronization, with a periodic schedule for sensing activity based on a global time. Alternatively, token circula-
tion could be considered to activate sensors. Unlike a schedule purely based on synchronized clocks, a token-based solution
provides some assurance and feedback in cases where nodes are faulty (e.g., when a token cannot be passed from one node
to another due to a failure, such failure may be recognized and an alarm could be triggered). The abstraction of tokens put
into messages may also allow aggregated sensor data or commands to be carried with a token, further enabling application
behavior. Keeping tokens apart may relate to coverage goals for the sensor network: if tokens circulate in parallel and satisfy
some distance constraint between them, then the sensors that are on at any time may provide adequate spatial diversity
over the field of interest. Questions of satisfactory or optimal coverage of a field are beyond the scope of this paper. Our in-
vestigation is confined to the problem of self-stabilizing circulation of tokens with some desired separation between them.

Related work. Perhaps the earliest source on self-stabilization is [1], which briefly presents an algorithm to distribute N
points equally on a circle. The algorithmgiven in Section 6 distributesm tokens equally around a ring: however, the objective
is a behavior (circulating tokens) rather than a final state. Papers on coordinated robot behavior, for example [2,8,3], are
similar to [1] in that a geometric, physical domain is modeled. Most such papers consider a final robot configuration as
the objective of distributed control and give the robots powerful vision and mobility primitives. Like the example of robot
coordination, our work can have a physical control motivation, but we have a behavior as the objective. For results in this
paper, the computation model is discrete and fully synchronous, where processes communicate only with neighbors in
a ring. As for the sensor network motivation sketched above, duty-cycle scheduling while satisfying coverage has been
implemented [4] (numerous network protocol and system issues are involved in this task [5]). These sensor network duty-
cycle scheduling efforts are not self-stabilizing to our knowledge.

Within the literature of self-stabilization, a related problem ismodel transformation. If an algorithm P is correct for serial
execution, but not for parallel execution, then one can implement a type of scheduler that only allows a process p of P to
take a step provided that no neighbor q is activated concurrently [6]; this type of scheduling is known to correctly emulate a
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serial order of execution. The problemwe consider, separating tokens by some desired distance d, can be specialized to d = 2
and be comparable to such a model transformation. For larger values of d, the nearest related work is the general stabilizing
philosopher problem [7], which considers conflict graphs between non-neighboring philosophers. By equating philosopher
activity (dining) to holding a token [7], we get a solution to the problem of ensuring tokens are at some desired distance,
and also allowing tokens to move as needed. The synchronous token behavior in this paper differs from the philosopher
problem because token circulation here is not demand-based; therefore solutions to the problem are obtained through the
regular timing of token circulation.

The literature on self-stabilizing mutual exclusion includes token abstractions [10], generalizations of mutual exclusion
to k-exclusion or k-out-of-ℓ exclusion [11], multitoken protocols for a ring [13], and group mutual exclusion [12]. Such
literature does not constrain tokens to be separated by somedesired distance d (unlike the philosopher problemcited above),
which differentiates our work from previous multitoken protocols. However, in applying the methods of this paper to some
applications, it can be useful to employ self-stabilizing token or multitoken protocols at a lower layer: Section 5.2 expands
on this idea of using self-stabilizing token protocols as a basis for our work.

The idea of using the timing of token arrival to control distributed behavior has been previously investigated for balancing
(or counting) networks, which can be seen as abstractions for scheduling. A token in a balancing network represents a locus
of control; the path of a token over time describes the history of accesses that one process performs on distinct shared
memory objects. States of the junctions in these networks change as tokens arrive and depart, and the state of a junction
determines where an arriving token will be next routed. The relative timing of token arrivals to the network, and within
the network, thus determine the pattern of flow through the network. Though such networks typically presume a properly
initialized state, the idea of a self-stabilizing behavior in a balancing network has been proposed [16]. Balancing networks
are generally open networks, where processes arrive, traverse the networks, and exit; presumably, the output of such a
network could be fed back into the same network to make a closed system. Balancing networks are chiefly intended for
asynchronous execution, where the objective is to obtain some pattern in the history of arrivals of processes to selected
shared objects. Our goal is different: we suppose synchronous processes, with the time objective of keeping tokens some
distance d apart at all times. As an interesting aside, we note that algebraic (matrix) approaches have been found valuable
both for Petri net analysis [9] and for combinatorial analysis of balancing networks [17].

If we move beyond guaranteed behavior in discrete-time models of circulating tokens to stochastic behavior of moving
particles in large networks, then the statistical physics literature on traffic may be relevant. Recent investigations consider
capacity and efficiency metrics for flows of traffic [20], sometimes finding that separation between entities is important to
shape traffic in the aggregate. Experiments have shown that the density of vehicles on a unidirectional circle cannot exceed
a critical threshold without traffic jams appearing [19]; similar results appear to hold for complex networks, validated by
simulation [21,22].

2. Desired behavior

Desired properties of a token circulation protocol are labeled as d1–d5 below.

d1 At any time, m tokens are present in the system.
d2 The minimum distance between any two tokens is at least d.
d3 A token moves in each step from one process to a neighboring process.
d4 Every process has a token equally often; i.e., in an execution of k steps, for any process pi, there is a token at pi for

approximately k ·m/n steps.
d5 Following a transient failure that corrupts state variables of any number of processes, the system automatically recovers

to behavior satisfying d1–d4.

Inmany topologies, not all of d1–d5 are achievable. For instance, for d3 to hold, the center node of a star topology or a simple
linear chain is necessarily visited by tokensmore often than other nodes, conflictingwith d4. The constructions of this paper
are able to satisfy d1–d5 for a ring topology. Though it is straightforward to map a virtual ring on a complete walk over an
arbitrary network, property d2 may not hold: nodes at distance d in a virtual ring could be at much smaller distance in the
base network. An example of a virtual ring is presented in Section 7.

3. Motivating example

Though d4 cannot be achieved for a star topology in which tokens circulate the network, there is a simple case where
separation of tokens can be obtained in an open network. Fig. 2 shows how distance between tokens can be enforced almost
trivially, by throttling the rate of tokens injected into the network.

The delay mechanism between p1 and p2 is shown as a token ring conjoined to the chain. We use simpler notation for
this later in the paper: a timer counts rounds between the times that tokens are released. If a new token arrives when the
counter is zero, which is equivalent to a waiting token on the ring at the joint transition, then the new token is passed from
p1 to p2 without additional waiting. The event of passing a token from p1 restarts the timer; if a new token arrives with
the counter at nonzero, then the new token will have to wait for the counter to reach zero before it can be released. This
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Illustrated on the far left is an open system
consisting of a chain of processes, p1, p2, . . . , with
p1 being the topmost process illustrated. Tokens
are shown as dots, with a number of ‘‘loose tokens’’
above the chain representing new tokens arriving
from outside the system to p1 . Each process pi
releases at most one token in each round to pi+1 .
The aim of this system is to ensure that, eventually,
no two tokens are closer than some distance d
in the subchain from p2 downward (we cannot
prevent the accumulation of tokens are p1 in this
open system). On the immediate left is a simple
delay mechanism shown as a Petri net; the small
subring and the joint transition between p1 and p2
ensures that tokens do not arrive in each round to
p2 . By adjusting the size of the subring, the target
distance d can be obtained.

Fig. 2. Open system: linear chain.

example reveals the strategy for separating tokens, namely to inject delay when needed. A question arising from Fig. 2 is
whether the same, simple idea can work in a closed system. What happens, for example, if the output from this chain, say
at pn, feeds back to p1? Will this simple delay suffice for stabilization? Section 5 answers this question positively.

4. Notation and model

Consider a ring of n processes executing synchronously, in lock-step. Each process perpetually executes steps of a pro-
gram, which are called local steps. In one global step, every process executes a local step. Programs are structured as infinite
loops, where the body of a loop contains statements that correspond to local steps. We assume that all processes execute
the loop steps in a coordinated manner: for processes running the same program, all of them execute the first statement
step in unison. Similarly, if two processes run distinct programs, we suppose they begin the body of the loop together, which
may entail padding the loop of one program to be the same number of steps as the other program. This assumption about
coordination of steps is for convenience of presentation, since it is possible to engineer all programs to have a loop body
with a single, more powerful step. The execution of all steps in the loop, from first to last statement, is called a round.

The notion of distance between locations in the ring can be measured in either the clockwise or counterclockwise
direction. In program descriptions and proof arguments, it is convenient to refer to the clockwise (counterclockwise)
neighbor of a process using subscript notation: process pi’s clockwise neighbor is pi+1 and its counterclockwise neighbor is
pi−1. The distance from pi to itself is zero, the clockwise distance from pi to pi+1 is one, and the counterclockwise distance
from pi to pi+1 is n− 1; the counterclockwise distance from pi to pi−1 is one, and general definitions of distance between pi
and pj for arbitrary ring locations can be defined inductively. The counterclockwise neighbor of pi is called the predecessor
of pi, and the clockwise neighbor is called the successor.

The local state of a process pi is specified by giving values for its variables. The global state of the system is an assignment of
local states for all processes. A protocol, specified by giving programs for each pi, should satisfy the desiderata of Section 2. A
protocol is self-stabilizing if, eventually,d1–d5hold throughout the suffix of any execution. For simplicity, in the presentation
of our protocols, we make some unusual model choices: in one case, pi assigns to a variable of pi−1; and we assume that m
tokens are present in any initial state of any execution. After presenting programs in Section 5, we discuss in Section 5.2
these choices in reference to the two illustrative applications, Petri nets and sensor networks.

5. Protocol with known separation

This section presents a protocol to achieve and maintain a separation of at least C + 1 links between tokens in the
unidirectional ring. An implementation of the protocol uses four instantiation parameters, n, m, C , and the choice of which
of two programs are used for nodes in the ring. Only the separation parameter C is used in the protocol, as the domain of a
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delay ::

do forever

1 ri ← ri + qi−1 ;

2 qi−1 ← 0 ;

3 if ci > 0 then

ci ← ci − 1

4 else if ci = 0 ∧ ri > 0 then

ci ← C ;

ri ← ri − 1 ;

qi ← qi + 1

relay ::

do forever

1 ri ← ri + qi−1 ;

2 qi−1 ← 0 ;

3 if ri > 0 then

ri ← ri − 1 ;

qi ← qi + 1

Fig. 3. delay and relay programs.

counter, whereas the ring size n and the number of tokens m are unknown for the programs. The separation by C + 1 links
cannot be realized for arbitrary n > 1 andm > 1; we require that

m(C + 1) ≤ n. (1)

The protocol consists of two programs delay and relay. At least one process in the system executes the delay and any
processes not running delay run the relay program. Processes running either program have two variables, q and r; a process
running delay has an additional variable c. To specify the variable of a particular process, we subscript variables, for instance,
qi is the q variable of process pi. The domains of q and r are nonnegative integers; the domain of c is the range of integers in
[0, C].

The q and r variables model the abstraction of tokens in a ring. At any global state σ , process pi is said to have t tokens
if ri + qi = t . We say that k tokens are resting at pi if ri = k, and ℓ tokens are queued (for moving forward) if qi = ℓ. The
objective of the protocol is to circulatem tokens around the ring so that the distance from one token to the next (clockwise)
token exceeds the parameter C , and in each round every token moves from its current location to the successor. In some
cases, it is handy to refer to the value of a variable at a particular state in an execution. The term rσ

i denotes the value of
ri at a state σ . In most cases, the state is implicitly the present (current) state with respect to a description or a predicate
definition.

Define the minimum clockwise distance between pi and a token to be the smallest clockwise distance from pi to pj such
that pj has t > 0 tokens. Observe that if pi has a token, then theminimum clockwise distance to a token is zero. Similarly, let
the minimum counterclockwise distance from pi to a token be defined. Let Rdisti denote the minimum clockwise distance
to a token for pi and let Ldisti denote the minimum counterclockwise distance to a token for pi.

5.1. Programs

The delay and relay programs are shown in Fig. 3. Both programs begin with steps to move any queued tokens from the
predecessor’s queue to rest at pi. The relay program enqueues one token, if there are any resting tokens, in line 3 of the
program. The delay program may or may not enqueue a token, depending on values of the counter ci and the number of
resting tokens ri. In terms of a Petri net, the relay program corresponds to simple, deterministic, unit delay with at most one
token firing in any step on the output transition. The delay program expresses a joint transition, with two inputs and two
outputs: the variable ci becomes a ring of C + 1 places and line 4 of delay represents the joint transition.

In application, it is possible that all n processes run the delay program, and no process runs relay. This would be a uniform
protocol to achieve d1–d5. An advantage of including relay processes can be to limit the cost of construction for physical
embodiments of the logic. Using multiple relay processes can model more general cases of token delay: a consecutive
sequence of k relay processes is equivalent to a process that always delays an arriving token by k rounds.

5.2. Application to models

Petri net. It is usual for self-stabilization that transient faults, which inject variable corruption, are responsible for creating
new initial states, and the event of a transient fault is not explicitly modeled. However for an application where tokens
represent physical objects, which is plausible for Petri nets, a transient fault neither destroys nor creates objects. Thus we
think it reasonable to suppose thatm > 1 tokens satisfying (1) are present in any initial state.

Observe that line 2 of either delay or relay has pi assigned to qi−1 (whereas the usual convention in the literature of self-
stabilization is that a process may only assign to its own variables). The assignment qi−1 ← 0models the transfer of a token
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from a transition to its target place in a Petri net. For the firing of a Petri net transition, pi increments qi in line 4 of delay or
line 3 or relay. Fig. 1 illustrates both relay and delay programs. The portions of the two rings on the left side of the figure are
modeled by the c variables in relay nodes; these are ‘‘minor’’ rings with C + 1 nodes, whereas the ‘‘major’’ ring has n nodes.
The situation of a token on a minor ring being ready for a transition shared by the major ring is modeled by ci = 0. Observe
that when a token on the major ring is present at the same transition where a minor ring token exists, then transition firing
is enabled at line 4, because ri > 0 and ci = 0. We assume that tokens of major and minor rings are of different nature;
a transient fault cannot move a token from minor to major or from major to minor ring. A transient fault can move tokens
arbitrarily on their respective rings.

Standard models. We first briefly review some conventions from the literature of self-stabilization. A typical model for
self-stabilizing protocols is the shared variable model in which each process has access to some variables written by
neighbor processes. In one atomic step, a process reads neighbor variables, performs some local computation, and writes
to its variables. A system execution is a sequence of configurations, each configuration denoting the state of every process;
between each consecutive pair of configurations in the execution there is a transition consisting of some set of process steps
(at most one step for each process). Standard models specify a scheduler, which selects, at each state in an execution, the
process or processes that may take a step. The specification of the scheduler and the set of possible initial states is enough to
generate all possible executions. Schedulers may be synchronous (all processes take a step in unison) or asynchronous; an
extreme case of asynchrony is the central daemon scheduler, which selects just one process to take a step. The usual notation
for programs is the guarded statement notation, wherein the program for each process is a set of guarded assignment
statements. A guarded assignment is enabled at a particular state if the guard evaluates to true at that state. To avoid
stuttering (repeated consecutive configurations in an execution), schedulers only select processes with enabled statements;
also, programs are written so that any enabled statement should falsify its guard when executed (this is typically easy to
verify for the central daemon scheduler). An execution is finite if its terminal state has no enabled statement, otherwise
executions are infinite. Schedulers may have a number of choices of processes to select for the next step at a particular
state. A fairness property of a scheduler is some policy to limit the choices it makes over the course of an execution. An
unfair scheduler has maximum freedom in the number and guard selection choice at any state. Experience has shown that
programs are simplified when more assumptions can be made about the scheduler; for some problems, self-stabilization is
not possible without the central daemon hypothesis of one process stepping in any state transition.

Considering how delay/relay may be fitted to standard models, we see several obstacles: (i) pi assigns to qi−1, which
violates the rule of a process assigning to its own variables only; (ii) we have assumed that all processes start their cycles
together, which may not hold for an initial configuration; (iii) the number of tokensm is supposed positive and constrained
by (1) in the initial state; and (iv) execution is synchronous. Point (iv) is within the bounds of self-stabilization models,
though one might hope for a realization of the same result for asynchronous models. Point (ii) will not be a concern if the
programs delay and relay can each be reduced to a single guarded assignment; this is not a significant challenge, and we
leave this as an exercise to the reader. We continue examining the other points in the following paragraphs.

Regarding (i), there are two cases to consider, a synchronous or asynchronous executionmodel. In the case of synchronous
execution, rewriting the program as a single guarded assignment can eliminate the assignment to qi−1 in favor of having pi
rewrite qi, either to zero or to some new value if a token is queued. Because each process reads qi−1 in each synchronous
step, the logic of delay and relay is preserved by this rewriting. However, for an asynchronous model, some transformation
is needed. For instance, a self-stabilizing protocol with acknowledgment [15] might be used to convey a token from pi−1 to
pi (note that this approachwould entail bidirectional communication between pi−1 and pi). Alternatively, the task of passing
a token from pi−1 to pi could be handled by using a conventional self-stabilizing protocol, which we explain next under the
discussion of point (iii).

Point (iii) raises the possibility that the initial state may not havem > 0 tokens satisfying (1). Two ways to deal with this
possibility are active monitoring and definitional approaches.

• The idea of active monitoring is to periodically sample the number of tokens and take appropriate measures for an
incorrect value. Note that taking a sample is neither instantaneous nor reliable. A samplewould need to count the number
of tokens that arrive at pi, which should bem tokens over n time units when behavior is legitimate. This type of sampling
is unreliable from an arbitrary initial state, because whatever variables are used for counting and measuring time are
subject to transient fault corruption, hence false detection of an illegitimate state is possible. Moreover, if more than
one process engages in sampling and correction, it could be that correction by one interferes with correction by another.
The mechanism of distributed reset [14] might need to be employed for active monitoring and correction. In addition
to the complexity of active monitoring, the potential for inserting and deleting tokens (perhaps unnecessarily) during
convergence could be undesirable for the application using the tokens.
• The alternative to active monitoring is the definitional approach. Here, the system is built either from m independent

self-stabilizing token rings or from a self-stabilizing multitoken ring protocol that hasm tokens in a legitimate state. We
sketch the case of m independent token rings. For each token ring, there can be more than one token in an initial state.
Provided that each process fairly includes steps from each of the m token rings, each of these eventually converges to
having a single token. A benefit of the definitional approach is that the token-passing mechanism is unidirectional: by
writing some variable designated for the token, the token is automatically available to the successor process.
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Can the delay/relay protocol be extended to asynchronous scheduling? To reckon with (iv), some relaxation of d2-d3
is needed, because no mechanism in an asynchronous model can assure that two processes at distance d release tokens
simultaneously. A natural adaptation of the synchronous protocol is to leverage a self-stabilizing synchronizer, or a self-
stabilizing phase clock.

A phase clock protocol equips each process pi with a clock variable clocki. A clock has domain [0,M], where M has a
lower bound related to the diameter of the network, but can otherwise be freely chosen; we suppose M mod d = 0
for our design. The two crucial properties of a clock are (a) it increments modulo M infinitely often in any execution,
and (b) |clocki − clockj| ≤ 1 for neighbors i and j.

An adaptation based on a phase clock consists of allowing a cycle (translated into a guarded assignment) of delay/relay at pi to
execute only when clocki mod d = 0 and the phase clock at pi is enabled to increment. The phases where clocki mod d = ℓ,
for ℓ ∈ [1, d− 1] are ‘‘idle’’ with respect to progress of delay/relay. Thus, pi can only release a token when clocki mod d = 0.
Property (b) implies that a process pk at distance d from pi satisfies |clocki − clockj| ≤ d. Therefore, clockk could be ‘‘behind’’
clocki by d phases when pi releases a token. Increments to the phase clock at pi continue during idle phases. The modulus d
provides sufficiently many idle phases to ensure that pk would release a token (provided it has one ready to release), before
pi again encounters clocki mod d = 0.

Two difficulties need to be addressed in implementing this combining of delay/relay with a phase clock. First, we note
that d2 can be violated in the combination, because pi may release a token before pk does, resulting in two tokens at distance
d − 1; some revision to d or d2 is needed to handle this case. Another detail to cover in the adaptation is to prevent pi+1
from immediately passing the token it receives from pi, which would occur if clocki+1 mod d = 0 upon reception. We omit
further detail in this outline by adapting delay/relay to an asynchronous scheduler.

Wireless sensor network. Wireless networks use messages rather than shared variables for communication. Several papers
have proposed some implementation patterns for a shared variablemodel built upon sensor network abstractions. However,
the definitional approach outlined above for tokens is well-suited to a message-passing architecture because releasing a
token consists of a single write to a shared variable that is not again written until the next time a token is released. This
allows the write to the shared variable to be replaced by a message transmission, from pi to pi+1 (such a message would
contain values for allm independent token rings being emulated in the definitional construction).

Wireless sensors do have real-time clocks, though these may not be synchronized in an initial state. Therefore, a self-
stabilizing clock synchronization protocol is warranted, so that the synchronous execution of delay/relay can be realized.
With synchronized clocks, it is possible to define a recurring time interval so that all nodes start and end the execution of a
delay/relay cycle together.

The preceding discussion assumes that messages are reliable. In practice, messages may be lost, which necessitates
retransmission. The number of retransmits could be variable, which is problematic for defining intervals supporting the
synchronous execution of cycles. Of course, any protocol for wireless sensor networks faced with message loss is, at best,
probabilistically valid.

5.3. Verification

A legitimate state for the protocol is a global state predicate, defining constraints on values for variables. To define this
predicate, let tokdist denote the minimum, taken over all i such that ri + qi > 0, of Rdist i. The predicate delayi is true for
process pi running delay and false for the relay processes.

Definition 1. A global state σ is legitimate iff−
i

qi = m ∧
−

i

ri = 0 ∧ (∀i :: qi ≤ 1) (2)

∧ tokdist > C (3)
∧ (∀i : delayi ∧ ci > 0 ∧ qi = 0 : Rdist i = C − ci) (4)
∧ (∀i : delayi ∧ qi = 0 : Ldist i > ci) (5)
∧ (∀i : delayi ∧ qi = 1 : ci = C) (6)

In an initial state, variables may have arbitrary values in their domains, subject to constraint (1).

Lemma 1 (Closure). Starting from a legitimate state σ , the execution of a round results in a legitimate state σ ′.

Proof. The conservation of tokens expressed by (2) is simple to verify from the statements of delay and relay programs, so
we concentrate on showing that (3)–(6) are invariant properties. Assume that σ is a legitimate state. We consider two cases
for a process pi running delay: either there is no token at pi and qi = 0, or qi = 1 at σ .

I qi = 1: observe that ci = C by (6). For σ ′ we have ri = 0 because from (3) there is no token at pi−1 and we have
qi = 0 ∧ ci = C − 1 by lines 1–2 of either delay or relay at pi+1, and line 3 of delay at pi. This validates (2) with respect
to the token passed, and (3) holds because every token moves to the successor starting from a legitimate state. Property (4)



K. GhoshDastidar, T. Herman / Theoretical Computer Science 412 (2011) 4312–4324 4319

holds at σ ′ with respect to pi because Rdisti = 1 = C − ci. Finally, (5) is validated for pi because, if (5) holds for σ when
ci = C , then a token moving one process closer to pi validates (5) by ci = C − 1 at σ ′.

I qi = 0: there are two subcases, either ci = 0 or ci > 0. In the former case, if no token arrives at pi in the transition
from σ to σ ′, properties (2)–(6) directly hold with respect to pi in σ ′. If a token arrives for pi, then qi = 1 ∧ ci = C results
by line 4 of delay, and we use properties (3)–(6) of pi−1 at σ to infer that the same properties hold of pi at σ ′. If ci > 0 at
σ , then by (3)–(5) and the legitimacy of all processes within distance C + 1 in either direction from pi, tokens move to the
successor process while ci decrements, which establishes (3)–(5) for pi at σ ′. �

To prove convergence, we start with some elementary claims and define some useful terms. Suppose rounds are
numbered in an execution, round t starts from state σ , and that qσ

i−1 = v. For such a situation, we say that v tokens arrive
at pi in round t .

Claim 1. In any execution,
∑

i ri + qi = m holds invariantly.

Proof. As explained in Section 4,m > 1 tokens are present in the initial state, represented by ri and qi variables. Statements
of delay or of relay conserve the number of tokens in the system, because we assume that all processes execute lines 1 and 2
synchronously in any round. Line 4 of delay or line 3 of relay similarly conserve the number of tokens in a process. �

Claim 2. Within one round of any execution,

(∀ i :: qi ≤ 1) (7)

holds and continues to hold invariantly for all subsequent rounds.

Proof. In every round, line 2 of delay or relay assigns qi−1 ← 0, and may assign qi ← 1. �

For the remainder of this section, we consider only executions that start with a state satisfying (7). For such executions,
a corollary of Claim 2 is: at most one token arrives at any process in any round.

Claim 3. If m > 0, then for every execution of the protocol and 0 ≤ k < C ∧ 0 ≤ i < n, the variable ci = k at infinitely many
states.

Proof. The proof is by contradiction. First, we show that at least some token moves infinitely often. Since m > 0, there is a
token at some process pi because ri > 0 or qi > 0; the case qi > 0 implies immediate token movement in the next round,
so we look at the other case, ri > 0 ∧ qi = 0. In one round, pi either assigns qi ← 1 program, and thus a token moves in
the next round, or pi assigns ci ← ci − 1 because ci > 0. Therefore, after at most C rounds, a state where ci = 0 ∧ ri > 0 is
reached, and the next round enqueues a token for movement. The preceding argument shows that some token movement
occurs infinitely often in any execution. There are m tokens throughout the execution by (2), hence at least one token can
be considered to move infinitely many times. Note that the token abstraction is represented by r and q variables only: we
cannot be sure that one token does not overtake another token. However, it will be our convention to model token queuing
as first-in, first-out order. Thereby we find that if one token moves infinitely many times clockwise around the ring, all
tokens do so as well. Returning to the claim, suppose that some ci variable eventually never has some value k ∈ [0, C − 1].
But pi experiences infinitely many tokens arriving and assigns qi ← 1 infinitely often, so lines 3 and 4 of delay execute
infinitely often at pi, which is a contradiction. �

Claim 4. For any process pi running the delay program, eventually pi assigns qi ← 1 atmost once in any C+1 consecutive rounds.

Proof. Claim 3 shows that pi eventually assigns ci ← C . In delay, only line 4 assigns qi ← 1, and the same step assigns
ci ← C . Thus, if we number rounds t , t + 1, and so on, the values of ci and qi variables at the end of each round is shown by:

Round t t + 1 t + 2 · · · t + (C − 1) t + C t + (C + 1)

ci C C − 1 C − 2 · · · 1 0 C

qi 1 0 0 · · · 0 0 1

The tablemakes theworst-case assumption that ri > 0 at round t+(C+1), to illustrate that through at leastC consecutive
rounds, qi remains zero. �

Claim 5. Let σ be a state that occurs after sufficiently many rounds so that every token has arrived at least once at some process
running the delay program. In the (suffix) execution following σ , if a token arrives at pi in round t, then no token arrives at pi
during rounds t + 1 through t + C.

Proof. After σ , a token departs from any given delay process pi only at line 4 of delay, which has precondition ci = 0 and
postcondition ci = C . Thus, each delay process releases a token once every C + 1 rounds (or less often, if ri = 0 holds).
A relay process pj could potentially release tokens once per round, if rj remains positive, however we have supposed that
each token has entered some delay process before σ . A simple inductive argument shows that rj = 0 holds throughout the
execution following σ . Therefore, each process experiences token arrival at most once every C + 1 rounds. �
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Below we consider only executions that start with a state σ satisfying (5). For such executions, a corollary of Claim 5 is:
the token arrival rate at any process is at most 1/(C + 1).

Claim 6. Let σ be a state in any execution identified by Claim 5. Then, throughout the remainder of the execution,

(∀ i :: ri ≤ 1+ rσ
i ). (8)

Proof. If some ri increases in a round, then because of Claim 5, no additional token arrives to pi for C + 1 rounds; this is an
adequate number of rounds to ensure that pi will release a token, thus putting ri back to its original value. �

Claim 6 allows us to introduce the notion of a resting bound for any process pi. With respect to an execution E with an initial
state σ as defined in Claim 5, for each pi executing the delay program there is a bound 1+ rσ

i on the number of tokens that
may rest together at pi during the remainder of E. After any round in E producing a state β , let us consider three possibilities
for any particular delay process pi’s number of resting tokens:

rβ

i = (1+ rσ
i ) ∨ rβ

i = rσ
i ∨ rβ

i < rσ
i .

Notice that for the first two disjuncts, the resting bound of ri is unchanged. However, for the third disjunct, where pi released
a token in the round and has fewer than rσ

i resting tokens, the argument of Claim 6 can be applied to state β , lowering the
resting bound for pi to 1 + rβ

i . More generally, there might be other processes that lower their resting bounds during the
round obtaining β . Thus, the resting bound developed by Claim 6 for each process may improve during an execution. At any
particular point in E, the best bound for ri is 1+ rδ

i , where δ is determined by the most recent round that lowered ri’s resting
bound; if there is no such preceding round, then let δ = σ . Below, we find special cases with more accurate bounds.

Resting bounds are the basis for a variant function on protocol execution. Let F be a tuple formed by listing the resting
bounds for all delay processes. Since no process increases its resting bound in any round, it follows that valuations of F can
only decrease during execution. If all components of tuple F are zero, then it is possible to show that the protocol has reached
a legitimate state. We say that F is positive if any of its components is nonzero. In order to prove convergence, two more
claims are needed. First, a special case is required for a resting bound of zero (since Claim 6’s form is inappropriate); second,
it must be shown that F eventually does decrease if it is positive.

Claim 7. Let E be an execution originating from a state σ identified by Claim 5, and suppose α is a state in E where pi running
delay satisfies rα

i = 0 ∧ cα
i = 0. Then, for the execution following α, the resting bound of ri is zero.

Proof. The proof is by induction over the execution following α, based on the sequence of rounds associated with token
arrival at pi. When a token arrives at pi after state α, the predicate ri = 0 ∧ ci = 0 holds. The delay program establishes
qi = 1 ∧ ri = 0 ∧ ci = C whenprocessing the arriving token. Claim5ensures that no additional tokenwill arrive at pi during
the following C rounds, so that ci = 0 holds when the next token arrival occurs for pi. �

Claim 8. Let E be an execution originating from a state σ identified by Claim 5. F cannot be positive and constant throughout E.

Proof. Proof by contradiction. Suppose, for each delay pi, that the resting bound never decreases. We analyze scenarios for
this supposition and derive necessary conditions, which are used to show a contradiction. Claim 3 implies that pi receives
a token infinitely often in E and releases a token infinitely many times. If each token reception coincides with releasing
a token, which entails ci = 0, then ri > 0 would remain constant throughout E. For such a continuing scenario, pi must
receive a token once every C + 1 rounds. The other possible scenario is that of ri incrementing to the resting bound, then
decrementing, and repeating this pattern. For this scenario, ci decrements to zero, then resets to C , continuously during E.
Because we have supposed that ri never decrements twice before incrementing again (otherwise F would decrease), tokens
need to arrive sufficiently often at pi. Suppose ci = k > 0when a token arrives. Then another tokenmust arrive after exactly
C + 1 rounds so that ci = k upon token arrival. If instead, a token arrives after C + 1+ d rounds, then ci = k− dwould hold
upon token arrival, d ≤ k. More generally, the spacing in token arrivals over E could be C + 1+ t1, then C + 1+ t2, and so
on up to a delay gap of C + 1 + tℓ rounds, so long as

∑ℓ
j=1 tj ≤ k. Each time there is a delay gap of C + 1 + tj rounds with

tj > 0, the counter ci decreases in this scenario. A decrease resulting in ci = 0 would then force all future delays to be C + 1,
so that tokens arrive exactly as they are released, preventing a reduction of ri.

Having exposed the scenarios for F remaining constant over execution E, thus at least one ri > 0 throughout E, we
observe that from m(C + 1) ≤ n there exists a segment of the ring, with more than C + 1 processes, containing no token,
at every state in E. The existence of such a segment implies that some delay pi will receive a token after a delay of more
than C + 1 rounds (a more detailed argument could take into account processes identified by Claim 7, which merely pass
along tokens when they arrive). Thus, infinitely often, a delay between token arrivals is at least C + 2 rounds. It follows
that eventually, ci decreases to zero for some pi before a token arrives, at which point it will decrease ri, contradicting the
assumption that F remains constant. �

Lemma 2 (Convergence). Every execution of the protocol eventually contains a legitimate state.

Proof. The proof is by induction on Claim 8, so long as F is positive. Therefore, the resting bound for every delay process is
zero eventually. To establish that the resulting state is legitimate, it is enough to verify the behavior of a delay process pi
during the C + 1 rounds preceding token arrival to see that (3)–(5) hold with respect to pi. �
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Fig. 4. Simulations with n = 50,m = 2 and m = 5.
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We sketch an argument bounding the worst-case convergence time using elements from the proof of convergence. The
variant function F is applied to an execution suffix satisfying (7), and Claim 5; such a suffix occurs within O(n) rounds of
any execution: the worst case occurs when one delay process pi holds all m tokens, which it releases after at most m · C
rounds, and the last of these tokens takes O(n) rounds to again arrive at a delay process; since m · C ≤ n by (1), we have
O(n) rounds overall to obtain the suffix for Claim 5. To bound the worst case for F reducing in an execution, we observe
that there are at most n components to F , each with an initial maximum value of m. Suppose each component decreases
sequentially, therefore requiring n · m · f time, where f is the worst-case number of rounds to reduce one component of F .
We bound f by the proof argument of Claim 8. A ring segment of length at least C + 2 and devoid of tokens implies some
decrease of a resting bound in the proof argument. This decrease may take O(C) time to occur, as a c variable reduces while
a process awaits a token. If f ∈ O(C), an overall bound on convergence time is O(n)+ O(n ·m · C) = O(n2); however, if the
ring segment without tokens is longer, then a delay process may spend more time awaiting a token. A conservative bound
is therefore O(m · n2) = O(n3) rounds.

As an aside, we note that the algorithms are deterministic, execution is fully synchronous (there is no nondeterministic
adversary), and the programmodel fits the Petri net formalism; therefore a formulation using the max-plus algebra [9] can
express system execution, and there exist tools to compute eigenvalues for a matrix representing the system. We did not
investigate such an approach, since the choice of which processes to delay would be an extra complication.

We have simulated the protocol for various cases of n, m, C , and choices for the number of delay processes. These
simulations suggest that a bound O(n3) may be loose for the average case. Another point of the simulation is to investigate
the influence of having multiple delay processes on convergence time. Our simulations explored random initial values for
variables. Three graphs, spread over Figs. 4 and 5, experiment with differing values ofm and d, all for a 50-node ring. In each
graph, an experiment is repeated for different numbers of delay processes, from 1 to 50. The results suggest that having at
least a few delay processes is beneficial. To explore another dimension, the ring size n, a fourth graph presented in Fig. 5
varies n: the results suggest that the expected convergence time is linear in n.
Theorem 1. The delay/relay protocol, with at least one delay process, and with n > 1, m > 1, d = C + 1, and m · d ≤ n,
self-stabilizes to desiderata d1–d5.
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delay ::

do forever

1 ti ← ti + 1 ;

2 if qi−1 > 0 ∧ timingi then

3 ignorei ← ignorei − 1 ;

4 if ignorei < 1 then

5 timingi ← false ;

6 ClockBasei ← ⌊ti/M⌋ − 1

7 ri ← ri + qi−1 ;

8 qi−1 ← 0 ;

9 if ci > 0 then

10 ci ← ci − 1

11 else if ci = 0 ∧ ri > 0 then

12 ci ← ClockBasei ;

13 ri ← ri − 1 ;

14 qi ← qi + 1 ;

15 if ¬timingi then

16 timingi ← true ;

17 ti ← 0 ;

18 ignorei ← M − ri − 1

Fig. 6. delay program revised to calculate ring size.

Proof. Claim 1 attends to d1, The definition of legitimate state validates d2. A property of a legitimate state is that ci = 0
whenever a token arrives at pi, hence the behavior of delay is like relay: a tokenmoves in each round, as required by d3. The
ring topology and the unidirectional movement of tokens satisfies d4. Finally, Lemmas 1 and 2 provide the technical basis
for the theorem, showing d5. �

6. Protocol with unknown ring size

A parameter C , upon which the target separation between tokens is based, is given to the protocol of Section 5. Here
we consider another design alternative, where the separation between tokens should be maximized, but the ring size is
unknown. The technique is straightforward: building upon the delay program, additional variables are added to count the
number of rounds needed to circulate a token, that is, the new program calculates n. Two extra assumptions are used for the
new protocol: the value of m is known and the number of processes running the delay program is exactly one. We discuss
this limitation in Section 7.

Fig. 6 presents the revised delay program,which introduces timingi, ti, ignorei, and ClockBasei. The programuses ClockBasei
in place of the parameter C , which is periodically recalculated. The method of calculation relies upon knowing M and
knowing that all other processes run relay. The program begins a timing phase in lines 16–18, which starts a counter ti
at zero, and calculates the number of tokens that are elsewhere in the ring, ignorei. Subsequently, lines 3–6 handle token
arrival for purposes of calculating ring size; after ignorei arriving tokens are ignored; the next token is the one that was
released when the timing phase began. Of course, this calculation can be incorrect in the early rounds of execution, but
eventually each timing phase culminates in ti having the ring size at line 6.

Lemma 3. With the delay program of Fig. 6 at one process and relay at all other processes, the system is self-stabilizing to
C = ⌊n/m⌋ − 1.

Proof. By arguments below, in any execution, ClockBasei = ⌊n/m⌋ − 1 holds throughout a suffix execution. Lemmas 1 and
2 then applied to verify self-stabilization.

Let pk be the sole delay process. For convergence, it is enough to show that ClockBasek obtains the maximum feasible
value for m tokens, that is, ClockBasek = ⌊n/m⌋ − 1 holds throughout a suffix of any execution. The proof hinges on two
cases, either (1) we have (∀i : i ≠ k : ri = 0), or (2) some tokens rest at relay processes. In case (1), because pk releases at
most one token per round, and because all relay processes pass along the token it receives in the next round, it follows that
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A completewalk of thenetwork shown
induces a virtual ring; nodes in the
center row of the network occur more
than once in the walk, conflicting with
d4. Shown are three tokens separated
by distance at least two; as all tokens
synchronously follow the walk, the
separation by d = 2 persists in the
underlying network.

Fig. 7. Virtual ring.

(1) holds invariantly. Providedm > 0, process pk infinitely often receives and releases a token in any execution, so lines 5–6
and lines 16–18 of Fig. 6 are executed repeatedly. Line 18 calculates one fewer than the number of tokens that do not rest
at pk at the instant a token is released from pk to pk+1. Provided (1) holds, it will be n subsequent rounds before this token
circulates the ring and returns to pk. Lines 1–6 compute the elapsed time between the release of this token and its return,
so that tk = nwhen line 6 calculates the value of ClockBasek, and this drives convergence in the remainder of the execution.
Case (2) eventually disappears, because ClockBasek > 1 is calculated in each execution of line 6. Resting tokens for relay
processes therefore do not persist, assuming m < n: no process receives a new token in every round, hence any positive
number of resting tokens reduces to zero, from whence the count of resting tokens cannot rise. �

7. Discussion

This paper provides fault tolerant constructions for timing behavior inwhichm loci of control are separated. The program
mechanisms are simple: tokens carry no data and processes use few variables. The first construction can be uniform,
distinguished (with one unique corrective process), or hybrid. The second construction requires one distinguished process.

An interesting question is whether there can be a hybrid or uniform protocol when the ring size and separation constant
are unknown. For the style of algorithm in Section 6 we conjecture the answer is negative. If one delay process pi has an
accurate estimate for maximum separation d = ci + 1 and does not delay any arriving token, another process pj may
have either a larger, inaccurate estimate, or may perceive that tokens are unaligned with its counter and therefore delay
some arriving tokens. Such a delay would lead to pi detecting an apparently larger ring size, since the measured traversal
time around the ring would include pj’s delays. Hence pi would raise its estimate for the separation value. Note that the
problemmay admit other types of algorithms: for example, if tokens are allowed to carry data, this would enable processes
to communicate. Whether such increased communication power is useful is an open question. Another direction would be
to use randomized timing, so that different delay processes do not interfere.

The program of Section 5 conforms to the standard Petri netmodel of behavior control if we replace counters by auxiliary
token rings, as shown in Fig. 1. This restriction enables tokens tomodel a physical system.However, programs that use tokens
to carry data and thus communicate with explicit data rather than mere timing of tokens would need more functionality
from a physical embodiment than Section 5’s programs use in their timing-only mechanism. We have preferred for the
present to investigate algorithms that use only the timing of tokens to overcome an unpredictable initial state.

An obvious direction for future research is to move beyond rings to other topologies. We think it likely that some of the
desiderata d1–d5 will be relaxed for other topologies. Fig. 7 suggests how a virtual ring, induced by a walk that includes all
nodes, might be mapped upon a network. Our protocols could be adapted to run on the virtual ring, and this might provide
separated token circulation. Note that the distance between tokens in the virtual ring could map to smaller distance in the
underlying topology, because a node may appear more than once in the virtual ring. The existence of a walk for which m
tokens can be separated by distance d in the underlying topology is an open question. Instead of mapping a complete walk
of the network nodes, another strategy could be to map distinct rings upon a network so that they cover all nodes, and then
hope to coordinate the timing of token circulation in these rings where they intersect.
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