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Abstract

In this short note we give a characterization of the support map from classical convexity. We show it is
the unique additive transformation from the class of closed convex sets in Rn which include 0 to the class of
positive 1-homogeneous functions on Rn. This will be a consequence of a theorem about transforms from
the class of convex sets to itself which preserve Minkowski addition.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

In this short note we give a characterization of the support map from classical convexity.
To state the results, we need first some notation. We denote the class of all closed convex sets

in Rn by Kn. The subclass of the sets in Kn which contain 0 (possibly at the boundary) will be
denoted by Kn

0 . For this subclass, the operation of duality is well defined and involutive, namely
if K ∈ Kn

0 then after fixing some scalar product 〈·,·〉 on Rn, its dual set

K◦ = {
x ∈ Rn: 〈x, y〉 � 1 for all y ∈ K

}

is also in Kn
0 , and moreover, (K◦)◦ = K .
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In this note we mainly restrict our attention to the above two classes, however there are sev-
eral other natural classes which are frequently used, the class Kn

0,b consisting of bounded (thus
compact) sets in Kn which include 0, and the class Kn

(0),b which consists of sets in Kn
0,b which

include 0 in their interior (again, this is a class which is invariant under the operation of duality).
For a body K ∈ Kn, the support function hK : Rn → R ∪ {∞} is defined by

hK(u) = sup
x∈K

〈x,u〉.

(In fact, if we allow the empty set to belong to Kn then formally it makes sense to let hφ ≡ −∞,
but we omit the empty set from Kn and do not have to handle this small technical detail.)

For the subclass Kn
0 , we see that hK is a convex non-negative function, and it is also 1-

homogeneous. It is easy to see that in fact K◦ = {u: hK(u) � 1} and hK is the norm associated
with the dual body of K . Note that although usually the term “body” is reserved for compact
convex sets, and “norm” is reserved for even convex 1-homogeneous functions which do not
assume the value +∞ and assume the value 0 only at 0, here we use the more general (and less
standard) definition, allowing the (convex) function to be only positively homogeneous, to be 0
on a large set, so that the body which is its unit ball can be unbounded, and to have 0 on the
boundary of the “unit ball” so that the associated “norm” can assume the value +∞.

The well-known operation of Minkowski addition is defined on the class Kn as follows

K1 + K2 = {x1 + x2: x1 ∈ K2, x2 ∈ K2},

and the class Kn
0 is closed under this operation, namely the Minkowski sum of two sets in Kn

0 is
again in Kn

0 .
It is easy to verify that the support map is additive with respect to the operation of Minkowski

addition, namely for K1,K2 ∈ Kn

hK1+K2(u) = hK1(u) + hK2(u).

In this note, we show that up to a linear transformation, this property characterizes the support
function. We need one more notation before stating our main theorem. Let Hn stand for support
functions of bodies in Kn

0 , namely

Hn = {
positively homogeneous convex functions h : Rn → R�0 ∪ {+∞}, h(0) = 0

}
.

We prove the following theorem.

Theorem 1. Let n � 2. Assume we are given a bijective transform T : Kn
0 → Hn satisfying for

every K1,K2 ∈ Kn
0 that

T (K1 + K2) = T K1 + T K2.

Then T is essentially the standard support function, namely there exists a linear transformation
B ∈ GLn such that for all K ∈ Kn

0

T K = hBK.



S. Artstein-Avidan, V. Milman / Advances in Mathematics 223 (2010) 379–391 381
For dimension n = 1, the assumption implies that there are two constants c > 0 and d > 0
such that either for all x, y � 0 we have T ([−y, x]) = h[−cy,dx] or for all x, y � 0 we have
T ([−y, x]) = h[−cx,dy].

Theorem 1 is a direct corollary of the following theorem.

Theorem 2. Let n � 2. Assume we are given a bijective transform T : Kn
0 → Kn

0 satisfying for
every K1,K2 ∈ Kn

0 that

T K1 + T K2 = T (K1 + K2).

Then, there exists a linear transformation B ∈ GLn such that for all K

T K = BK.

For dimension n = 1, the assumption implies that there are two constants c > 0 and d > 0
such that either for all x, y � 0 we have T ([−y, x]) = [−cy, dx] or for all x, y � 0 we have
T ([−y, x]) = [−cx, dy].

The paper is organized as follows. First, we examine the background for Theorem 1. We
show how it fits in the more general framework of the theory of convex functions, where we have
proved a similar theorem. We then recall a different characterization of the support function in
terms of order preserving transforms, which gives rise to the same transform. We then devote
Section 3 to the proof of Theorem 2, and Theorem 1, and in Section 4 remark on a few other
variants of it. Finally, in Section 5 we sketch the proof of a similar theorem for convex functions
and give some final remarks.

2. Background

There are two natural contexts in which one should examine Theorem 1. The first is how it
fits in the framework of convex functions. A lot has been written on the topic of extending results
from convex bodies to log-concave functions (which are e−φ for convex φ), see for example
[1,7] and references therein. Here we have an opposite situation, where the corresponding theo-
rem for convex functions was proven first. We recall this theorem and its relatives in Section 2.1.
A second context in which one may view these results is in the frameworks of different charac-
terizations of the support function. A different family of such results was obtained recently by
means of order preserving transformations, and we present these theorems in Section 2.2 below.

2.1. Convex functions

Let us recall our earlier results about convex functions (which can be also stated in the lan-
guage of log-concave functions) from [1]. We denote the class of lower-semi-continuous convex
functions φ : Rn → R ∪ {±∞} by Cvx(Rn). (There is a slight ambiguity about how convexity
fits with functions assuming infinite values; it is reasonable to let the only function actually as-
suming the value −∞ be the constant −∞ function.) The definition of the inf-convolution of
two functions f,g ∈ Cvx(Rn) is given by

(f � g)(z) = inf
(
f (x) + g(y)

)
.

x+y=z
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We need some convention to decide what to do with −∞ + ∞. We omit the justification for
the following reasonable agreement: (−∞)�f ≡ −∞ for all f , and (−∞) + f ≡ −∞ for all
f �≡ +∞, and, as functions, −∞ + ∞ ≡ +∞.

The following theorem was proven in the paper [1].

Theorem 3. Assume we are given a transform T : Cvx(Rn) → Cvx(Rn) (defined on the whole
domain) satisfying for all f,g ∈ Cvx(Rn):

1. T T f = f ,
2. T f + T g = T (f � g).

Then, there exists a symmetric linear transformation B ∈ GLn such that for all f

(T f )(x) = sup
y∈Rn

(〈Bx,y〉 − f (y)
)
.

Note that the transform T which comes up is, up to a linear change induced by B (which
can be thought of as a change of coordinates) no other than the well-known Legendre transform,
defined by

(Lf )(x) = sup
y∈Rn

(〈x, y〉 − f (y)
)
.

Note that B need not be positive definite, which corresponds to the fact that one may choose
different sets of coordinates in the base and in the target space.

In fact, we were able to prove the more general theorem below. We sketch its proof, for the
reader’s convenience, in Section 5.

Theorem 4. Assume we are given a bijective transform T : Cvx(Rn) → Cvx(Rn) (defined on the
whole domain) satisfying for all f,g ∈ Cvx(Rn)

T f + T g = T (f + g).

Then, there exists a constant C0, a vector v0 and a linear transformation B0 ∈ GLn such that for
all f

(T f )(x) = C0f (B0x + v0).

As a corollary one then gets the slightly stronger theorem below.

Theorem 5. Assume we are given a bijective transform T : Cvx(Rn) → Cvx(Rn) (defined on the
whole domain) satisfying for all f,g ∈ Cvx(Rn)

T f + T g = T (f � g).

Then, there exists a constant C0, a vector v0 and a linear transformation B0 ∈ GLn such that for
all f

(T f )(x) = C0(Lf )(B0x + v0).
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Similarly, if one knows that for all f,g ∈ Cvx(Rn)

T (f + g) = T f � T g

then there exists a constant C1, a vector v1 and a linear transformation B1 ∈ GLn such that for
all f

(T f )(x) = 〈x, v1〉 + C1(Lf )(B1x).

Indeed, to see that Theorem 4 implies Theorem 5 simply consider the transform T L, which
satisfies

T L(f + g) = T (Lf � Lg) = T Lf + T Lg

and apply Theorem 4 to get that (T Lf )(x) = C0f (B0x + v0) and thus (using L Lf = f ) we
have (T f )(x) = C0(Lf )(B0x + v0). For the second case consider L T , then

L T (f + g) = L(T f � T g) = L T f + L T g

so that by Theorem 4 we have that (L T f )(x) = C0f (B0x + v0) and applying L on both sides
we get,

(T f )(x) = sup
y

(〈x, y〉 − C0f (B0y + v0)
) = 〈x, v1〉 + C0 Lf (B1x).

Note also that Theorem 5 is stronger than Theorem 3, since in the conditions of Theorems 3
(the involution assumption) T must satisfy both assumptions T f + T g = T (f � g) and T (f +
g) = T f � T g. Thus it must be of both forms given in the conclusion of Theorem 5, meaning
that both v0 and v1 must be 0, and we are left with f → C0 Lf ◦ B . Applying it twice and using
the involution assumption, we also see that B must be symmetric and that C0 = 1.

Let us restate some of the above theorems in terms of the support function. To this end, we
should introduce the class LC(Rn) of log-concave functions on Rn. This class, which is simply
the class of functions of the form e−φ for φ ∈ Cvx(Rn), are usually seen as a generalization of
the class of convex bodies, which can be naturally embedded in this class by taking K → 1K , its
characteristic function, which equals 1 on K and 0 elsewhere (other natural embeddings can be
given as well).

Consider the transform S : LC(Rn) → Cvx(Rn) given by S(f ) = L(− logf ). It is easy to
check that on the subclass of LC(Rn) consisting of indicators of convex bodies, we have that
S(1K) = hK . Thus, in this very weak sense, S is an extension of the support function from the
class of convex bodies to the class LC(Rn). In the next section it will be explained why S is the
correct extension in terms of order preservation. However, Theorem 5 shows that it is the right
extension in terms of additivity. To explain this, one has to recognize what is the meaning of
Minkowski addition for log-concave functions. This was thoroughly discussed in [4], where we
showed that if one defines the sum of two log-concave functions f,g ∈ LC(Rn) by the Asplund
product

(f � g)(z) = sup f (x)g(y)

{x+y=z}
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then one gets in particular that 1K1 � 1K2 = 1K1+K2 , so that it is a generalization of Minkowski
addition, and more importantly, the Prékopa Leindler inequality (see e.g. [8]) implies a Brunn–
Minkowski inequality for the integrals (to state it one has to define also the homothety of a
log-concave function, again, see [4] for details).

Our Theorem 5 above implies that S is essentially the only transform S : LC(Rn) → Cvx(Rn)

which preserves this additivity.

Theorem 6. Assume we are given a transform T : LC(Rn) → Cvx(Rn) (defined on the whole
domain) satisfying for all f,g ∈ LC(Rn)

T (f � g) = T f + T g.

Then, there exists a constant C0, a vector v0 and a linear transformation B0 ∈ GLn such that for
all f

(T f )(x) = C0
(

L(− logf )
)
(B0x + v0).

Indeed, define T ′ : Cvx(Rn) → Cvx(Rn) by T ′ϕ = T (e−φ). Then, since for f = e−ϕ and
g = e−ψ we have f � g = e−(ϕ�ψ), we get that the condition on T implies that

T ′(ϕ � ψ) = T
(
e−ϕ � e−ψ

) = T e−ϕ + T e−ψ = T ′ϕ + T ′ψ

so that T ′ satisfies the conditions of Theorem 5 and so

(T ′ϕ)(x) = C0(Lϕ)(B0x + v0).

This in turn implies that

T f = C0
(

L(− logf )
)
(B0x + v0).

2.2. Another characterization of the support map

It is easy to see that the support map, mapping a convex body K to its support function hK , is
an order preserving transformation (with respect to the partial order of inclusion for sets and the
partial order of point-wise inequality on functions). In [3] we state the following theorem, which
is an easy corollary of a simple variant of Theorem 11 from [2], see also [10] for a full proof and
a more general theorem.

Theorem 7. Let n � 2. Assume a bijection h : Kn
0 → Hn is given, which satisfies that for all

K1,K2 ∈ Kn
0

K1 ⊆ K2 ⇔ h(K1) � h(K2).

Then h is essentially the standard support function, namely there exists a linear B ∈ GLn such
that for every K ∈ Kn

0

h(K) = hBK.
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Note that here the assumption on the dimension is crucial, since in dimension 1 any increasing
function will do.

A similar theorem holds for the class of compact convex sets which include 0 in the interior,
and this is a consequence of a theorem of Böröczky and Schneider from [5]. Also, a similar
theorem holds for the Minkowski functional K → ‖·‖K where order preservation is replaced by
order reversion.

Moreover, in [3] we prove that also in the case of log-concave functions, order preservation
is a characterization of the generalized support function. More precisely, as before, one extends
the operation of support function from the class Kn

0 to the class LC(Rn) (where the embedding
Kn

0 ⊂ LC(Rn) is simply K → 1K ). The extension is given by

S(f ) = L(− logf ).

Again this is an essentially unique order preserving mapping, this time between LC(Rn) and
Cvx(Rn). More precisely we have shown in [3].

Theorem 8. Let n � 1. Any bijective mapping S : LC(Rn) → Cvx(Rn) which preserves the (par-
tial) order must be, up to a linear change, the ‘support’ map S defined above.

For more information, a discussion and proofs, regarding order preserving transforms, see [3].

3. Proof of Theorem 2

The case n = 1 is easy. Since {0}+K = K for all K , clearly T ({0}) = {0}. Similarly, T R = R

since R+K = R for all K . Next, as T R�0 + T R�0 = T R�0, and since this is true for R�0 and
also for R�0, and apart from {0} and R they are the only sets satisfying K +K = K , we have that
either T R�0 = R�0 and T R�0 = R�0 or the other way around. We may assume w.l.o.g. that we
are the first case, since we may always compose T with K → −K . Next, as [0, x]+R�0 = R�0
for x � 0, we see that T [0, x] + R�0 = R�0 and so T ([0, x]) = [0, a(x)] for some function
a : R�0 → R�0, and since

T
([0, x] + [0, y]) = T

([0, x + y])

we see that a(x) is additive. Also, a(x) must be monotone since for x > y we have that

[0, x] = [0, y] + [0, x − y]

so that

[
0, a(x)

] = T
([0, x]) = T

([0, y]) + T
([0, y − x]) ⊃ T

([0, y]) = [
0, a(y)

]
.

Therefore, a(x) must be linear, as so we have that for some positive constant a > 0 we have
T ([0, x]) = [0, ax]. Doing the same thing for T [−x,0], we see that there is another posi-
tive constant b > 0 for which we have T ([−x,0]) = [−bx,0]. Thus, for all x, y � 0 we have
T ([−y, x]) = [−by, ax]. If we composed T with K → −K , we get that for all x, y � 0 we have
T ([−y, x]) = [−bx, ay], as claimed.

We now concentrate on the case n � 2. The proof is divided into several simple steps.
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3.1. The inverse map

Note that if T is additive and bijective then so is T −1, since

T −1(K1 + K2) = T −1(T
(

T −1K1
) + T

(
T −1K2

))

= T −1(T
(

T −1(K1) + T −1(K2)
)) = T −1(K1) + T −1(K2).

3.2. Cones

A set K which satisfies K + K = K is mapped to a set which satisfies T K + T K = T K , so
we know that cones are mapped to cones, bijectively (because of T −1, which also maps cones
to cones). Here by a “cone” we simply mean a closed convex subset C of Rn which satisfies
C + C = C, with no non-degeneracy assumption. Moreover, since for two cones C1 and C2 we
have that C1 ⊆ C2 if and only if C1 + C2 = C2, so that

C1 ⊆ C2 ⇔ C1 + C2 = C2 ⇔ T C1 + T C2 = T C2 ⇔ T C1 ⊆ T C2,

and since T restricted to cones is bijective, we have that on the class of cones T is an order
preserving bijection which also implies that it preserves the lattice of cones.

Thus, in dimension � 3 we could use R. Schneider’s Theorem from [9] to say that the restric-
tion of T to cones is linear. However, our theorem also holds in dimension 2, and so we will
proceed in a slightly different manner.

3.3. Subsets of cones

For a cone C and any K ∈ Kn
0 we have that K ⊆ C if and only if K +C = C, a relation which

is preserved after application of T . Thus, we see that the restriction of T to any fixed cone C is
still a bijection, from all the subsets of the cone C to all the subsets of the cone T C (again, we
use the same for T −1).

3.4. Rays

A ray is a particular case of a cone. We can take an intersection of two cones which is some
given ray. It is mapped again to a non-empty intersection of two cones, which also contains a
ray. Clearly, no two different rays can be mapped to the same ray since this would contradict
injectivity — the image of a ray being a cone it contains at least one ray. The image of a ray
cannot contain two rays, because then they would both have to be mapped by T −1 to the same
ray so we see that in particular rays are mapped to rays — bijectively.

3.5. Subspaces

Let us start with a subspace L of dimension 1. It can be written at the sum of two opposite
rays, L = R − R, and so its image is T L = T R + T (−R). Since L does not include any other
ray R′ (with R′ + L = L), neither can T L include any other ray (since it would then be T R′ for
some R′) and so we see that T (−R) = −T R, and that T L is a one-dimensional subspace. We
continue by induction. Assume we know that the image under T of any k-dimensional subspace
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is a k-dimensional subspace. Let L be a (k + 1)-dimensional subspace. Then L = L1 + L2
where L1 is k-dimensional and L2 is one-dimensional, and L2 is not contained in L1 (so that
L1 +L2 �= L1). We then have that T L = T L1 + T L2 so it is the sum of a k-dimensional subspace
and a one-dimensional subspace, so that it is at most (k + 1)-dimensional. Further, we know that
T L1 + T L2 �= T L1 (by injectivity) so that T L2 �⊂ T L1 and thus the dimension of the sum is
indeed k + 1 (we could have used, instead, the induction hypothesis for T −1). Thus we have
shown that the image under T of a k-dimensional subspace is k-dimensional.

3.6. Intervals

Any interval [0, x] is a subset of a ray R�0x which is mapped to some ray R�0y, and so the
interval must be mapped to some interval [0, z] with z = ay for some a ∈ R+. We thus have a
mapping F : Rn → Rn defined by T ([0, x]) = [0,F (x)]. Moreover, we know that the mapping
maps rays to rays: for every a > 0 and x ∈ Rn we have that F(ax) = bF(x) for some b = b(x, a).

3.7. Monotonicity of F on rays

As in the one-dimensional case, since for a > 1 we have that [0, ax] = [0, x] + [0, (a − 1)x],
we know that T ([0, ax]) = T ([0, x])+ T ([0, (a −1)x]) and in particular (since all these sets are
on the same ray R+y) we see that T ([0, x]) ⊂ T ([0, ax]) when a > 1.

3.8. Linearity of F on rays

Fix x ∈ Rn and let y = F(x). Let us denote ϕ : R+ → R+ the function given by F(ax) =
ϕ(a)y (so, formally, ϕ depends on x). As in the one-dimensional case, we get that ϕ is an additive
function. Since by the previous paragraph ϕ is monotone, we get that it must be linear. Since we
postulated F(ax) = ϕ(a)y we see that ϕ(1) = 1 so that ϕ(a) = a. Thus we have proven that for
every x ∈ Rn and a ∈ R+, F(ax) = aF(x).

3.9. Linearity of F

Consider linearly independent x and y in Rn and let z = x + y. Consider any line (one-
dimensional subspace) L which lies in the same 2-dimensional subspace as x and y and such
that both x and y lie on the same side of L. It is mapped to a line T L = L′. Since [0, x] +
[0, y] + L = [0, z] + L we have that [0,F (x)] + [0,F (y)] + L′ = [0,F (z)] + L′. This means
that F(z) − (F (x) + F(y)) is a point in the line L′. However, since x and y are independent, we
have more than one possible choice for L (and thus also for L′ — by injectivity) and so we must
have that F(z) = F(x) + F(y). Together with the fact that F(ax) = aF(x), we get that F is a
linear mapping, thus there is some B ∈ GLn such that F(x) = Bx and so T ([0, x]) = [0,Bx].

3.10. Rays and double intervals

Note that since for rays we have that [0, x] + R�0x = R�0x, we get that [0,Bx] +
T (R�0x) = T (R�0x), and in particular we see that T (R�0x) = R�0Bx, that is, rays are
mapped into rays by the same linear transformation B .

Similarly, since an interval of the form I = [−ax, x] can be written as the sum [−ax,0] +
[0, x], we see that T I = [−aBx,Bx] = BI .
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3.11. Slabs

We call an L-slab (or simply a slab) a set of the form S = I + L where I is an interval of
the form [−ax, x] for some x ∈ Rn \ L and a ∈ R+ (we also allow a = 0) and L is an (n − 1)-
dimensional subspace, or, I can be a ray {tx: t � −a} which is infinite in one direction (again
we allow a = 0). Clearly by the above arguments, a slab S is mapped into a slab S′ = BS. We
also call the set Rn a slab, for technical reasons, and clearly T (Rn) = Rn since Rn +K = Rn for
all K , in particular for K = T −1Rn.

Fix a convex K ∈ Kn
0 . For every (n − 1)-dimensional subspace L, there exists a unique slab

I + L such that K + L = I + L: this is the smallest slab containing L which contains K — we
call it the “supporting L-slab for K” (note: I is not unique, since we do not ask for orthogonality
of I and L, but the slab L + I is the unique L-slab supporting K . Also — the supporting L-slab
can be all of Rn for some L’s, if, for instance, K is a half-space). We see that when I + L is the
supporting L-slab, T K + T L = T I + T L which means that T I + T L is the smallest BL-slab
which includes T K . Since we now know the form of T on both rays and intervals, we get that if
K is contained in the slab I +L and it is its supporting L-slab, then T K is contained in BI +BL

and it is its supporting BL-slab. We thus know the form of the supporting slabs for T K : they
are exactly BS where S are the supporting slabs for K . Since a convex set is determined by its
supporting slabs, and T K has the same supporting slabs as BK , we get that T K = BK , and the
theorem is proven.

The proof that Theorem 2 implies Theorem 1 is standard, namely we take T : Kn
0 → Hn and

compose it with the inverse of the support map, by this obtaining a mapping T ′ : Kn
0 → Kn

0 ,
which, by the properties of the support map, satisfies the assumptions of Theorem 2, and so
must be induced by a linear transformation B , which implies that the original T was of the form
K → hBK .

4. Variations

4.1. The class Kn

Since our general interest in the area arose from duality, we usually consider, as in Theorem 2,
the class Kn

0 , on which there is a natural duality transform. However, in the context of Theorem 2,
it seems even more natural to consider the class of all closed convex sets in Rn, with Minkowski
addition. Indeed, by very small variations on the proof of Theorem 2, we can prove the following
theorem.

Theorem 9. Let n � 1. Assume we are given a bijective transform T : Kn → Kn satisfying for
every K1,K2 ∈ Kn that

T K1 + T K2 = T (K1 + K2).

Then, there exists a linear transformation B ∈ GLn such that for all K

T K = BK.

Note that here there is actually no difference between n = 1 and n � 2, as opposed to the case
of Kn.
0
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A sketch of the proof. The case n = 1 is very easy, but has many of the ingredients for the
higher-dimensional case. Because {0} + K = K for all K , we must have that T ({0}) = {0}.
Similarly, T R = R since R + K = R for all K . The ray {x � 0} is mapped either to itself or to
the ray {x � 0} since these are the only (other) two sets which satisfy K +K = K . Let us assume
w.l.o.g. that we are in the first case (else, combine T with K → −K). Next, as [0, r]+ {x � 0} =
{x � 0} for all r > 0, we see that T [0, r] = [0, s] for some s(r) > 0, and s(r) is additive and
monotone, hence for some c1 > 0 we have s(r) = c1r , and similarly T [−r,0] = [−c2r,0] for
some c2 > 0. Finally, we must determine where {x} is mapped to. Since {x} + {−x} = {0}, we
must have T ({x}) = {u(x)}, and u is additive. Finally, since

{x} + [−2x,0] = [−x, x] = {−x} + [0,2x]

we see that

{
u(x)

} + [−2c2x,0] = {
u(−x)

} + [0,2c1x]

so that u(x) − 2c2x = u(−x) which implies that u(x) = c2x, and similarly u(x) = c1x, so that
c1 = c2. We thus see that for a general interval I = [x, y] we have that T I = T ({x} + [0, y −
x]) = c1x + T [0, y − x] = [c1x, c1y].

For n � 1 we continue in the same way. Clearly, as in 3.1, T −1 is additive as well. First, note
that T {0} = {0} since {0} is the only set K0 in Kn satisfying for every K ∈ Kn that K0 +K = K .
Similarly, T (Rn) = Rn.

Secondly, since {x} + {−x} = {0}, we have that T {x} + T {−x} = {0} which implies that
T {x} = {y} for some y = U(x) and that U(−x) = −U(x). Further, by additivity of T we get
that U is additive as a function U : Rn → Rn (we will later show that it must be linear).

As in 3.2 a set K which satisfies K + K = K is mapped to a set which satisfies T K + T K =
T K , and these sets are exactly cones. Thus we see that, as above, cones are mapped to cones,
bijectively (because of T −1, which also maps cones to cones). By the same reason as in 3.2 we
see that T preserves the lattice of cones. The first difference appears in 3.3, since K ⊂ C for
K ∈ Kn and a cone C does not imply that K + C = C (but we do not use this fact).

Section 3.4 remains the same, since rays are again mapped bijectively to rays, similarly sub-
spaces of dimension k are mapped to subspaces of dimension k as in 3.5. An interval [0, x] is
mapped to an interval [0,F (x)] since [0, x] + R�0x = R�0x and this is a characterization of
the intervals [0, λx] for λ � 0. This defines a mapping F : Rn → Rn, bijective, and which is
monotone on rays. In fact, by the same argument as in Sections 3.8 and 3.9, F(ax) = aF(x) and
F(x + y) = F(x) + F(y) so that F is a linear mapping, thus there is some B ∈ GLn such that
F(x) = Bx and so T ([0, x]) = [0,Bx]. Similarly, T (R�0x) = R�0Bx, that is, rays are mapped
into rays by the same linear transformation B and for an interval of the form I = [−ax, x] we
have T I = [−aBx,Bx] = BI .

Now we are ready to get back to U and show that it is not only additive, but linear (with the
same B as in F ). To this end, fix x ∈ Rn. Since

{x} + [−2x,0] = [−x, x] = {−x} + [0,2x]

we see by applying T and using its additivity that

{
U(x)

} + [−2Bx,0] = {
U(−x)

} + [0,2Bx]
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so that U(x) − 2Bx = U(−x) which implies that U(x) = Bx, as claimed. We thus see that for a
general interval I = [x, y] we have that T I = T ({x}+[0, y −x]) = Bx + T [0, y −x] = B[x, y].
Similarly, the interval can be infinite in one direction and the same result holds.

Going back to the original proof, we consider general slabs I + L where L is an (n − 1)-
dimensional subspace, mapped by T to the subspace BL, and so a slab S is mapped into a
slab S′ = BS. Using the same argument as above for general slabs, a convex K ∈ Kn has a
unique “supporting L-slab” K + L = I + L, and since T K + T L = T I + T L we have that
T I + T L = BI + BL is a supporting BL-slab for T K . We thus get that T K = BK , and the
theorem is proven. �
5. Sketch of a proof of Theorem 4

For the reader’s convenience, we sketch the proof of Theorem 4. First, it is easy to check that
T (+∞) = +∞ and T (−∞) = −∞ since these are the only functions which when summed with
any other function are the same, and +∞ has a representation as a sum of two other functions,
which −∞ does not. Similarly, as 0+f = f for all f characterizes 0, we see T (0) = 0. Turning
to functions satisfying f + f = f , these are exactly functions of the form DA for some convex
closed A, where DA(x) = 0 for x ∈ A and +∞ otherwise. So we get a mapping B : Kn → Kn

such that T (DA) = DB(A). Clearly, as A ⊆ A′ if and only if DA +DA′ = DA′ , we get that A ⊆ A′
if and only if B(A) ⊆ B(A′). Also, by bijectivity of T , the mapping B is bijective as well. This
implies easily that B preserves the lattice of closed convex sets in Rn, and by [10] (a result which
is in the spirit of [6] and [5]) it must be induced by a linear map. That is, for some B ∈ GLn we
have that B(K) = BK + v0.

To see what can be T (c), note first that since T (c) + T (−c) = T (0) = 0, we must have
that T (c) is an affine linear function for every c (since for two convex functions to add up to
a constant, they must both have 0 as their second derivative). Let us denote this function by
φc = 〈uc, ·〉 + b(c). From additivity of T we have that uc1+c2 = uc1 + uc2 and b(c1 + c2) =
b(c1) + b(c2). Thus, at least for rational c we can state that there exist v1 ∈ Rn and a0 ∈ R such
that for c ∈ Q

T (c)(y) = c
(〈v1, y〉 + a0

)
.

Consider a function f ∈ Cvx(Rn). To compute (T f )(x) we use that

(T f )(x) = (T f + Dx)(x) = T (f + DB−1(x−v0)
)(x) = T (c + DB−1(x−v0)

)(x)

where c = f (B−1(x − v0)). This in turn equals to (T c)(x), and so when f (B−1(x − v0)) is
rational, we get that

(T f )(x) = f
(
B−1(x − v0)

)(〈v1, x〉 + a0
)
.

Next, it is clear that we must have v1 = 0, otherwise the transform will not preserve convexity
even for very simple functions (recall that it is invertible). Finally, the values of T (c) for c ∈ Q

determine the values for all c because one may take, say, a linear function, and its rational values
determine all the others by convexity.
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