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1. Introduction

Infinitesimal Cherednik algebras (more generally, infinitesimal Hecke algebras) were introduced by
Etingof, Gan and Ginzburg [EGG]. Here we will be concerned with infinitesimal Cherednik algebras
of gln . Let us recall the definition. Let h = C

n denote the standard representation of g = gln . Denote
by yi the standard basis elements of h, and by xi the dual basis of h∗ . For the given deformation
parameter b = b0 + b1τ + · · · + bmτm ∈ C[τ ], bm �= 0, m � 0, one defines the infinitesimal Cherednik
algebra of gln with parameter b, to be denoted by Hb , as the quotient of the semi-direct product
Ug� T (h⊕ h∗) by the relations

[
x, x′] = 0,

[
y, y′] = 0, [y, x] = b0r0(x, y) + b1r1(x, y) + · · · + bmrm(x, y),

where x, x′ ∈ h∗ , y, y′ ∈ h, and ri(x, y) ∈ Ug are the symmetrizations of the following functions on g

(thought of as elements in Symg via the trace pairing):

(
x, (1 − t A)−1 y

)
det(1 − t A)−1 = r0(x, y)(A) + r1(x, y)(A)t + r2(x, y)(A)t2 + · · · .
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The algebras Hb have the following PBW property. If we introduce the filtration on Hb by setting
deg x = deg y = 1, x ∈ h∗ , y ∈ h, deg g = 0, g ∈ g, then the natural map: Ug� Sym(h⊕ h∗) → gr Hb is
an isomorphism.

The enveloping algebra U(sln+1) is an example of Hb for m = 1 (Example 4.7 [EGG]). In fact, the
algebras Hb have many properties similar to the enveloping algebras of simple Lie algebras. We will
introduce a Poisson variety (for each m := deg b) which can be thought of as an analogue of the
nilpotent cone of a semi-simple Lie algebra. Our first result shows that it is an irreducible reduced
normal variety (Theorem 2.1), an analogue of Kostant’s classical result. As an application, we will
describe annihilators of Verma modules of Hb , and show that in positive characteristic the Azumaya
locus of Hb coincides with the smooth locus of its center.

2. The main results

Since Hb � Hab for any a ∈ C
∗ , we will assume from now on that b is monic: bm = 1.

Besides the natural action of G = GLn(C) on Hb , we also have the action of h and h∗ defined
as follows. For any v ∈ h, the adjoint action ad(v) is locally nilpotent on Hb . Thus exp(ad(v)) gives
an automorphism of Hb , and in this way h acts on Hb . The action of h∗ on Hb is defined similarly.
Combining these actions with the G-action, we get the actions of G � h, G � h∗ on Hb .

Let Q 1, . . . , Q n ∈ k[g]G be defined as follows:

det(t Id −X) =
n∑

j=0

(−1) jtn− j Q j(X).

Also let α1, . . . ,αn be the corresponding elements of Z(Ug) under the symmetrization identifica-
tion of C[g]G and Z(Ug). It was shown in [T1] that the following elements generate the center of Hb

ti =
∑

j

[αi, y j]x j − ci =
∑

j

y j[x j,αi] − ci ∈ Z(Hb),

where ci ∈ Z(Ug) are certain elements. The top symbols of ci are given as follows. Let us consider the
following element of C[g][t, τ ] given by

c′ = det(t − A)

(tτ − 1)det(1 − τ A)

then the top symbol of ci considered as an element of C[g] is the coefficient of tn−iτm in c′ . We
have that Z(Hb) = C[t1, . . . , tn]. For a character χ : C[t1, . . . , tn] → C, denote by Ub,χ the quotient
Hb/ker(χ)Hb .

From now on we will assume that m � 1. Let us introduce a new filtration on Hb by setting
deg xi = m, deg yi = 1, deg g = 1, g ∈ g. Then, gr Hb = Sym(g ⊕ h ⊕ h∗) is a Poisson algebra (and the
Poisson bracket depends only on m). We will denote it by Am . Denote Bm = gr Hb/(gr t1, . . . ,gr tn).
Again, Bm is a Poisson algebra. Variety Spec B1 is the nilpotent cone of sln+1(C). The main result of
this paper is the following analogue of some of Kostant’s theorems for semi-simple Lie algebras [K].

Theorem 2.1. The algebra Hb is a free module over its center. Bm is an integral domain, which is a normal,
complete intersection ring. Moreover, the smooth locus of Spec Bm under the Poisson bracket is symplectic.

Proof. We will partially follow [BL]. Denote by fx (resp. f y) the element det({αi, x j})i, j ∈ Bm (resp.
det({αi, y j})i j ∈ Bm). Then the localization (Bm) fx is isomorphic to the localized polynomial algebra
Sym(g ⊕ h) fx . A similar statement holds for (Bm) f y . We will use the notation D( f ) = Spec(Bm) f ⊂
Spec Bm, f ∈ Bm . Let us set U = D( fx) ∪ D( f y). To show that X = Spec Bm is an irreducible, reduced
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and normal variety, it is enough to show that it is Cohen–Macaulay, U is connected, and dim(X \ U ) �
dim X − 2 [BL, Corollary 2.3].

We have an action of the affine group G � h on Sym(g ⊕ h). Then fx is a semi-invariant of this
action, i.e., (g, v) fx = det(g) fx , g ∈ G , v ∈ h. As explained in [R1, Théorème 3.8], the set D( fx) ⊂
Spec Sym(g ⊕ h) is the dense orbit under the action of G � h on Spec Sym(g ⊕ h). In fact, this set
consists of pairs (A, v) with A ∈ g, v ∈ h, such that v, Av, . . . , An−1 v , are linearly independent. We
have a similar statement about D( f y), and the action of G � h∗ on Sym(g⊕ h∗).

It was shown in [T1] that the algebra C[α1, . . . ,αn] is finite over C[c1, . . . , cn]. In particular,
C[c1, . . . , cn] is isomorphic to the polynomial algebra in n variables. Hence, C[α1, . . . ,αn] being
a Cohen–Macaulay algebra, it must be a finitely generated projective module over C[c1, . . . , cn].
Therefore, by the Quillen–Suslin theorem, C[α1, . . . ,αn] is a finitely generated free module over
C[c1, . . . , cn].

Let us introduce a filtration on Am , where deg g = 1, g ∈ g, deg xi = deg y j = 0. Since Symg is
a free C[α1, . . . ,αn]-module (by Kostant’s theorem for g [BL]), we conclude that Symg is a free
C[c1, . . . , cn]-module. This implies that (t1, . . . , tn) is a regular sequence (since gr c j = gr t j) and gr Am
is a free module over C[gr t1, . . . ,gr tn]. Therefore Am is a free module over C[gr t1, . . . ,gr tn], where
gr refers to the first filtration on Hb . In particular, Hb is a free Z(Hb)-module. Also, we obtain that
Bm is a complete intersection ring. In particular, X = Spec Bm is a Cohen–Macaulay variety.

Let us put Y = X \ U . The latter filtration on Am induces the corresponding filtration on its quo-
tient Bm . We will denote the degeneration of X (resp. Y ) under this filtration by X ′ (resp. Y ′). Then
X ′ is given by equations ci = 0, i = 1, . . . ,n. Similarly, Y ′ is given by fx = f y = 0, ci = 0, i = 1, . . . ,n.
Therefore, we get that X ′ = h × h∗ × N and Y ′ = h × h∗ × N ∩ ( fx = 0 = f y), where N denotes the
nilpotent cone of g. We need to prove that dim Y � dim X − 2. Since dim Y = dim Y ′ , it is equivalent
to showing that dim Y ′ � dim X − 2 = dim X ′ − 2 = dim N + 2 dimh− 2. Consider the projection map
p : Y ′ → N . Let W ⊂ N denote the open subset of regular nilpotent matrices. Then, by the before men-
tioned result of [R1], we have dim p−1(W ) � dim N + 2 dimh− 2, and p−1(N \ W ) = (N \ W )×h×h∗ ,
whose dimension is dim N + 2 dimh− 2. This proves the desired inequality.

Denote by U ′ the smooth locus of X . We have U ⊂ U ′ . It is obvious that D( fx)∩ D( f y) is nonempty.
It is also clear that D( fx)∪ D( f y) is in the orbit of any element of D( fx)∩ D( f y) under the actions of
G �h, G �h∗ . Since both G �h, G �h∗ are connected algebraic groups preserving the Poisson structure
of X , it follows that U lies in a single symplectic leaf of U ′ . Therefore, U is a symplectic variety and
since its complement in U ′ has the codimension � 2, it follows that U ′ is also symplectic. �

We will use the following standard simple

Lemma 2.1. Let A be a nonnegatively filtered k-algebra (where k is a field) such that gr A is commutative.
Suppose that z1, . . . , zn ∈ Z(A) are central elements such that gr z1, . . . ,gr zn is a regular sequence in gr A.
Then gr(A/(z1, . . . , zn)) = gr A/(gr z1, . . . ,gr zn).

Proof. We need to show that gr(
∑

i xi zi) ∈ (gr z1, . . . ,gr zn) for all xi ∈ A. We may assume that∑
gr xi gr zi = 0. We proceed by the induction on

∑
deg(xi). It follows from the regularity of the

sequence (gr z1, . . . ,gr zn) that there exist a1, . . . ,an ∈ A, such that gr ai = gr xi , 1 � i � n and∑
i ai zi = 0. Now replacing xi by xi − ai , we are done by the inductive assumption. �
As a consequence of the proof of Theorem 2.1 and Lemma 2.1, we get that gr Ub,χ = Bm is a

domain, so Ub,χ is also a domain.
In analogy with semi-simple Lie algebras, one defines an analogue of the category O, and Verma

modules for Hb [T1]. Let us recall their definition. Denote by n+ (resp. n−) the Lie subalgebra of g

consisting of upper (resp. lower) triangular matrices. Then we have a triangular decomposition Hb =
H− ⊗ U(C) ⊗ H+ , where H+ (resp. H−) denotes the subalgebra of Hb generated by n+ and h (resp.
n− and h∗), and C ⊂ g is the Cartan subalgebra of all diagonal matrices. Denote by L+ (resp. L−) the
Lie algebra n+ � h (resp. n− � h∗). Thus, H+ (resp. H−) is the enveloping algebra UL+ (resp. UL−).

For a weight λ ∈ C∗ , the corresponding Verma module M(λ) is defined as Hb ⊗U(C)⊗H+ Cλ , where
Cλ is the 1-dimensional representation of U(C) ⊗ H+ on which C acts by λ and L+ acts by 0.
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The category O (analogue of the BGG category O of semi-simple Lie algebras) is defined as the
full subcategory of the category of finitely generated left Hb-modules whose objects are modules on
which C acts semi-simply and L+ acts locally nilpotently.

We have the following analogue of a theorem of Duflo [D].

Theorem 2.2. The annihilator of a Verma module M(λ) is generated by Ann(M(λ)) ∩ Z(Hb).

Proof. The following lemma and its proof is directly analogous to [J, Corollary 2.8]. We present it for
the completeness sake. In what follows GK(−) denotes the Gelfand–Kirillov dimension.

Lemma 2.2. GK(Hb/Ann(M(λ))) = 2GK(M(λ)).

Proof. At first, we will show that GK(Hb/AnnL(λ)) = 2GK(L(λ)), where L(λ) is the simple mod-
ule with the highest weight λ. Since L− acts locally nilpotently on Hb , we get an imbedding
Hb/AnnL(λ) → D(L−, L(λ)) where D(L−, L(λ)) is the subalgebra of EndC(L(λ)) consisting of elements
annihilated by some power of ad(L−). According to [J, Lemma 2.6] GK(D(L−, L(λ))) � 2GK(L(λ)),
thus GK(Hb/AnnL(λ)) � 2GK(L(λ)). Let vλ be a maximal weight vector of L(λ). Thus L(λ) = H−vλ .
Let us choose δ ∈ C so that ad(δ) has positive (negative) eigenvalues on L+(L−). For a ∈ C, and
Hb-module M , we will denote by Ma ⊂ M the space of eigenvectors of δ with the eigenvalue a.
In particular, L(λ)λ(δ) = Cvλ , and L(λ) = ⊕

l�0 L(λ)λ(δ)−l . Then for any a ∈ L(λ)μ , there is an ele-
ment c ∈ Hb , such that ca = vλ . But since λ is the maximal weight of L(λ), using the triangular
decomposition H = H− ⊗ U(C) ⊗ H+ we may choose c ∈ H+ . Thus, for any a ∈ L(λ)μ , b ∈ L(λ)μ′
there exist α ∈ (H+)λ(δ)−μ , α′ ∈ (H−)μ′−λ(δ) such that b = α′αa. Let us denote by ρ the quo-
tient map Hb → Hb/AnnL(λ). Thus, dim HomC(L(λ)μ, L(λ)μ′ ) � dimρ((H−)λ(δ)−μ(H+)μ′−λ(δ)). Let
Fl = ∑

i�l(g ⊕ h ⊕ h∗)i ⊂ Hb , l � 0. Then it follows that there is a positive integer k > 0 such
that Fl vλ ⊂ ∑

i�kl L(λ)(λ(δ)−i) and (H−)−l ⊂ Fkl ∩ H− , (H+)l ⊂ Fkl ∩ H+ , for all l > 0. Now it

follows that dimρ(F2kl) � (dim Fl/k vλ)
2. This implies that GK(Hb/AnnL(λ)) � 2GK(L(λ)), and so

GK(Hb/AnnL(λ)) = 2GK(L(λ)).
Suppose that L(λi), i = 1, . . . , l are the elements of the Jordan–Holder series of M(λ) (M(λ) has a

finite length [T1, Theorem 4.1]). Then,

GK
(

Hb/AnnM(λ)
) = Maxi

{
GK

(
Hb/AnnL(λi)

)}

= 2Maxi
{

GK
(
L(λi)

)} = 2GK
(
M(λ)

)
. �

Now since Hb/Ann(M(λ)) ∩ Z(Hb) is a domain and its quotient Hb/(AnnM(λ)) has the same GK-
dimension as 2GK(M(λ)) = GK(Hb/Ann(M(λ)) ∩ Z(Hb)), we conclude using [BK, 3.5] that

Ann
(
M(λ)

) = (
Ann

(
M(λ)

) ∩ Z(Hb)
)

Hb. �
This implies that maximal primitive quotients of Hb are precisely algebras Ub,χ , χ ∈ Spec Z(Hb).

Indeed, by [T1] every primitive quotient of Hb has the form Hb/Ann L(λ), λ ∈ C∗ . Let M(λ′) be
an irreducible Verma module which belongs to the same block of the BGG category O as L(λ).
Thus Ann(M(λ′)) ∩ Z(Hb) = Ann(L(λ)) ∩ Z(Hb). Therefore, using Theorem 2.2, we conclude that
Ann(M(λ′)) ⊂ Ann(L(λ)). Thus Hb/Ann(L(λ)) is a quotient of Ub,χ , where χ is the character of Z(Hb)

corresponding to M(λ′).

3. The Azumaya locus

Let us discuss the case of a field k = k̄ of positive characteristic. As before, let b ∈ k[τ ], deg b =
m > 1, be a monic polynomial. If p is large enough (with respect to m) then the definition of Hb
over k makes sense. One checks easily that hp,h∗p, g p − g[p] ∈ Z(Hb), g ∈ g, where g[p] ∈ g denotes
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the p-th power of g as a matrix [T1]. We will denote by Z0(Hb) the algebra generated by the above
elements. Also, for p  0 central elements t1, . . . , tn ∈ Z(Hb) are defined.

We have the following result which was conjectured in [T1].

Theorem 3.1. The smooth and Azumaya loci of Z(Hb) coincide, and Z(Hb) is generated by t1, . . . , tn over

Z0(Hb). The PI-degree of Hb is p
1
2 (n2+n) .

Proof. Algebra Bm can be defined over Z[ 1
d! ] = R for large enough d. Call this algebra B̃m . Thus,

Bm = B̃m ⊗R C. Since by Theorem 2.1 Spec B̃m ⊗R C is an irreducible normal Poisson variety whose
regular locus is symplectic, it follows that for large enough p = char k, a similar statement holds for
B̄m = B̃m ⊗R k. Since gr Hb/(t1 − a1, . . . , tn − an) = B̄m , a1, . . . ,an ∈ k (by Lemma 2.1), the claim now
follows from [T2, Theorem 2.3] and the following simple lemma. �
Lemma 3.1. Let S be an affine Poisson algebra over k, and let ( f1, . . . , fn) be a regular sequence of Poisson
central elements. Let S/( f1, . . . , fn) be a normal domain such that its smooth locus is symplectic. Then the
Poisson center of S is generated as an algebra by S p, f1, . . . , fn.

Proof. Let us denote the ideal ( f1, . . . , fn) by I . It follows immediately that the Poisson center
of S lies in S p + I [T2, proof of Lemma 2.4]. Let f /∈ S p[ f1, . . . , fn] be in the Poisson center of S .
Then there is k such that f ∈ (S p[ f1, . . . , fn] + Ik) \ (S p[ f1, . . . , fn] + Ik+1). Let us write f = g + h,
where g ∈ S p[ f1, . . . , fn], h ∈ Ik \ (S p[ f1, . . . , fn] + Ik+1). But Ik/Ik+1 is a free Poisson S/I-module.
Indeed, since f1, . . . , fn is a regular sequence, it follows that Ik/Ik+1 is a free S/I-module with
the basis f m1

1 f m2
2 · · · f mn

n ,
∑n

l=1 ml = k. Since f1, . . . , fn are Poisson central elements, it follows that
Ik/Ik+1 is a free Poisson S/I-module with the basis consisting of monomials f m1

1 · · · f mn
n . Thus,

Ik/Ik+1 = ⊕
m1,...,mn

(S/I) f m1
1 · · · f mn

n . Let us denote by h̄ the image of h in Ik/Ik+1. Let us write

h̄ = ∑
am1,...,mn f m1

1 · · · f mn
n ,am1,...,mn ∈ S/I . Since {S,h} = 0, it follows that am1,...,mn ∈ (S/I)p (since the

Poisson center of S/I is (S/I)p ). Therefore, the image of h in Ik/Ik+1 must lie in S p[ f1, . . . , fn]/Ik+1,
a contradiction. �
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