OSCILLATION OF A NEUTRAL DIFFERENCE EQUATION

A. Zafer and R. S. Dahiya
Mathematics Department, Iowa State University
Ames, IA 50010, U.S.A.

(Received and accepted December 1992)

$$
\begin{aligned}
& \text { Abstract-This paper is concerned with the oscillation of the bounded solutions of neutral difference } \\
& \text { equation } \\
& \qquad \Delta\left[a_{n} \Delta^{m-1}\left(x_{n}-p_{n} x_{n-k}\right)\right]+\delta q_{n} f\left(x_{\sigma_{n}}\right)=0
\end{aligned}
$$

where Δ is the forward difference operator defined by $\Delta x_{n}=x_{n+1}-x_{n}$.

1. INTRODUCTION

Let N denote the natural numbers and let $N(a)=\{a, a+1, \ldots$,$\} . Consider$

$$
\begin{equation*}
\Delta\left[a_{n} \Delta^{m-1}\left(x_{n}-p_{n} x_{n-k}\right)\right]+\delta q_{n} f\left(x_{\sigma_{n}}\right)=0, \tag{1}
\end{equation*}
$$

where $\delta= \pm 1, k$ is a positive integer, $\left\{a_{n}\right\},\left\{p_{n}\right\},\left\{q_{n}\right\}$, and $\left\{\sigma_{n}\right\}$ are sequences of real numbers on $N\left(n_{0}\right)$ for $n_{0} \geq 0, a_{n}>0$ with $\Delta a_{n} \geq 0$ and

$$
\begin{equation*}
\sum^{\infty} \frac{1}{a_{n}}=\infty \tag{2}
\end{equation*}
$$

$1<a \leq p_{n} \leq b<\infty$ for some real numbers a and $b, q_{n} \geq 0, \lim _{n \rightarrow \infty} \sigma_{n}=\infty$, and $f: R \rightarrow R$ is continuous such that $x f(x)>0$ for $x \neq 0$.
By a solution of (1) we mean a sequence $\left\{x_{n}\right\}$ which is defined for $n \geq \min _{m \geq 0}\left\{m-k, \sigma_{m}\right\}$ and satisfies (1) for n sufficiently large. A nontrivial solution $\left\{x_{n}\right\}$ of (1) is said to be oscillatory if the terms x_{n} are not eventually positive or eventually negative.
The oscillation theorem we prove here is the discrete analogue of a theorem we have recently obtained. The proof proceeds in a similar manner but quite different due to discrete nature of the equation (1). Furthermore, it requires discrete anologues of Kiguradze's lemmas [1] that are not available to us. We have established these analogues, but in the following, we can only state them due to limited space.

2. LEMMAS

Lemma 1. Let $\left\{y_{n}\right\}$ be a sequence of real numbers on $N=\{0,1,2,3, \ldots\}$. Let y_{n} and $\Delta^{m} y_{n}$ be of constant sign with $\Delta^{m} y_{n}$ being not identically zero in any subset of the form $\left\{n_{1}, n_{1}+1, \ldots\right\}$ of N. If

$$
y_{n} \Delta^{m} y_{n} \leq 0,
$$

then
(i) there is a natural number $n_{2} \geq n_{1}$ such that the sequences $\left\{\Delta^{j} y_{n}\right\}, j=1,2, \ldots, n-1$ are of constant sign on $\left\{n_{2}, n_{2}+1, \ldots\right\}$;
(ii) there exists a number $l \in\{0,1,2, \ldots, m-1\}$ with $(-1)^{m-l-1}=1$ such that

$$
\begin{array}{rll}
y_{n} \Delta^{j} y_{n}>0 & \text { for } j=0,1, \ldots, l, & n \geq n_{2} \\
(-1)^{j-1} y_{n} \Delta^{j} y_{n}>0 & \text { for } j=l+1, \ldots, m-1, & n \geq n_{2} .
\end{array}
$$

Lemma 2. Assume that y_{n} together with $\Delta^{j} y_{n}, j=1,2, \ldots, m-1$, are of constant sign on $N\left(n_{1}\right)$. Moreover

$$
y_{n} \Delta^{m} y_{n} \geq 0
$$

Then either

$$
y_{n} \Delta^{j} y_{n} \geq 0, \quad j=1,2, \ldots, m
$$

or one can find a number $l, l \in\{0,1, \ldots, m-2\},(-1)^{m-1}=1$, such that

$$
\begin{aligned}
y_{n} \Delta^{j} y_{n}>0, & j=1,2, \ldots, l, \\
(-1)^{j-l} y_{n} \Delta^{j} y_{n}>0, & j=l+1, \ldots, m-2 .
\end{aligned}
$$

3. THE MAIN RESULT

Theorem. In addition to above conditions, suppose that

$$
\begin{equation*}
\sum^{\infty} n^{m-1} \frac{q_{n}}{a_{n}}=\infty \tag{3}
\end{equation*}
$$

Then
(i) every bounded solution $\left\{x_{n}\right\}$ of (1) is oscillatory when $(-1)^{m} \delta=-1$, and
(ii) every bounded solution $\left\{x_{n}\right\}$ of (1) is either oscillatory or satisfies

$$
\liminf _{n \rightarrow \infty} x_{n}=0
$$

when $(-1)^{m} \delta=1$.
Proof. Let x_{n} be an eventually positive solution of (1). Set $z_{n}=x_{n}-p_{n} x_{n-k}$. If z_{n} is eventually positive, then we have

$$
x_{n}>p_{n} x_{n-k} \geq a x_{n-k},
$$

and therefore by induction,

$$
x_{n}>a^{j} x_{n-j k}
$$

or

$$
x_{n+j k}>a^{j} x_{n}
$$

for every positive integer \boldsymbol{j}. Letting $\boldsymbol{j} \rightarrow \infty$ in the last inequality we see that

$$
\lim _{j \rightarrow \infty} x_{j}=\infty
$$

Since this is a contradiction with x_{n} being bounded, we conclude that z_{n} is eventually negative. It follows from (1) that $\delta \Delta\left[a_{n} \Delta^{m-1} z_{n}\right]$ is also eventually negative. Thus, it can be claimed that eventually $\delta \Delta^{m-1} z_{n}$ is either positive or negative. Suppose that it is eventually negative, then there is an $N_{1} \geq n_{0}$ such that for $n \geq N_{1}$,

$$
\delta a_{n} \Delta^{m-1} z_{n} \leq \delta a_{N_{1}} \Delta^{m-1} z_{N_{1}}<0
$$

Dividing both sides of this inequality by a_{n} and summing from N_{1} to n, we obtain

$$
\delta \Delta^{m-1} z_{n+1} \leq \delta a_{N_{1}} \Delta^{m-1} z_{N_{1}} \sum_{i=N_{1}}^{n} \frac{1}{a_{n}}
$$

In view of (2), we see that $\delta \Delta^{m-1} z_{n} \rightarrow-\infty$ as $n \rightarrow \infty$, which is of course a contradiction with z_{n} being bounded. Thus we see that $\delta \Delta^{m-1} z_{n}$ is eventually positive. Now from (1), it follows that

$$
\begin{equation*}
\delta a_{n} \Delta^{m} z_{n}=-\left(\Delta a_{n}\right)\left(\delta \Delta^{m-1} z_{n+1}\right)-q_{n} f\left(x_{\sigma_{n}}\right) \tag{4}
\end{equation*}
$$

Since Δa_{n} and q_{n} are nonnegative, (4) implies that $\delta \Delta^{m} z_{n}$ is eventually negative. In view of the fact that z_{n} is bounded, applying Lemma 1 and Lemma 2, one can easily see that there are numbers $n_{1} \geq N_{1}$ and $l \in\{0,1\},(-1)^{m-1} \delta=1$, such that for $n \geq n_{1}$

$$
\begin{align*}
\Delta^{j} z_{n}<0, & j=0,1,2, \ldots, l \\
(-1)^{j-l} \Delta^{j} z_{n}<0, & j=l+1, \ldots, m \tag{5}
\end{align*}
$$

It is clear from (4) that

$$
\begin{equation*}
\delta \Delta^{m} z_{n}+\frac{q_{n}}{a_{n}} f\left(x_{\sigma_{n}}\right) \leq 0 \tag{6}
\end{equation*}
$$

Multiplying (6) by n^{m-1} and summing from n_{1} to n and then applying the summation by parts formula to the first term in the resulting inequality, we obtain

$$
\begin{align*}
\sum_{i=0}^{m-2}(-1)^{i+1} \delta\left(\Delta^{i} n_{1}^{m-1}\right)\left(\Delta^{m-i-1} z_{n_{1}+i}\right) & +(-1)^{m-1} \delta(m-1)!\left[z_{n+m}-z_{n_{1}+m-1}\right] \\
& +\sum_{j=n_{1}}^{n} j^{m-1} \frac{q_{j}}{a_{j}} f\left(x_{\sigma_{j}}\right) \leq 0 \tag{7}
\end{align*}
$$

Since $\left\{z_{n}\right\}$ is bounded, if we let $n \rightarrow \infty$ in (7) then we must have

$$
\begin{equation*}
\sum_{j=n_{1}}^{\infty} j^{m-1} \frac{q_{j}}{a_{j}} f\left(x_{\sigma_{j}}\right)<\infty \tag{8}
\end{equation*}
$$

From (3) and (8), it follows that

$$
\liminf _{n \rightarrow \infty} x_{n}=0
$$

Now we shall show that $\lim _{n \rightarrow \infty} z_{n}=0$. Clearly,

$$
\begin{equation*}
z_{n+k}-z_{n}=x_{n+k}-\left(p_{n+k}+1\right) x_{n}+p_{n} x_{n-k} \tag{9}
\end{equation*}
$$

Let $\left\{n_{j}\right\}$ be such that $n_{j} \rightarrow \infty$ as $j \rightarrow \infty$, and $x_{n_{j}} \rightarrow 0$ as $j \rightarrow \infty$. Then from (9) we get

$$
0=\lim _{k \rightarrow \infty}\left[x_{n_{j}+k}+p_{n_{j}} x_{n_{j}-k}\right]
$$

As $x_{n_{j}+k}>0$ and $p_{n_{j}} x_{n_{j}-k}>0$, we see that $p_{n_{j}} x_{n_{j}-k} \rightarrow 0$ as $j \rightarrow \infty$. If we now use the fact that p_{n} is bounded and $z_{n_{j}}=x_{n_{j}}-p_{n_{j}} x_{n_{j}-k}$, we see that

$$
\lim _{n \rightarrow \infty} z_{n}=0
$$

Note that if $(-1)^{m} \delta=-1$, then it follows from (5) that $l=1$ and consequently z_{n} is negative and decreasing. In this case, $\lim _{n \rightarrow \infty} z_{n}=0$ is not possible, and therefore x_{n} must be oscillatory.

Suppose that $(-1)^{m} \delta=1$. Then $l=0$ and so z_{n} increases to 0 as n grows to infinity. That is, given $\epsilon>0$, there exists an $n_{2} \geq n_{1}$ such that

$$
z_{n}>-\epsilon, \quad \text { for all } n \geq n_{2}
$$

Thus,

$$
x_{n}-p_{n} x_{n-k}>-\epsilon, \quad \text { for } n \geq n_{1}
$$

or

$$
x_{n}>-\epsilon+a x_{n-k}, \quad \text { for } n \geq n_{1}
$$

or

$$
a x_{n}<\epsilon+x_{n+k}, \quad \text { for } n \geq n_{1}
$$

By induction,

$$
a^{j} x_{n}<\epsilon a \epsilon+\cdots+a^{j-1} \epsilon+x_{n+j k}, \quad \text { for } n \geq n_{1}
$$

Let M be a bound for x_{n}, then it follows from the last inequality that

$$
\begin{equation*}
x_{n}<\frac{a^{-j}-1}{1-a} \epsilon+M a^{-j} \tag{10}
\end{equation*}
$$

Since $\lim _{j \rightarrow \infty} a^{-j}=0$ and $\epsilon>0$ is arbitrary, (10) implies that

$$
\lim _{n \rightarrow \infty} x_{n}=0
$$

This completes the proof.

References

1. I.T. Kiguradze, On the oscillation of solutions of equation $d^{m} u / d t^{m}+a(t) u^{m} \operatorname{sgn} u=0$, Mat. Sb. 65, 172-187 (1964).
2. R.P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, Inc., New York, (1992).
3. S.S. Cheng, T.C. Yan and H.J. Li, Oscillation criteria for second order difference equation, Funkcialaj Ekvacioj 34, 223-239 (1991).
4. R.S. Dahiya and O. Akinyele, Oscillation theorems of $n^{\text {th }}$ order functional differential equations with forcing terms, J. Math. Anal. Appl. 109, 323-332 (1985).
5. V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Academic Press, Inc., New York, (1988).
6. W. Zhicheng and Y. Jianshe, Oscillation of second order nonlinear difference equations, Funkcialaj Ekvacioj 34, 313-319 (1991).
