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Abstract—This paper is concerned with the oscillation of the bounded solutions of neutral difference
equation
A[GnAm_l (zn — PnIn—k)] + San(fc..) =0,

where A is the forward difference operator defined by Azy, = Tp41 = Zn.

1. INTRODUCTION
Let N denote the natural numbers and let N(a) = {a,a+1,...,}. Consider

A[anAm_l(xn — PnZn-k)] + 6¢nf(zs,) =0, (1)

where 8§ = +1, k is a positive integer, {an}, {pn}, {¢n}, and {0} are sequences of real numbers
on N(ng) for ng > 0, a, > 0 with Aa,, > 0 and

Y=o, (@)

1 < a < pp £ b < oo for some real numbers a and b, ¢, > 0, limo, =oco0,and f: R — Ris
continuous such that zf(z) > 0 for =z # 0. nme
By a solution of (1) we mean a sequence {z,} which is defined for n > m;%{m —k,o,,} and
m

satisfies (1) for n sufficiently large. A nontrivial solution {z,} of (1) is said to be oscillatory if
the terms z,, are not eventually positive or eventually negative.

The oscillation theorem we prove here is the discrete analogue of a theorem we have recently
obtained. The proof proceeds in a similar manner but quite different due to discrete nature of
the equation (1). Furthermore, it requires discrete anologues of Kiguradze’s lemmas [1] that are
not available to us. We have established these analogues, but in the following, we can only state
them due to limited space.

2. LEMMAS

LEMMA 1. Let {y,} be a sequence of real numbers on N = {0,1,2,3,...}. Let y, and A™y,, be

of constant sign with A™y,, being not identically zero in any subset of the form {n;,n; +1,...}
of N. If

YAy, <0,
then
(i) there is a natural number ny > ny such that the sequences {A’y,},j=1,2,...,n—1 are
of constant sign on {na,nz; +1,...};
(i) there exists a number ! € {0,1,2,...,m — 1} with (=1)™'~! = 1 such that
ynAjyn>0 fOl'j=0,1,...,I, n2n2
(1Y 'y, Ay, >0 forj=141,....m—1, n>n,.
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LEMMA 2. Assume that y, together with Aly,, j = 1,2,...,m — 1, are of constant sign on
N(ni). Moreover
ynAmyn Z 0.
Then either .
UnlAy, 20, i=12,....m
(

or one can find a number I, 1 € {0,1,...,m — 2}, (1)

Ay, >0,  ji=1,2,...,1,
(1Y 'yaAiy, >0,  j=1+1,...,m=-2.

3. THE MAIN RESULT

THEOREM. In addition to above conditions, suppose that

oo -~
m-14n _
E" ., = (3)

Then

(i) every bounded solution {z,} of (1) is oscillatory when (—1)™8§ = —1, and
(ii) every bounded solution {z,} of (1) is either oscillatory or satisfies
infz, =0

T -
IMinil &
n—0o

when (-1)"6 = 1.

PROOF. Let z, be an eventually positive solution of (1). Set z, = 2, —ppzn_i. If z, is eventually
positive, then we have

Tpn > PpTn-k = ATn—k,

[+
12

nd therefore by induction
by inductior

1¢U 2y

Tn > a-’z,,_,-k

[¢]
L]

Tntjk > az,
1 -

g Tatoo a0 f T aat o JUPRE.JULES M PV - TSy | DTG & N
10r evel‘y poslt;lve ln(.egel' J- Leuving g — OO0 111 L€ lasSL llEguality we 3€C uvilatb

lim z; = oo.

j—oo °
Since this is a contradiction with z, being bounded, we conclude that z, is eventually negative.
It follows from (1) that §A[a,A™!2,] is also eventually negative. Thus, it can be claimed that
eventually A™ 12, is either positive or negative. Suppose that it is eventually negative, then

thava 1o o -
Lere is an 1’\"1 2 fig such that for n Z ‘)\vrj_,

6anAm_lz,, < 6aNlAm_lle <0.
Dividing both sides of this inequality by @, and summing from N) to n, we obtain
= 1

SA™ 12,41 < an, A" 2y, —.
i=N; Gn

In view of (2), we see that 6A™ 1z, — —o0o as n — oo, which is of course a contradiction with
z, being bounded. Thus we see that §A™ 2, is eventually positive. Now from (1), it follows
that

ba,A™ 2z, = —(Aay)(6A™ 1 2, 41) — g0 f(2o

)- (4)
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Since Aa, and g, are nonnegative, (4) implies that §A™z, is eventually negative. In view of
the fact that z, is bounded, applying Lemma 1 and Lemma 2, one can easily see that there are
numbers n; > N; and I € {0,1}, (=1)™~!6 = 1, such that for n > n,

Az, <0, j=0,1,2,...,1,
(=1))-'Aiz, <0, j=141,...,m. (5)
It is clear from (4) that
SA™ 2, + Z—: f(zan) <0. (6)

Multiplying (6) by n™~! and summing from n; to n and then applying the summation by parts
formula to the first term in the resulting inequality, we obtain

m-2
D (DHS(ARTTIYA™ T i) + (=)™ (m ~ Dlzngm = 2ny4m-1]
i=0
+ z jmrE L f(ea) 0. (7)
j=m
Since {zn} is bounded, if we let n — oo in (7) then we must have
> i L (a,) < o0 ®)

j=m
From (3) and (8), it follows that

liminf x, = 0.
n—+00

Now we shall show that "lingo zn = 0. Clearly,
Zngk — Zn = Tngk — (Pask + 1)Tn + PaZn—k. 9
Let {n;} be such that n; — oo as j — 00, and z,, — 0 as j — co. Then from (9) we get
0= lim [2n,4+& + Pn; Zn;-&]-
As zp, 4k > 0 and py;z,;,-k > 0, we see that p,;z,;—x — 0 as j — oo. If we now use the fact
that p, is bounded and z,; = z,; — Pn,;Zn;—k, We see that

lim z, = 0.

n—oo
Note that if (—1)™§ = —1, then it follows from (5) that [ = 1 and consequently z, is negative
and decreasing. In this case, hm zn = 0 is not possible, and therefore x, must be oscillatory.

Suppose that (—1)™6 = 1. Then I = 0 and so z,, increases to 0 as n grows to infinity. That is,
given € > 0, there exists an nz > n; such that

Zn > —€, for all n > n,.
Thus,
— DPnTn—k > —¢€, for n > ny
or
Tn > —€+azr,_k, forn>m
or
az, < €+ Tpyk, for n > n,.
By induction,
ajzn<cac+---+aj'lc+:cn+jk, for n > ny.
Let M be a bound for z,, then it follows from the last inequality that
Ty < J__ale-}- Ma™, (10)
Since Jll.nolo a= =0 and € > 0 is arbitrary, (10) implies that
lim z, = 0.
n—oo

This completes the proof.
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