Optimization of multiple shoot induction and plant regeneration in Indian barley (Hordeum vulgare) cultivars using mature embryos

Hassan Rostami a, Archana Giri a, Amir Sasan Mozaffari Nejad b,*, Amir Moslem c

a Center for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad, Andhra Pradesh, India
b Member of Young Researchers and Elite Club, Garmsar Branch, Islamic Azad University, Garmsar, Iran
c Department of Agronomy and Plant Breeding, University of Tehran, College of Agriculture and Natural Resources, Karaj 4111, Iran

Received 6 January 2013; revised 14 February 2013; accepted 15 February 2013
Available online 14 March 2013

Abstract Barley is the fourth most important crop in the world. Development of a regeneration system using immature embryos is both time consuming and laborious. The present study was initiated with a view to develop a regeneration system in six genotypes of Indian barley (Hordeum vulgare) cultivars as a prerequisite to transformation. The mature embryos were excised from seeds and cultured on MS medium supplemented with high and low concentrations of cytokinins and auxins respectively. The MS medium containing 3 mg/L N6-benzylaminopurine (BA) and 0.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) was found to be the most effective for multiple shoot formation in HOR7231 cultivar that could produce 12 shoots per explant. The other cultivars HOR4409 and HOR3844 produced a minimum number of adventitious shoots (1.33 and 1.67 respectively) on MS medium supplemented with 1 mg/L BA and 0.3 mg/L 2,4-D. The elongated shoots were separated and successfully rooted on MS medium containing 1 mg/L indole-3-acetic acid (IAA). The response of different barley cultivars was found to be varying with respect to multiple shoot production. This is the first report of multiple shoot induction and plantlet regeneration in Indian cultivar of barley which would be useful for genetic transformation.

© 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Barley is an annual cereal grain crop that comes from the family of Poaceae and is the fourth most important crop in the world after wheat, maize and rice (faostat.org). It is consumed as a major food and feed for animals as well as in the brewing industry (Ritala et al., 1993). Barley seeds are unique as they accumulate up to 15% protein by dry weight and be stored for a period as long as 10 years (Tanasienko et al.,
2. Materials and methods

2.1. Preparation of explants

Barley seeds of six Indian varieties were provided by Gene Bank Department of Leibniz Institute of Plant Genetics and Cultivated Plant Research (IPK) – Germany. The accession numbers are shown in Table 1.

Seeds were dehusked and after washing with tap water surface sterilized by soaking in 70% ethanol for 1 min, rinsing with sterile distilled water, soaking in 0.1% (w/v) mercuric chloride solution for 7 min followed by rinsing with sterile distilled water (10 times). The seeds were kept in 250 ml conical flasks containing sterile water for 24 h at 4 °C. Mature embryos were excised from seeds by a scalpel and cultured on media.

2.2. Media composition, preparation and establishment of cultures

The seeds were sterilized after dehusking as described above and were incubated on direct shoot induction media (DSIM) for induction of multiple shoots. DSIM was MS basal media by Murashige and Skoog (1962) supplemented with high level of BA and low concentration of 2,4-D as shown in Table 1.

The cultures were kept in light at 22 ± 1 °C in 16/8 h of light/dark cycle regime with subculturing one in two weeks. Counting of multiple shoots was done for each explant after it was subcultured twice. The main shoots were removed during subculturing. Shoots which emerged from mature embryos directly without callus interphase were separated and transferred on rooting media. The regenerated plantlets were transferred on MS media containing 1 mg/L IAA for rooting.

2.3. Statistical analysis

In the direct shoot induction study the number of shoots per explants and efficiency of regeneration were recorded and ANOVA was conducted to investigate differences in above the parameters. All Statistical analysis was carried out by using DSAASTAT (available at: http://www.unipg.it/~onofri/DSAASTAT/DSAASTAT.htm).

3. Results and discussion

Mature embryos of six barley varieties were excised from 24 h imbibed surface sterilized seeds as initiation explants for direct embryogenesis on six different media containing different concentrations of BA and 2,4-D. Mature embryos started to germinate few days after culturing. The main shoots were cut to promote adventitious shoot initiation within the first week in order to retard the growth of primary shoots (Fig. 1A and

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Barley genotypes and combination of different media used in this study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivars used</td>
<td>HOR 3844, HOR 3272, HOR 4505, HOR 7231, HOR 4409, HOR 3838</td>
</tr>
<tr>
<td>Levels of BAP and 24D in mg/L</td>
<td>1B + 0.3</td>
</tr>
<tr>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>(1 mg/L BAP + 0.3 mg/L 2,4-D)</td>
</tr>
</tbody>
</table>
B). Subculturing the regenerated plantlets every two weeks led to multiplication and elongation of multiple shoots (Fig. 1C). Elongated shoots (2–3 cm length) from original explants were separated and subcultured on same media that could grow individually without albinism (Fig. 1D). All regenerated plantlets started rooting after two weeks from transferring them on MS media fortified with 1 mg/L IAA (Fig. 1E).

All varieties used in this study were able to induce adventitious shoots on six media. The range of multiple shoots varied from 1.33 for HOR4409 to 12 for HOR7231 (Fig. 2 and Table 2). Best results were obtained with MS media containing 3 mg/L BA and 0.5 mg/L 2,4-D for all the varieties except of HOR3838. With HOR3838 the same result was obtained either on media containing 3 mg/L BA and 0.5 mg/L 2,4-D or 3 mg/L BA and 0.3 mg/L 2,4-D. The varieties HOR3844 and HOR4409 had shown minimum response on media containing 1–2 mg/L BA and 0.3–0.5 mg/L 2,4-D. As it is shown in Table 2, all varieties exhibited the best response of induction and production of multiple adventitious shoots on MS media fortified with 3 mg/L BA and 0.5 mg/L 2,4-D. So it can be concluded that media enriched with high level of BA and low concentration of 2,4-D can be used to optimize media combination for regeneration and transformation of barley using mature embryo explants.

Thidiazuron (TDZ) was shown to have a positive influence on tissue culture of monocots (Schulze, 2007). TDZ was also used on cultivars HOR7231 and HOR3272 as these cultivars had shown good response with respect to induction of adventitious shoots. Substitution of BA with TDZ did not show any increase in the number of shoots. Similar results were reported by Ganeshan et al. (2006) with respect to barley. Ganeshan et al. (2003) reported a favorable response with leaf bases/apical meristems of barley genotypes to multiple shoot induction on two media containing TDZ and 2,4-D similar to those used by Gupta and Conger (1998) for switch grass. However the calli induced from leaf bases or scutella did not survive on TDZ containing media which is in contradiction to the report by Shan et al. (2000). The reasons for varying response could be the source of explants and the different requirement of phytohormones. Also the levels of TDZ used and the duration of incubation could induce different multiple shooting responses.

In the present study an efficient, fast and a reproducible in vitro regeneration system for Indian varieties of barley was developed using mature embryos. The results obtained (12 shoots per explants) in our experiment are comparable with those obtained for cultivar like Golden promise (9.5 shoots per explant) (Sharma et al., 2007).
Most regeneration protocols in barley involve the use of immature embryos that can be obtained only after three months of cultivation of barley in green house followed by tissue culture and regeneration for two months. However, the protocol reported in the present paper involves regeneration of plantlets from mature embryos obtained from seeds within two months.

4. Conclusion

A protocol for tissue culture and regeneration of plantlets from mature embryos of Indian cultivars of barley has been developed. This protocol does not require green house as mature embryos obtained from seeds are used as explants. Significant differences have been observed between different cultivars and combinations of phytohormones. The results also indicate that although regeneration is possible with all cultivars, each cultivar requires a higher degree of standardization for improving the regeneration efficiency. Efficient regeneration protocol of this recalcitrant crop would aid in the development of protocols for genetic manipulation.

References


Optimization of multiple shoot induction and plant regeneration in Indian barley