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Abstract-This paper is concerned with the oscillation of the bounded solutions of neutral difference 
equation 

&,A”‘--l(~, -P&,-k)) + 6qnf(+,) = 0, 

where A is the forward difference operator defined by Ax,, = zn+l - z,,. 

1. INTRODUCTION 

Let N denote the natural numbers and let N(a) = {a,~ + 1,. . . ,}. Consider 

A[anA”-l(zn - ~n~,-k)l+ knf(Zg,,) = 0, (1) 

where 6 = fl, k is a positive integer, {a,}, {pn}, {qn), and {un} are sequences of real numbers 

on N(Q) for no > 0, a,, > 0 with Aa, 2 0 and 

(2) 

1 < a 5 pn 5 b < co for some real numbers a and b, qn 2 0, lim a,, = 00, and f : R + R is 
continuous such that zf(x) > 0 for z # 0. 

“-CO 

By a solution of (1) we mean a sequence {E,} which is defined for n 2 zFo{m - k,u,} and 

satisfies (1) for n sufficiently large. A nontrivial solution {tn} of (1) is said-to be oscillatory if 

the terms Z, are not eventually positive or eventually negative. 
The oscillation theorem we prove here is the discrete analogue of a theorem we have recently 

obtained. The proof proceeds in a similar manner but quite different due to discrete nature of 

the equation (1). Furthermore, it requires discrete anologues of Kiguradze’s lemmas [l] that are 
not available to us. We have established these analogues, but in the following, we can only state 
them due to limited space. 

2. LEMMAS 

LEMMA 1. Let {yn} b e a sequence of real numbers on N = (0, 1,2,3,. . . }. Let y,, and Amy,, be 
of constant sign with Amy, being not identically zero in any subset of the form {nl, nl + 1,. . . } 
ofN. If 

3/nAmyn 5 0, 

then 

(i) there is a natural number nz 1 nl such that the sequences {Aj yn}, j = 1,2,. . . ,n - 1 are 
ofconstantsignon {flz,nz+l,...}; 

(ii) there exists a number 1 E {0,1,2,. . . , m - 1) with (-l)m-‘-l = 1 such that 

Y,&Y., > 0 for j = 0, 1, . . . ,I, n L n2 

(-l)i-rynAjy,, > 0 forj=I+l,..., m-l, n>nz. 
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LEMMA 2. Assume that y, together with Ajyn, j = 1,2,. . . , m - 1, are of constant sign on 
N(nl). Moreover 

Y.,A~Y,, L 0. 

Then either 

Y&Y, 2 0, j= 1,2,...,m 

or one can find a number I, 1 E (0, 1, . . . , m - 2}, (-l)*-’ = I, such that 

Y,&Y~ > 0, j=1,2 ,..., I, 

(-l)j-ry,,Ajy, > 0, j=l+l,...,m-2. 

3. THE MAIN RESULT 

THEOREM. In addition to above conditions, suppose that 

2 ,rn-15 = 00. 

(3) 

Then 

(i) every bounded solution {z,,} of (1) is oscillatory when (-1)“6 = -1, and 

(ii) every bounded solution {z,,} of (1) is either oscillatory or satisfies 

lim inf cn = 0 
n-CO 

when (-l)m6 = 1. 

PROOF. Let t, be an eventually positive solution of (1). Set r,, = z,-p,,z,_b. If z, is eventually 
positive, then we have 

zn > PnXn-k 2 aXn-k7 

and therefore by induction, 
X” > Cl’Xn-jk 

Xn+jk > a3Xn 

for every positive integer j. Letting j + 00 in the last inequality we see that 

lim Xj = CO. 
j-cm 

Since this is a contradiction with x,, being bounded, we conclude that z, is eventually negative. 

It follows from (1) that SA[a,Am-‘r,] is al so eventually negative. Thus, it can be claimed that 

eventually 6Am-’ zn is either positive or negative. Suppose that it is eventually negative, then 

there is an Ni 2 no such that for n 2 Nr, 

6a,A”-‘z, 5 6aN1Ams1zN, < 0. 

Dividing both sides of this inequality by a, and summing from Ni to n, we obtain 

6Am-%,+i 5 6aN1Am-rzN1 2 -. 1 

i=N, 
an 

In view of (2), we see that 6A m-1z, -+ -_oo ss n -_) cm, which is of course a contradiction with 

zn being bounded. Thus we see that 6Am-‘r, is eventually positive. Now from (I), it follows 

that 
6a,Amz, = -(Aa”n)(6Am-1z,,+r) - q,,f(x,,). (4 
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Since Au, and q,, are nonnegative, (4) implies that bA”‘.z,, is eventually negative. In view of 
the fact that z,, is bounded, applying Lemma 1 and Lemma 2, one can easily see that there are 
numbers ni 1 Ni and 1 E (0, l}, (-l)m-‘6 = 1, such that for n 2 n1 

A% < 0, j=o,1,2 I ,..., , 

(-l)j-‘Ajz” < 0, j=l+l,...,m. (5) 

It is clear from (4) that 

6A”‘z, + z/(xeJ IO. (6) 

Multiplying (6) by nm-’ and summing from n1 to n and then applying the summation by parts 

formula to the first term in the resulting inequality, we obtain 
m-2 

~(-l)i+‘a(A’n~-l)(Am-i-l~~~+~) + (-l)m-‘S(m - l)![rn+,,, - z,,,+,,,_i] 
i=O 

+ 2 jm-y(xoj) 5 0. 
j=nl 

Since {z,,} is bounded, if we let n -+ cm in (7) then we must have 

2 jm-i;f(xGj) < 00. 
j=n, 

From (3) and (8), it follows that 
liminf x, = 0. 
fl-m 

Now we shall show that Jirnirr, = 0. Clearly, 

Gl+I: - &I = xfl+k - (Pn+t + 1)&l +Pn%-k. 

Let { nj ) be such that nj + 00 as j -+ 00, and z,,~ ---* 0 as j -+ co. Then from (9) we get 

03) 

(9) 

0 = tmm[Xnj+k + PT3jx"j-k]' 

AS xnj+k > 0 and pnjx,j_.t > 0, we see that pnjxnj_k --) 0 as j + 00. If we now use the fact 
that p,, is bounded and .z,,~ = I,,~ - pnjx,j_k, we see that 

lim z, = 0. 
“-+CO 

Note that if (-l)“a = -1, then it follows from (5) that I= 1 and consequently z,, is negative 
and decreasing. In this case, lim z,, = 0 is not possible, and therefore x, must be oscillatory. 

n-m 
Suppose that (-l)“a = 1. Then 1 = 0 and so .z, increases to 0 as n grows to infinity. That is, 

given c > 0, there exists an n2 > nl such that 

Thus, 

%* > -c, for all n 1 722. 

or 

or 

By induction, 

xn -Pn%-k > -6, for n 1 nl 

2, > -c + Q&-k, for n > nl 

oxn < c+%+kr for n 2 ni. 

CljZ, <~a~~".+,j-l~+zn+jk, for n 2 121. 

Let M be a bound for I,, then it follows from the last inequality that 

.-j _ 1 

xn < -c + Ma-j. 
l-a 

(10) 

Since jlimm a -j = 0 and c > 0 is arbitrary, (10) implies that 

lim x, = 0. 
n-D;, 

This completes the proof. 
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