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1. INTRODUCTION 

Nonlinear partial differential equations of order higher than the first 
present complications which make their systematic classification and solution 
difhcult. Some classical methods for solving a given second-order equation 
seek a solvable first-order equation which is such that the original equation 
can be obtained from it and the two relations derived by partial differentiation 
(Jones and Ames [l] use a related development in examining a large class of 
hyperbolic equations). Such a first-order equation, called an intermediate 
integral, is often obtainable for the Monge-Ampere equation 

Rr + Ss + Tt + U(rt - 3) = F, (1) 

where p = z, , q = z, , r = z,, , s = xT2,, t = z,, , and R, S, T, U and V 
are functions of LX, y, z, p, and q, by application of such methods as those of 
Monge or Boole. Details of these methods are found in Forsyth [2, pp. 200- 
2201. However, the solutions so developed are not always in a form directly 
applicable to a particular problem. 

In this note we shall describe several physical problems that lead to equa- 
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tions of Monge-Ampere type (Eq. (1)) and then shall develop a generalized 
Lagrange series solution for the equation 

rt - s2 = 0. (2) 

2. EXAMPLES 

(a) Anisentropic FIow of Gas 

The unsteady, one dimensional, anisentropic flow of a polytropic gas, 
neglecting viscosity, conduction and radiation is represented by the equations 

Pt + wz = 0, (P4t + (P + PU% = 0 

St + us, = 0, s =f(P*Ph (3) 

where p, p, u and s are density, pressure, velocity, and entropy respectively. 
Martin [3, 41 (see also Ames [5, pp. 94-100, pp. 4041 and Giese [6]) obtains 
the Monge-Ampere equation 

for the flow in terms of the independent variables p and particle trajectory 
function I,I% The function T(#, p) = l/p is determined once the entropy func- 
tion f of Eq. (3) is specified. 

(b) Longitudinal Wave Propagation in a Moving Threadline 

Recent studies by the first author and his students on the transverse 
and longitudinal wave propagation in a moving threadline have disclosed a 
central role for Eq. (1). Herein we describe the situation for the longitudinal 
wave propagation when the transverse amplitude is small. In that case the 
dimensionless equations become 

T 
Ut f uu, = -25 

M 

Mt + Wf), = 0 (5b) 

M(T+N)=BN, (5c) 

where u, T, M, t, x, N and B are velocity, tension, mass per unit length, time, 
distance and two physical constant groups. 

Upon multiplying Eq. (Sa) by M and Eq. (5b) by u and adding, we obtain 

(uM), + (Mu2 - T)e: = 0; (6) 
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which form will be used in place of Eq. (5a). If B is defined by means of the 
relations 

ezz = ill, err = --- u.ll. (7) 

then Eq. (5b) is identically satisfied; and by choosing 

t),, = Mu2 - T (8) 

Eq. (6) is also satisfied. From Eqs. (7) and (8) we ohtain the defining relations 

(9) 

lipon substituting Eq. (9) into Eq. (5~) the Monge-Ampere equation 

is obtained 
An alternate to this formulation is offered by applying Martin’s method. 

Let us define two auxiliary functions&s. t) and #(s, t) by means of the espres- 
sions 

c& = uM, $( = - (Mu? -- T) (11) 

4, = AI, l,+bt = - uar, (12) 

whereupon 
dc$ = uM dx + (T - Mz2) dt (13) 

d# = M d.r - uM dt. (14) 

Equation (13) may be simplified by noting that 

dc$ = u(M dx - uM dt) + Tdt=tid$-tdT+d(tT), (15) 

whereupon the introduction of 4 = C$ - tT yields the new expression 

d+ -= u d$ - t dT. (16) 

From Eq. (16) we deduce that 

(17) 

The introduction of T and # as independent variables is further facilitated 
by developing the equation for dx. From Eq. (14) 

(18) 



482 AikfES AND JONES 

whereupon 

x* = Y - d&b+ 9 sT = -&bT. (19) 

From Eq. (19) x*r and xr$ are developed and equated thereby obtaining the 
Monge-Ampere equation 

1 
4dw - - &+ = - BN = constant. (20) 

For the problem at hand the quantity (NV)-l is sufficiently small that a 
regular perturbation solution is feasible. The zero order equation in such a 
development would be 

An integrated Lagrange series solution of Eq. (21) will be constructed in the 
sequel. 

3. SERIES SOLUTION 

Consider the Monge-Ampere equation 

Upon setting p = z, , y = xt Eq. (22) can be written as the system 

P&t - Pt!lr = 0, Pt - qx = 0. 

The first of these equations expresses the relation 

a(P2 4) = 0 
a(% t) ’ 

(22) 

(23) 

~4) 

where the left-hand side is a notation for the Jacobian ofp and q. Equation (24) 
implies that p and q are functionally dependent so that 

Q =F(P) (25) 

for all differentiable functions F. This is the well-known intermediate integral 
for Eq. (22). 

Upon substituting Eq. (25) into the second of Eq. (23), we have the first- 
order partial differential equation, 

Pt -F’(P) Pz = 0, (26) 
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for the determination of p. By an elementary application of the Lagrange- 
Charpit theory (e.g., see Ames [5, pp. 50-581) the general solution of Eq. (26) 
is found to be 

G[p, x + F’(p) t] = G[z,,. , .x + F’(zJ t] = 0 

for arbitrary but differentiable G. 

(27) 

Equation (27) is not the most tractable form for the determination of a. 
Alternatively, we can obtain a series solution to Eq. (26). Here we are moti- 
vated by a remark from Bellman [7, p. 7]-“The Lagrange expansion is 
derivable from the observation that if u = g(x -. ut) then ut + UU, = 0.” 
Lagrange expansions have been utilized by Banta [8] in the development 
of solutions for finite amplitude sound waves. 

An integrated Lagrange series solution is now constructed for Eq. (26). 
Suppose p has a Taylor series expansion about t -= 0, 

This form is inconvenient since the derivatives are with respect to t and not X. 
Replacement of these time derivatives is accomplished by using the differen- 
tial Eq. (26). By an inductive proof, similar to that in Goursat [9, p. 4051, 
Banta [8] shows that if 

then 
Ut +f(zJ) u, = 0 (29) 

(30) 

Upon applying this theorem to Eq. (28) using Eq. (26), we find for n > 1 

a form which involves only space derivatives of p(~, t). The expression for 
a(~, t) is then obtained by integration as 

where I’,, and F are arbitrary and w-e have discarded the function of t arising 
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from the integration. If the process of x differentiation and evaluation (at 
t = 0) are interchangeable Eq. (32) takes the form 

Upon setting e(x) = F’(.F,(x)) and integrating we obtain 

which is the integrated Lagrange expansion (Goursat [9, p. 4041 or Whittaker 
and Watson [lo, p. 1331). That Eq. (34) satisfies Eq. (22) is easily demon- 
strated. 

Uniqueness and convergence questions for Eq. (34) are now immediately 
obtainable from the Lagrange theorem. Local uniqueness is guaranteed by 
appeal to the implicit function theorem if F’ has a convergent power series. 
The region of convergence is clearly dependent upon x. When it is examined 
by any of the standard tests information concerning I’,, , F and their deriva- 
tives is required. Since systems such as Eq. (5) can develop shocks the series 
representation must be used with caution. 
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