
Characterization of Single Cycle CA and its

Application in Pattern Classification

Sukanta Das 1 Sukanya Mukherjee 2 Nazma Naskar 3

Department of Information Technology
Bengal Engineering and Science University, Shibpur

Howrah, West Bengal, India 711103

Biplab K. Sikdar 4

Department of Computer Science & Technology
Bengal Engineering and Science University, Shibpur

Howrah, West Bengal, India 711103

Abstract

The special class of irreversible cellular automaton (CA) with multiple attractors is of immense interest
to the CA researchers. Characterization of such a CA is the necessity to devise CA based solutions for
diverse applications. This work explores the essential properties of CA attractors towards characterization
of the 1-dimensional cellular automata with point states (single length cycle attractors). The concept of
Reachability Tree is introduced for such characterization. It enables identification of the pseudo-exhaustive
bits (PE bits) of a CA defining its point states. A theoretical framework has been developed to devise
schemes for synthesizing a single length cycle multiple attractor CA with the specific set of PE bits. It
also results in a linear time solution while synthesizing a CA for the given set of attractors and its PE bits.
The experimentation establishes that the proposed CA synthesis scheme is most effective in designing the
efficient pattern classifiers for wide range of applications.

Keywords: Cellular automata, attractor, pseudo-exhaustive bit, reachability tree, pattern classifier.

1 Introduction

Introduction of Cellular Automaton (CA) is an important development in history to

provide abstract model of concrete computers [20]. The concept of CA was initiated

in the early 1950s by J. von Neumann and Stan Ulam [21]. Researchers had tried

1 Email: sukanta@it.becs.ac.in
2 Email: sukanyaiem@gmail.com
3 Email: nazma preeti@yahoo.co.in
4 Email: biplab@cs.becs.ac.in
5 This research work is supported by the Sponsored Cellular Automata Research Projects, Bengal Engi-
neering and Science University, Shibpur, India-711103.

Electronic Notes in Theoretical Computer Science 252 (2009) 181–203

1571-0661© 2009 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.09.021
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82318608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
file:sukanta@it.becs.ac.in
file:sukanyaiem@gmail.com
file:nazma_preeti@yahoo.co.in
file:biplab@cs.becs.ac.in
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

to view simplified structure of CA amenable to characterization. The works that

targeted structural simplification were [1,2,4,5].

In the early 1980s, Stephen Wolfram [26] studied in detail a family of

simple 1-dimensional cellular automata that could simulate complex behav-

iors [15,22,23,24,25]. The CA structure was viewed as a discrete lattice of two-

state per cell with 3-neighborhood dependency (self, left and right neighbors). This

structure attracted a large section of researchers working in the diverse fields and a

special class of 1-dimensional CA, called linear/additive CA, had gained the primary

attention [3]. The theoretical framework developed in [3] targets characterization

of non-uniform linear/additive CA.

While characterizing the CA state space, the researchers identified a set of CA

states towards which neighboring states asymptotically approach in the course of

dynamic evolution [27]. This set of states, referred to as the attractor of CA state

space, forms a basin of attraction with its neighboring states. Such a CA with mul-

tiple attractors in its state space were of primary interest in applications like pattern

recognition, pattern classification, design of associative memory, query processing

etc. [3,11,12,13,14].

Characterization of a CA with multiple single length cycle attractors (point

states) received special attention for cost effective solutions of real life applications.

The issues related to identification of such attractors in linear/additive CA, and

synthesis of single length cycle multiple attractor linear/additive CA were addressed

in [3,12,14]. A graph based solution for such identification was also proposed [16,19].

However, characterization of single length cycle attractors as well as the synthesis

of a CA with specified set of single length cycle attractors are yet to be explored.

In this context, we concentrate on the characterization of single length cycle

attractors in a specific class of 1-dimensional nonlinear cellular automata. We ex-

plore the essential properties of CA attractors that enable such characterization.

The introduction of Reachability tree provides the theoretical basis for identifica-

tion of the attractors of a CA as well as its PE (pseudo-exhaustive) bits, defining

the attractors. A theoretical framework has been developed that effectively been

exploited to devise schemes for synthesizing a CA with the specific set of PE bits

and having only single length cycle attractors. The proposed synthesis scheme is

found to be effective while designing the CA based pattern classifier for standard

applications.

The next section introduces the cellular automata preliminaries relevant for the

current work. Section 3 introduces the concept of reachability tree and the theoret-

ical basis of the proposed characterization of CA state space. A number of linear

time algorithms/solutions, such as, computation of the number of attractors, iden-

tification of PE-bits, etc. are also reported in this section. Synthesis of a single

length cycle multiple attractor CA with the specific set of PE bits is reported in

Section 4. In Section 5, we report the design of a pattern classifier following the

synthesis scheme devised in Section 4.

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203182

.
IN OUT IN OUT IN OUT IN OUT

Combinational logic circuit

Cell 1 Cell i−1 Cell i Cell i+1

IN OUT

Cell n

.

(FF)(FF) (FF) (FF) (FF)

null boundary null boundary

f f f1 ni

Fig. 1. Null boundary CA with FF s and combinational logic circuits

2 Preliminaries of Cellular Automata

A Cellular Automaton (CA) consists of a number of cells organized in the form of

a lattice. It evolves in discrete space and time. Each cell of a CA stores a discrete

variable at time t that refers to the present state of the cell. The next state of the

cell at (t+1) is affected by its state and the states of its neighbors at time t. In the

current work, we concentrate on the 3-neighborhood (self, left and right neighbors)

CA, where a CA cell is having two states - 0 or 1. The next state of the ith cell of

such a CA is

St+1
i = fi(S

t
i−1, S

t
i , S

t
i+1)(1)

fi is the next state function; St
i−1, St

i and St
i+1 are the present states of the left

neighbor, self and right neighbor of the ith CA cell at time t.

The collection of states St(St
1, S

t
2, · · · , S

t
n) of its cells at time t is the present

state of an n−cell CA and its next state is

St+1 = (f1(S
t
0, S

t
1, S

t
2), f2(S

t
1, S

t
2, S

t
3), · · · , fn(St

n−1, S
t
n, St

n+1))(2)

If St
0 = St

n and St
n+1 = St

1, then the CA is a periodic boundary CA. On the

other hand, if St
0 = St

n+1 = 0 (null), the CA is null boundary. Figure 1 shows the

schematic diagram of a two-state 3-neighborhood null boundary CA. Each CA cell

is implemented with a memory element and a combinational logic realizing the next

state function (fi). In the current work, we concentrate on null boundary CA.

The next state function (combinational logic) of ith CA cell can be expressed

in the form of a truth table (Table 1). The decimal equivalent of the 8 outputs is

called ‘Rule’ Ri [22]. In a two-state 3-neighborhood CA, there can be a total of

28 (256) rules. Three such rules 90, 150, and 75 are illustrated in Table 1. The

first row of the table lists the possible 23 (8) combinations of the present states of

(i − 1)th, ith and (i + 1)th cells at time t. The last three rows indicate the next

states of the ith cell at (t + 1) for different combinations of the present states of its

neighbors, forming the rules 90, 150 and 75 respectively. Out of 256, 14 rules are

called as linear/additive rules [3] that employs only XOR/XNOR logic.

Rule Min Term (RMT): From the view point of Switching Theory, a combination

of the present states (as noted in the 1st row of Table 1) can be viewed as the Min

Term of a 3-variable (St
i−1, S

t
i , S

t
i+1) switching function. Therefore, each column of

the first row of Table 1 is referred to as Rule Min Term (RMT). The column

011 is the 3rd RMT . The next states corresponding to this RMT are 1 for Rule 90

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203 183

Table 1
Truth table for rule 90, 150 and 75

Present state : 111 110 101 100 011 010 001 000 Rule

(RMT) (7) (6) (5) (4) (3) (2) (1) (0)

(i) Next State : 0 1 0 1 1 0 1 0 90

(ii) Next State : 1 0 0 1 0 1 1 0 150

(iii) Next State : 0 1 0 0 1 0 1 1 75

Note: RMT stands for Rule Min Term. The value 0/1 noted on 3rd/4th/5th row

shows the output of the three variable switching function.

13
10

4

1

1412

9

6

0

8

52

11

73

15

Fig. 2. State transitions of a reversible CA < 105, 177, 170, 75 >

and 75, and 0 for Rule 150. The characterization reported in this work is based on

the analysis of RMT s of a CA rule.

Definition 2.1 The set of rules R =< R1,R2, · · · ,Ri, · · · ,Rn > that configures

the cells of a CA is called the rule vector.

Definition 2.2 If R1 = R2 = · · · = Rn, the CA is a uniform CA, otherwise it is

non-uniform or hybrid CA.

Definition 2.3 If all the Ris (i = 1, 2, · · · , n) of a rule vector R are linear/additive,

the CA is referred to as Linear/Additive CA, otherwise the CA is a Nonlinear

one.

The sequence of states generated (state transitions), during its evolution (with

time), directs the CA behavior. The state transition diagram (Fig. 2 and Fig. 3) of

a CA may contain cyclic and non-cyclic states (a state is called cyclic if it lies in a

cycle; the states of Fig. 2) and based on this, the CA can be categorized either as

reversible or irreversible CA.

In a reversible CA, each CA state repeats after certain number of time steps

(Fig. 2). Therefore, all the states of a reversible CA are reachable from some

other states, where each state has exactly one predecessor. On the other hand,

in an irreversible CA (Fig. 3), there are some non-reachable states. Such states

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203184

are not reachable from any other state of the CA. Moreover, some states of the

irreversible CA are having more than one predecessor [17,18]. The states 5 and

13 of Fig. 3 are the non-reachable states whereas 15 and 7 are having more than

one predecessor. The non-reachable states of an irreversible CA form Garden of

Eden. The cycles 7 → 3 → 11 → 7 and 15 → 15 of Fig. 3 are the attractors of CA

< 105, 177, 171, 75 >. The 15 is a single length cycle attractor (point state).

13 10 1 14 12 9 1564

825 7

11

0

3

Fig. 3. State transitions of an irreversible CA < 105, 177, 171, 75 >

Pseudo-Exhaustive (PE) bits: A set of m bits can uniquely identifies 2m at-

tractors of an n−cell CA, where m ≤ n. These exhaustively appear in the set of 2m

attractors and called PE (Pseudo-Exhaustive) bits of the CA. In Fig. 4, there are

four attractors – 2 (0010), 12 (1100), 13 (1101) and 3 (0011). The least significant

two bits 10, 00, 01 and 11 of the attractors can uniquely identify those and called

PE bits. The identification of PE bits of a CA reduces computation overhead as

well as storage overhead while developing CA model for an application.

In this work, we concentrate only on the characterization of single length cycle

attractor CA and its PE-bits. The following sections report such characterization.

3 Characterization of CA attractors

This section reports properties of CA attractors to explore the single length cycle

attractors (point states) of an irreversible CA. The proposed characterization is

S2 S31S S4

10

14

2

6 15

11

7

3

0 1

8

4

12

9

5

13

Fig. 4. State transitions of a CA with rule vector < 10, 69, 204, 68 >

. 0 Rule for cell i

x0xRMTs

Fig. 5. RMT s of a CA cell rule

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203 185

0 Rule for cell i

RMTs
111 110 101 010 000100 011

(0)(2)(3)(5)(6)(7) (1)
001

(4)

1 1 1 10 0 0

Fig. 6. RMT s of Rule 204

based on the analysis of Reachability Tree. The theoretical foundation thus evolved

is then employed to identify the set of single cycle attractors in a CA as well as its

PE-bits of a CA.

Since the next state of a single length cycle attractor is the attractor itself

(attractor 15 of Fig. 3), there should be at least one RMT (Table 1) of each cell

rule (Ri) of the CA (R) for which the CA cell (i) does not change its state. For

example, the RMT x0x (x = 0/1) of a rule (Fig. 5) is considered to find the next

state of cell i when the current states of its left neighbor ((i − 1)th cell), self and

right neighbor ((i + 1)th cell) are x, 0 and x respectively. It implies, if such an

RMT is ’0’, the state change of the cell (i) is 0 → 0 (Fig. 5). That is, for the

rule Ri, if the RMT 0 (000), 1 (001), 4 (100) or 5 (101) are 0, then the CA cell

i, configured with Ri, does not change its state. Similarly, if the RMT s 2 (010),

3 (011), 6 (110) or 7 (111) are 1 in Ri, the cell configured with Ri can stick to its

current state in the next time step. For rule 204 (Fig. 6), the RMT s 0, 1, 4 & 5 are

0 and the RMT s 2, 3, 6 & 7 are 1. It implies that if a CA cell is configured with

rule 204, all RMT s of the rule contribute towards formation of attractors of the CA.

Property 1: A rule Ri can contribute to the formation of single length cycle

attractor(s) if at least one of the RMT s 0, 1, 4 or 5 is 0, or the RMT s 2, 3, 6 or 7

is 1.

If any rule (Ri) of the CA (R) does not obey Property 1, the CA can not have a

single length cycle attractor. Therefore, examination of Property 1 in the rules of R,

configuring the cells, is a necessity for identification of single length cycle attractors

(if any) of the CA.

3.1 Reachability tree characterizing attractors

Reachability Tree, we proposed in [7,8,9], is a binary tree that represents the reach-

able states of a CA. Each node of the tree is constructed with RMT (s) of a rule

(Section 2). The left edge of a node is referred to as the 0-edge and the right edge

is as 1-edge (Fig. 7). The number of levels of the reachability tree for an n−cell CA

is (n + 1). Root node is at Level 0 and the leaf nodes are at Level n. The nodes at

Level i are constructed from the RMT s of (i + 1)th CA cell rule Ri+1.

The number of leaf nodes in a reachability tree denotes the number of reachable

states of the CA and a sequence of edges from the root to a leaf node, representing

an n−bit binary string, is the reachable state [8]. The 0-edge and 1-edge represent

0 and 1 respectively.

The RMT s of two consecutive cell rules Ri and Ri+1 are related while the CA

changes its state. Since the CA is in 3-neighborhood, the RMT s are of 3-bit. So,

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203186

Table 2
Relationship between RMT s of cell i and cell (i + 1) for next state computation

RMT at RMT s at

ith rule (i + 1)th rule

0 0, 1

1 2, 3

2 4, 5

3 6, 7

4 0, 1

5 2, 3

6 4, 5

7 6, 7

0,1,2,3,4,5

0
(0,1,2,3)

1
(4,5) (7)

0
6,7

1
(6)

0
0, 1, 2, 3

1

0 1

0 1 0 1
(4)

(4) (5)

2,3

Fourth bit(0) () ()

(0,1) (2,3)

(0) (2)

0 1

0 1 0 1
(4)

4,5,6,7

0 1

0 1

 ()(6,7)

(6) (4)

0,1,2,3

0,1,2,3

4,5,6,7

6,7 4,5

0,1

(6)

0 1

0 01 1

(0,1,4,6,7) (2,3,5)

(0,4) (2,6) (4) (2,6)

0,1,2,3,4,5,6,7

 0,1,2,3,4,5,6,7 2,3,4,5,6,7

(0, 1, 2)
(3)

Third bit

Second bit

First bit

J L M N

A

B C

D E F G

H I K

WR S UT V X Y ZQO P

Fig. 7. Reachability Tree for the CA < 8, 112, 44, 68 >

a three bit window can be considered to get the next state of the CA [8]. If the

window for ith cell is (bi−1bibi+1), bi = 0/1, then the window for (i+1)th cell is either

(bibi+10) or (bibi+11). In other words, if the ith CA cell changes its state following

the RMT k (decimal equivalent of bi−1bibi+1) of rule Ri, then the (i + 1)th cell can

generate the next state based on the RMT 2k mod 8 (bibi+10) or (2k + 1) mod 8

(bibi+11) of rule Ri+1. This relationship between the RMT s of Ri and Ri+1, while

computing the next state of a CA, is shown in Table 2.

Figure 7 is the reachability tree of a CA < 8, 112, 44, 68 >. The RMT s of

the CA rules are noted in Table 3. The decimal numbers within a node at level i

represent the RMT s of the CA cell rule Ri+1 based on which the cell (i + 1) can

change its state. The RMT s of a rule for which we follow 0-edge or 1-edge are noted

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203 187

Table 3
RMT s of the CA < 8, 112, 44, 68 > cell rules

RMT 111 110 101 100 011 010 001 000 Rule

(7) (6) (5) (4) (3) (2) (1) (0)

First cell d d d d 1 0 0 0 8

Second cell 0 1 1 1 0 0 0 0 112

Third cell 0 0 1 0 1 1 0 0 44

Fourth cell d 1 d 0 d 1 d 0 68

0 1
(6)

0
1

(4)

(0)
0 01 1

(2,3)

(2)

4, 6 0

(0) (6)(4)

(3)

A

D

P Q RO Y

M

CB

H I

60, 1

4

0

0 G10
0, 1, 2, 3

0, 1, 3

 0, 2

(0, 1)

identification bit

identification bit

identification bit

(0,1)

(0,1)

weight = 8 weight = 8

weight = 2 weight = 2

weight = 1
weight = 1

weight = 4 weight = 4

weight = 2

weight = 1

Fig. 8. Reachability Tree for attractors

in the bracket. For example, the root node (level 0) of Fig. 7 is constructed from

RMT s 0, 1, 2 and 3 as cell 1 (rule 00001000) can change its state following any one

of the RMT s 0, 1, 2 and 3. As the state of left neighbor of cell 1 is always 0, the

RMT s 4, 5, 6 & 7 are the don′t cares for cell 1. It is obvious from Fig. 7 that there

are 12 possible sequences of edges in the tree. That is 12, out of 16, CA states are

reachable and the rests are non-reachable.

A reachability tree identifies all the reachable states including attractors of a CA.

The tree of Fig. 7 can also be modified to display only the attractors. Since all the

RMT s of a cell rule can not contribute to generate attractors, such (insignificant)

RMT s are removed from the reachability tree. For example, RMT 2 (010) is 0

implies that it is insignificant (it can not contribute to generate attractors).

The tree shown in Fig. 8 corresponds to the CA < 8, 112, 44, 68 >. It is derived

from Fig. 7 to point to the attractors only. The RMT s that have potential to form

the attractors are utilized to construct the nodes of Fig. 8. It shows 5 (O, P, Q, R

and Y), out of 12, reachable states are the attractors.

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203188

3.2 The attractor set

The modified reachability tree, shown in the earlier subsection, can be utilized to

characterize the attractor set of a CA. To find the number of attractors of a CA,

we need to scan the CA (R) from left to right and virtually form a reachability

tree. The number of leaves in the tree denotes the number of attractors of the

CA. A weight is associated with each subtree (Fig. 8) representing its capability of

generating attractors.

Algorithm 1 CalNoOfAttractors

Input: < R1, · · · ,Ri, · · · ,Rn > (n-cell CA).

Output: Number of attractors of the CA.

Step 1: If any rule does not hold Property 1, report the number of attractor as 0

and return.

Step 2: Let S0 and S1 are two sets of RMT s, capable of generating attractors, of

the first cell rule, where RMT s of S0 are 0 and S1 are 1.

If S0 �= φ, set weight, the capability to generate attractor, for left subtree as

2n−1.

If S1 �= φ, set weight for the right subtree as 2n−1.

Step 3: For i = 2 to n

For each set of RMT s {

Determine RMT s, capable of generating attractors, for the next level nodes

of the reachability tree considering Table 2 and Ri.

Distribute these RMT s into the sets S′

0 and S′

1 based on the next state values

as 0 and 1 respectively.

If S′

0 �= φ, set weight for new left subsubtree as half of the weight of subtree

in consideration.

If S′

1 �= φ, set weight for new right subsubtree as half of the weight of subtree

in consideration.

}

If there are duplicate sets (subsubtrees), consider only one, and assign its weight

as the sum of all duplicate sets.

Step 4: Sum up the weights, calculated, and report it as the number of attractors of

the CA.

Complexity: The complexity of the algorithm depends on n and the number of

sets of RMT s. Since the number of RMT s is 8, maximum possible number of sets

of RMT s is also fixed (≤ 8). Hence the complexity is O(n).

Example 3.1 This example illustrates the steps of Algorithm 1. Let us consider

that the CA < 8, 112, 44, 68 > (Table 3) is the input to Algorithm 1. Each rule of

the CA maintains Property 1 (Step 1) and S0 = {0, 1} & S1 = {3} (Step 2). Since

S0 �= φ and S1 �= φ, both the subtrees may generate attractors. The maximum

possible number of attractors indicated by a subtree is 24−1 = 8 (weight of the

subtree). In Step 3, the next nodes of reachability tree for attractors are determined.

The nodes are {0, 1} and {6}. For the first node, that is, for the first set, S′

0 = {0, 1}

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203 189

and S′

1 = φ. Therefore, the right subsubtree can not point to an attractor. The

left subsubtree points the existence of attractors and weight of this left subsubtree

is 8
2 = 4. On the other hand, the node {6} can generate only its right subsubtree

(S′

0 = φ and S′

1 = {6}). Hence the weight for its right subsubtree is 8
2 = 4.

The process is continued until the last rule of the CA is encountered. In the next

level, two nodes are identified – {0, 1, 2, 3} and {4}. The first node is having two

children, but the node {4} is having one and the weights (2, 2 and 2) are calculated

accordingly. After processing of the last rule, 5 subtrees each with single node

(weight = 1) are constructed. However, the two nodes O and Y of Fig. 8 are the

same as both are derived from RMT 0 of the last rule (rule 68). These are replaced

by a single one assigning weight = 2. Finally, the sum of weights 2 + 1 + 1 + 1 = 5

defines the number of attractors (Step 4).

3.3 Identification of PE bits

This subsection reports scheme to identify the K bit positions from a set of n-bit

attractors, where K ≤ n, that can uniquely identify all the attractors. These K bits

may act as the pseudo-exhaustive bits of the CA. The proposed scheme explores the

modified reachability tree of a CA, defined in Section 3.1. The following example

illustrates the scheme.

Example 3.2 Consider the root node of a reachability tree shown in Fig. 8. It

has two sub-trees. Left sub-tree contains 4 attractors (O, P, Q and R), whereas the

right sub-tree contains only one (Y). It is obvious from the figure that the attractors

starting with 0 are the part of left sub-tree, and the attractor (Y) starting with 1

is a part of the right sub-tree. Therefore, first bit (MSB) of the n-bit CA state

is an identification bit. Similarly, the nodes D, H and I distinguish among the

attractors of left sub-tree of root. Hence, the least significant two bits are also

the identification bits. Therefore, the 3 bits (first, third and fourth), out of 4, can

identify all the attractors of the CA. It can be noted that the least significant two

(third and fourth) bits appear exhaustively in the attractor set. However, the 3

identification bits do not appear exhaustively in all the (5) attractors. Therefore,

these 3 identification bits are not the PE bits. That is, the identification bits can

not necessarily be the PE bits for a given attractor set.

Theorem 3.3 m number of n-bit attractors can be identified by K bit positions,

where K ≤ n & m ≤ 2K and there exists r sets of PE bit positions that are the

subset of K with cardinality p1, p2, · · ·, pr, where 2p1 + 2p2 + · · · + 2pr = m.

Proof. Consider the reachability tree of a CA for m attractors. The first node,

starting from the root, having both the left and right children, splits the set of

attractors into two subsets. The bit corresponding to that node is the identification

bit and can exhaustively identify two subtrees (subsets). Now, for each subtree, we

can find another identification bit that splits the subtree into two subsubtrees and

also can exhaustively identify the subsubtrees. This process is continued until we

reach the leaves. Hence, each attractor can be identified by a set of identification

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203190

bits, and the maximum number of bits required to uniquely identify all the m

attractors is K, where K ≤ n.

Now, a number of attractors can be grouped in such a way that a subset of

identification bits appear exhaustively to identify all the attractors of the group

(that is, subset). Hence, the subset of identification bits is the PE bits for that

particular subset of attractors. Let us consider, the number of such subsets of

attractors is r. Therefore, 2p1 + 2p2 + · · · + 2pr = m, where pi (≤ K) is the

cardinality of such ith subset. Hence the proof. �

For example, 5 attractors of Example 3.2 can be identified by 2 sets of PE bits

– the first bit and third & fourth bits. Therefore, p1 = 1 and p2 = 2.

Corollary 3.4 2K number of attractors of an n-cell CA can be identified by K bit

positions, where K ≤ n.

Proof. The corollary directly follows from Theorem 3.3 if there is one set of PE

bit positions, that is, r = 1. �

We next propose the following algorithm to find the K such identification bits

of a CA. The algorithm implicitly constructs the reachability tree for attractors of

the CA. If a node, having both the children, is found, the bit corresponding to that

node is marked as an identification bit.

Algorithm 2 FindIdentificationBits

Input: < R1, · · · ,Ri, · · · ,Rn > (n-cell CA).

Output: Identification bits.

Step 1: If any rule does not hold Property 1, return.

Step 2: Suppose S0 and S1 are the two sets of RMT s of first rule that can contribute

to the formation of attractors, where RMT s of S0 are 0 and S1 are 1.

If S0 �= φ �= S1, mark the first bit.

Step 3: For i = 2 to n

For each set of RMT s

Determine RMT s that contribute to the formation of attractors for next level

nodes of the reachability tree (for attractors) using Table 2 and Ri.

Distribute these RMT s into S′

0 and S′

1 based on the next state values 0 and

1.

If S′

0 �= φ �= S′

1, mark the ith bit.

Step 4: Report the marked bits as identification bits.

Complexity: The complexity of the Algorithm 2 is dependent on n and the number

of sets of RMT s. Since the number of RMT s is 8, the maximum possible number

of sets of RMT s is also fixed (≤ 8). Hence the complexity is O(n).

Example 3.5 This example illustrates the execution steps of Algorithm 2. Con-

sider the CA < 8, 112, 44, 68 >, noted in Table 3. Since all the rules maintain

Property 1, single length cycle attractor(s) may exist for the CA (Step 1). Here,

S0 ={0, 1} and S2 ={3}. Hence the first bit (MSB) is marked as an identification

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203 191

bit (Step 2). However, for S0, S′

1 and for S1, S′

0 are empty. Therefore, the second

MSB can not be an identification bit (Step 3). Similarly, it can be found that third

and fourth bits are the identification bits.

In the next subsection, Algorithm 2 is modified to find the pseudo-exhaustive

bits of a CA, if any, to identify all the attractors.

3.4 CA Synthesis for specified PE-bits

This subsection proposes a synthesis scheme for multiple attractor CA, based on the

theoretical framework reported in Section 3.3. The following algorithm describes

the proposed synthesis scheme.

Algorithm 3 GeneralizedMACASynwithPE

Input: n (CA size), K (PE bits).

Output: CA (Rule vector).

Step 1: Randomly identify K bits that is treated as the PE bits.

Step 2: Suppose S0 and S1 are the two sets of RMT s of first cell, where RMT s of

S0 are 0 and the RMT s of S1 are 1 if the RMT s contribute to form attractors.

If the first bit is the identified bit, then randomly set RMT s such that

S0 �= φ �= S1.

Otherwise, set the RMT s so that S0 �= φ (S1 �= φ) but S1 = φ (S0 = φ).

Step 3: For i = 2 to n

For each set of RMT s

Determine RMT s for the next level nodes of reachability tree following Ta-

ble 2.

Distribute these RMT s into S′

0 and S′

1, where RMT s of S′

0 are 0 and S′

1 are

1 if the RMT s are selected for generating the attractors.

If the ith bit is an identified bit, then randomly set RMT s such that S′

0 �=

φ �= S′

1.

Otherwise, set the RMT s such that S′

0 �= φ (S′

1 �= φ) but S′

1 = φ (S′

0 = φ).

Step 4: Set the unfilled RMT s, if any, for each cell rule so that no extra bit can be

considered as PE bit.

Step 5: Report the CA with K PE bits.

Complexity: Algorithm 3 uses a main loop in Step 3 that depends on n. The

maximum number of sets is constant. That is, the execution time of Algorithm 2 is

dependent only on n and the number of sets of RMT s. Therefore, the complexity

of the above algorithm is clearly O(n).

Although Algorithm 3 targets synthesis of a CA having single length cycle at-

tractors, the CA synthesized from Algorithm 3 may have also multi length cycle

attractors. The scheme that ensures synthesis of a CA having only single length

cycle attractors is reported next.

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203192

4 Synthesis of single cycle attractor CA

The earlier section reports characterization of the CA attractors and its PE bits.

This section further characterizes the CA targeting synthesis of a CA having only

single length cycle attractors with specified PE-bits. To facilitate the characteriza-

tion, we next introduce the concept of RMT sequence (RS).

Definition 4.1 The edge traversed in the reachability tree of an n-cell CA to reach

a reachable state is derived from a sequence of RMT s < x1x2 · · · xn >. It is RMT

sequence or RS for the reachable state.

For example, consider the 4-cell CA < 8, 112, 44, 68 > of Table 3. The corre-

sponding reachability tree is shown in Fig. 7. The RS < 3640 > derives the state

1100, where 3, 6, 4 and 0 are the RMT s corresponding to R1 (8), R2 (112), R3

(44), and R4 (68) respectively. If a state is reachable from more than one, say 3

states, then 3 RSs points to the reachable state. A non-reachable state, on the

other hand, can not associate an RS.

The two RSs, associated with a reachable state & its next state, are related.

To find the relationship, we divide the 8 RMT s into two sets - RMT0 and RMT1,

where RMT0 = {0, 1, 4, 5} and RMT1 = {2, 3, 6, 7}. The RMT s of RMT0 are 0

and RMT s of RMT1 are 1 while the RMT s contribute to form single length cycle

attractors (Property 1 of Section 3). Suppose < x1x2 · · · xn > is an RMT sequence

for an n-cell CA states. That is, xi is an RMT of Ri. Now, consider RMT xi does

not follow Property 1 and xi ∈ RMT0. That is, next state for RMT xi is 1. The

RMT xi−1 & RMT xi+1 can be 0/1. Let us consider < y1y2 · · · yn > be the RS for

next state. Therefore, yi can be 010, 011, 110 or 111 – that is, 2, 3, 6 or 7. Similarly,

if RMT xi follows Property 1, the possible yi is 0, 1, 2 or 3. These are noted in

Table 4. Now if xi ∈ RMT1, with similar logic we get Table 5. Therefore, utilizing

Table 4 and Table 5, the next RS (RSt+1) of a given RS (RSt) can be determined.

Definition 4.2 [6] Two RMT s are equivalent if both result in the same set of

RMT s for the next level of Reachability Tree.

For example, the RMT s 0 and 4 are equivalent as both result in the same set

of effective RMT s 000=0, 001=1} (Table 2) for the next level of Reachability Tree.

Similarly, the RMT s 1 & 5, 2 & 6, and 3 & 7 are equivalent.

4.1 Multi length cycle

The motivation of this section is to design a CA having only single length cycle

attractors. The following theorem identifies the causes of the multi length cycle

formation.

Theorem 4.3 A set of states of an n-cell CA belong to a cycle of length l, where

l ≥ 2, if the RMT s r1, r2 of Ri do not follow Property 1 and r1 ∈ RMT0 &

r2 ∈ RMT1, then either r′1 ∈ RMT0 & r′2 ∈ RMT1 or r′1, r′2 ∈ RMT0/RMT1,

where r′1, r′2 are RMT s of Ri+1 and r′1 (r′2) is derived from r1 (r2).

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203 193

Table 4
Relation between RMT s of RSt & RSt+1 (RMT xi ∈ RMT0)

RSt RSt+1

RMT RMT RMT RMT

xi−1 xi = {0,1,4,5} xi+1 yi

0 1 0 2

0 1 1 3

1 1 0 6

1 1 1 7

0 0 0 0

0 0 1 1

1 0 0 4

1 0 1 5

Table 5
Relation between RMT s of RSt & RSt+1 (RMT xi ∈ RMT1)

RSt RSt+1

RMT RMT RMT RMT

xi−1 xi = {2,3,6,7} xi+1 yi

0 0 0 0

0 0 1 1

1 0 0 4

1 0 1 5

0 1 0 2

0 1 1 3

1 1 0 6

1 1 1 7

The following example illustrates how a CA forms multi length cycle (of length

three) during its state transition.

Example 4.4 Let us consider a 4-cell CA < 5, 73, 200, 80 > of Fig. 9. The RMT s

of the CA cell rules are noted in Table 6. For the first cell (R1 = 5), RMT s 0 and 3

do not maintain Property 1 and are from different sets (RMT0 & RMT1). Among

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203194

Table 6
RMT s of the CA < 5, 73, 200, 80 > cell rules

RMT 111 110 101 100 011 010 001 000 Rule

(7) (6) (5) (4) (3) (2) (1) (0)

First cell d d d d 0 1 0 1 5

Second cell 0 1 0 0 1 0 0 1 73

Third cell 1 1 0 0 1 0 0 0 200

Fourth cell d 1 d 1 d 0 d 0 80

10

0

3

2

8

11

2400

2412

4

9
0124

5

2525

1

6

14

1364

1376

7

12

15

37763764

2536 13
0136

0012

1252

1240
0000

3652

3640

Fig. 9. State transitions of a CA with rule vector < 5, 73, 200, 80 >

their successive RMT s for the next level, RMT s 0 and 7 are taken into consideration

to form multi length cycle. The RMT s 0 and 7, belong to the different sets, do not

follow Property 1, whereas RMT s 1 and 6 follow Property 1. For R2 (73), RMT s 0,

7 and 2 do not follow Property 1, where RMT 7, 2 ∈ RMT1 and RMT 0 ∈ RMT0.

Now, if RMT s 0 and 7 are taken, their successive RMT s follow Property 1 but these

are from the different sets (RMT0 & RMT1). It violets the rule to form a multi

length cycle. When RMT s 0 and 2 are considered, their successive RMT s follow

Property 1 which are from the same set (RMT 0, 2 ∈ RMT0) and contribute to the

formation of multi length cycle. Therefore, RMT 1 is considered for R1. RMT s

4 & 0 of R3 and RMT 0 of R4 follow Property 1, which are the successive RMT s

at second and third level respectively of the RMT s 2, 6 and 0. Now if we consider

RMT sequence RS1 < 3640 >, then other than RMT 3, all follow Property 1. When

RS2 is computed, except RMT 2 at second position, all follow Property 1 where

the other RMT s of the sequence are 1,4 and 0 at first, third and fourth positions

respectively. The RS3 deduces < 0000 >, where RMT s at first and second positions

do not hold Property 1 but at third and fourth positions Property 1 is followed which

repeat RS1. Thus cycle [3640(0010) → 1240(0000) → 0000(1100) → 3640(0010)] is

formed of length three.

The next subsection provides the theoretical framework for designing a CA with

only single length cycles.

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203 195

4.2 Single length cycle

The following theorems guide to identify the CA having only single length cycle

attractors with specified PE-bits.

Theorem 4.5 For an n-cell CA, if ith bit is the PE-bit, then RMT s 0, 1, 2, 3

or RMT s 4, 5, 6, 7 or all eight RMT s of Ri follow Property 1 depending on the

RMT s, that follow Property 1, of Ri−1.

Proof. Let us consider an n-cell CA. If the first bit is the PE-bit, then 0-edge

and 1-edge of the of the reachability tree at level 0 must have the RMT s following

Property 1. Therefore, RMT s 0, 1, 2, 3 follow Property 1 at R1 when first and

second bits are the PE-bits. If the second bit is not a PE-bit, then at R1 RMT s

0 or 1 or both have to follow Property 1 and that is same for RMT s 2, 3 at a time.

For cell i, if ith bit is the PE-bit, then the RMT s of Ri are selected in such a

way that it must follow Property 1 to represent the significance as PE-bit, RMT s

of Ri−1 are considered. When at ith level, RMT s 0, 1, 2, 3 follow Property 1 then

Property 1 is followed by RMT s 0, 1 or 4, 5 or 0, 1, 4, 5 at level (i−1). In the same

way, RMT s 4, 5, 6, 7 are computed at rule Ri. RMT s 0, 1, 2, 3 all follow Property

1 to avoid the multi length cycle formation. The same is done for RMT s 4, 5, 6,

7. For the RMT s, which do not hold Property 1 and are from the same set at level

(i − 1), the successive RMT s must select (0/1) randomly. Hence the proof. �

Theorem 4.6 For an n-cell CA, if ith bit is not the PE-bit, then Ri is constructed

in such a manner that

(i) when RMT s 0,1,4,5 follow Property 1, the RMT s 2,3,6,7 do not follow Property

1 or vice versa depending on which RMT s are selected to maintain Property 1 at

Ri−1, where (i + 1)th bit is the PE-bit

(ii) only two equivalent RMT s follow Property 1 and other six RMT s do not follow

depending on which RMT s follow Property 1 at Ri−1, where (i + 1)th bit is not the

PE-bit.

Proof. Let us consider an n-cell CA. If the first bit is not the PE-bit, then either

RMT s 0, 1 or RMT s 2, 3 follow Property 1, where the next bit is the PE-bit. As

when the next bit is the PE-bit then either the RMT 0, 1, 2, 3 or the RMT 4, 5,

6, 7 are to be followed to restrict multi cycle formation. Therefore, the first rule

must follow RMT either 0, 1 or 2, 3. If the second bit is not the PE-bit, only one

RMT among 0, 1, 2, 3 follows Property 1 at the first rule.

For cell i, if the ith bit is not the PE-bit then either RMT s 0, 1, 4, 5 or RMT s 2,

3, 6, 7 follow Property 1 when (i+1)th bit is the PE-bit. The rule Ri is constructed

in such a way that the RMT s from the same set either follow Property 1 or do

not follow to prevent multi length cycle formation depending on the RMT s. If the

(i + 1)th bit is not the PE-bit, then at Ri, the RMT s are constructed in such a

manner that only two equivalent RMT s follow Property 1. The Ri is constructed

in such a manner that the RMT s from the same set do not follow Property 1 while

for other sets, two equivalent RMT s only follow Property 1 to prevent multi length

cycle formation depending on the RMT s satisfying Property 1 at Ri−1. Hence the

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203196

proof. �

The formal algorithm to synthesize a CA having only single length cycle attrac-

tors with specified PE bits is presented in the next subsection.

4.3 Synthesis of CA with single length cycles

The following algorithm takes CA size (n) and number of PE bits (K) as input, and

outputs an n-cell CA (rule vector) that contains only single length cycle attractors

during its state transitions.

Algorithm 4 SingleCycleCAwithPE

Input: n (CA size), K (PE bits).

Output: CA (R =< R1,R2, · · · ,Rn >).

Step 1: Randomly identify K bits as the PE bits.

Step 2: For each cell, the RMT s are distributed into the following sets RMT0 =

{0, 1, 4, 5} and RMT1 = {2, 3, 6, 7}.

Step 3: (a) If first and second bits are PE-bits:

Set R1 & R2 in such a way that all RMT s of both rules follow Property 1.

(b) If first bit is PE bit, but second is not:

RMT s, randomly selected from RMT0 & RMT1, of R1 are set to follow

Property 1. The RMT s of R2, derived from the selected RMT s of R1 using Table 2,

are also set to follow Property 1. If other RMT s of R1 are set to disobey Property

1, the RMT s of R2 are set to disobey Property 1 when the RMT s of R1 & R2 are

from the same set (RMT0 & RMT1), and obey Property 1 when from different sets.

(c) If second bit is PE-bit (while first bit is not a PE-bit):

RMT s of R1 from either RMT0 or RMT1 only hold Property 1. For R2,

the RMT s which follow Property 1 for R1, their successive RMT s follow Property

1 and other RMT s selected randomly.

Only one RMT from RMT0 follows Property 1 and RMT1 does not follow

(or vice versa) for R1 and their successive RMT s do follow Property 1 for the

second rule. The RMT s which do not follow Property 1 and are from different sets

for the first cell, their successive RMT s are selected in such a manner that RMT s

from the same set do not follow Property 1. Property 1 is followed when taken from

different sets.

Step 4: For i = 3 to n

(a) If ith and (i + 1)th bits are the PE-bit,

then RMT s 0,1,2,3 or 4,5,6,7 or eight RMT s follow Property 1 at Ri.

Otherwise, RMT s 0,1,2,3 or 4,5,6,7 have to follow Property 1. Others are taken

as 0/1.

(b) If ith bit is not the PE-bit but (i + 1)th bit is the PE-bit,

then for Ri, when RMT s from RMT0 follow Property 1, RMT1 does not follow

(or vice versa).

(c) Otherwise, all the RMT s from RMT0 do not follow Property 1 and only two

equivalent RMT s from RMT1 follow Property 1 (or vice versa).

Step 5: Report the CA with k PE bits.

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203 197

0
(0,1)

0, 1, 2, 3

0, 1, 2, 3

0 1
(0,1) (2,3)

0, 1, 2, 3 4, 5, 6, 7

0 0
(0) (4)

0, 1 0, 1

0
(0,1)

0, 1, 2, 3

0, 1, 2, 3 4, 5, 6, 7

0 1
(0,1) (2,3)

0 1 0 1
(0) (2) (4) (6)

Fig. 10. Reachability tree for attractors of CA < 0, 76, 34, 0, 220, 68 >

Complexity: Algorithm 4 executes a loop in Step 3 that depends on n (CA size).

The complexity of the above algorithm, therefore, is O(n).

Example 4.7 This example illustrates the execution steps of Algorithm 4. Let us

consider a 6-cell CA where the number of PE-bits is three and these are selected

randomly at bit positions 2, 5 and 6 (Fig. 10). As the first bit is not the PE-bit

but the second bit is the PE-bit, the RMT s of RMT0 (or RMT1) follow Property

1, and so RMT s of RMT1 (RMT0) can’t. Here RMT0 follows Property 1 at cell 1.

The successive RMT s also follow Property 1. For R2, the rest of the RMT s are set

randomly as RMT1 does not follow Property 1, so there is no possibility to form

multi length cycle (Theorem 4.3).

Both the 3rd and 4th bit positions are not the PE-bit. The third rule is con-

structed in such a way that the members of RMT1 do not hold Property 1 and the

equivalent RMT s 0 and 4 follow Property 1 while 1 and 5 can not. Now, the 4th

bit is not the PE-bit but the next is the PE-bit. So, the fourth cell is represented

in a manner such that RMT 0 and 4 follow Property 1 at second level, RMT0 have

to follow Property 1 for R4 and RMT1 does not hold Property 1 to restrict multi

length cycle. As the 5th bit and 6th bit are the PE-bits, R5 is constructed in such

a way that the RMT s 0, 1, 2, 3 follow Property 1 and others are selected randomly

(either 0 or 1) to restrict multi length cycle formation. Then the next rule follows

Property 1 at RMT s 0, 2, 4, 6. Hence the 6-cell CA is < 0, 76, 34, 0, 220, 68 >.

The CA structure, synthesized in this section, can effectively be utilized for

designing a pattern classifier. Next section reports such a design.

5 Design of CA based classifier

An n-cell CA with k point states can be viewed as k class natural classifier. For

example, the CA of Fig. 4 can act as a 4 class classifier where each attractor basin

(S1/S2/S3/S4) represents a class.

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203198

In this work, we target the design of a 2-class classifier. Suppose the patterns of

S1, S2 & S3 belong to class 1 and the patterns of S4 are from class 2 (Fig. 4). Then

the CA of Figure 4 can also act as the 2-class classifier, where attractors 2, 12 and

13 identify class 1 and the attractor 3 corresponds to class 2.

Algorithm 4 that synthesizes CA having only single length cycles and a specified

set of PE bits, can be utilized to design an n-bit classifier. The primary metric for

evaluating classifier performance is the classification efficiency. It is measured as

efficiency = Number of patterns properly classified
Total number of patterns

× 100%

In the proposed design, we generate 100 such CA using Algorithm 4 and then

compute their classification efficiency. The CA with highest efficiency is considered

as the desired classifier. One major advantage of the classifier, designed out of

Algorithm 4, is – it reduces the memory overhead for storing the classifier. While

storing n-bit attractors to identify a class, only PE bits of the attractors are to be

considered.

5.1 Experimental setup

The performance analysis of the pattern classifier, based on nonlinear sin-

gle length cycle CA, is evaluated on the basis of datasets available in

http://www.ics.uci.edu/∼mlearn/MLRepository.html, summarized in Table 7. All

the datasets taken into consideration have two classes. While columns I and II

of Table 7 represent the dataset and its domain, the columns III and IV depict

the number of categorical and continuous attributes in the dataset. Column V

and column VI represent the number of examples (tuples) of the dataset and the

experimental set up respectively.

To handle such real data, the dataset is suitably modified to fit the input char-

acteristics of the proposed pattern classifier. Each categorical attribute is converted

into binary form as per the Thermometer Code [10]. For continuous-valued at-

tribute, it is transformed into a categorical attribute by calculating the Mean and

Standard deviations for all instances of an attribute.

For large datasets, a test set is used to estimate the classification accuracy. The

classifier is constructed considering the patterns in the training set and next its

performance is evaluated based on the test set. For small datasets m-fold cross

validation process is needed where the total dataset is divided into m subsets each

containing approximately same number of records. For each subset, a classifier is

constructed from the remaining (m-1) subsets.

5.2 Performance analysis

To design an n-cell classifier, the cell rules are generated using Algorithm 4. For the

experimentation of a dataset, a number of CA are synthesized and their performance

as classifier are evaluated. The CA with the highest performance is treated as the

desired classifier. The performance of proposed classifier is compared to that of

existing classification schemes [14]. Table 8 reports the comparison results. Column

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203 199

Table 7
Description of Datasets and Experimental Setup

Dataset Domain No of Attributes No. of Experimental

Cate Conti example setup

monk1 Monk’s 6 0 556 Train/

Problem Test

monk2 Monk’s 6 0 601 Train/

Problem Test

monk3 Monk’s 6 0 554 Train/

Problem Test

vote Voting 32 0 435 Train/

Records Test

Spect Heart 22 0 267 Train/

Heart Disease Test

Pima Diabetis 8 0 768 10-fold/

Indian Disease Cross-

validation

Haber Survival 3 0 306 10-fold/

-man Records Cross-

validation

Tic- Endgame 9 0 958 10-fold/

Tac-Toe Records Cross-

validation

I shows the name of dataset while Column II depicts the name of the scheme. The

efficiencies of known algorithms are noted in Column III. The efficiency of our design

is reported in the last column.

It can be observed from Table 8 that the reported classifier is as efficient as the

existing designs. Moreover, the proposed classifier reduces the memory overhead

significantly. During the design, we set the maximum number of PE bits for each

dataset as the 10% of total number of bits. Therefore, the classifier saves 90% of

memory by storing only the PE bits.

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203200

Table 8
Classification accuracy

Dataset Algorithm Efficiency Efficiency (in %) of

(in %) proposed scheme

monk1 Bayesian 99.9

C4.5 100

TCC 100 91.93

MTSC 98.65

MLP 100

monk2 Bayesian 69.4

C4.5 66.2

TCC 78.16 75.73

MTSC 77.32

MLP 75.16

monk3 Bayesian 92.12

C4.5 96.3

TCC 76.58 95.08

MTSC 97.17

MLP 98.10

Haberman 73.49

Pima-indian 81.54

Tic- Sparse grid 98.33

tac- ASVM 70 82.63

toe LSVM 93.33

Vote Bayesian 92.37

C4.5 94.8

TCC 95.88 97.0

MTSC 95.91

MLP 90.87

Spect Heart 91.97

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203 201

6 Conclusion

This paper reports a detail characterization of single length cycle attractors in

CA state space. Pseudo-exhaustive (PE) bits to identify the single length cycle

attractors of a CA are identified. A theoretical framework has been proposed to

synthesize a CA with the specified PE bits for a given set of attractors. The

synthesized CA is effectively utilized to design efficient pattern classifier.

References

[1] M. Arbib. Simple self-reproducing universal automata. Information and Control, 9:177–189, 1966.

[2] E. R. Banks. Information Processing and Transmission in Cellular Automata. PhD thesis, MIT, 1971.

[3] P Pal Chaudhuri, D Roy Chowdhury, S Nandi, and S Chatterjee. Additive Cellular Automata – Theory
and Applications, volume 1. IEEE Computer Society Press, USA, ISBN 0-8186-7717-1, 1997.

[4] Chester Lee. Synthesis of a Cellular Universal Machine using the 29-state Model of von Neumann.
Automata Theory Notes, The University of Michigan Engineering Summer Conferences, 1964.

[5] E. F. Codd. Cellular Automata. Academic Press Inc., 1968.

[6] Sukanta Das. Theory and Applications of Nonlinear Cellular Automata In VLSI Design. PhD thesis,
Bengal Engineering and Science University, Shibpur, India, 2007.

[7] Sukanta Das, Anirban Kundu, Biplab K. Sikdar, and P. Pal Chaudhuri. Design of Nonlinear CA Based
TPG Without Prohibited Pattern Set In Linear Time. JOURNAL OF ELECTRONIC TESTING:
Theory and Applications, 21:95–109, January 2005.

[8] Sukanta Das and Biplab K Sikdar. Classification of CA Rules Targeting Synthesis of Reversible
Cellular Automata. In Proceedings of International Conference on Cellular Automata for Research
and Industry, ACRI, France, pages 68–77, September 2006.

[9] Sukanta Das, Biplab K Sikdar, and P Pal Chaudhuri. Characterization of Reachable/Nonreachable
Cellular Automata States. In Proceedings of Sixth International Conference on Cellular Automata for
Research and Industry, ACRI, The Netherlands, pages 813–822, October 2004.

[10] S. I. Gallant. Neural Networks Learning and Expert Systems. Cambridge, Mass; MIT Press, 1993.

[11] N. Ganguly, A. Das, P. Maji, B. K. Sikdar, and P. P. Chaudhuri. Evolution of cellular automata based
associative memory for pattern recognition. High Performance Computing, Hyderabad, India, 2001.

[12] Niloy Ganguly. Cellular Automata Evolution : Theory and Applications in Pattern Recognition and
Classification. PhD thesis, Bengal Engineering College (a Deemed University), India, 2004.

[13] P. Maji, C. Shaw, N. Ganguly, B. K. Sikdar, and P. Pal Chaudhuri. Theory and Application of Cellular
Automata For Pattern Classification. Special issue of Fundamenta Informaticae on Cellular Automata,
58:321–354, 2003.

[14] Pradipta Maji. Cellular Automata Evolution for Pattern Recognition. PhD thesis, Jadavpur University,
Kolkata, India, 2005.

[15] O. Martin, A. M. Odlyzko, and S. Wolfram. Algebraic Properties of Cellular Automata. Comm. Math.
Phys., 93:219–258, 1984.

[16] Harold V. McIntosh. Linear cellular automata via de bruijn diagrams. preprint, May 1991.

[17] Edward F. Moore. Machine models of self reproduction. In Arthur W. Burks, editor, Essays on Cellular
Automata. University of Illinois Press, Urbana, 1970.

[18] J. Myhill. The converse of moore’s garden of eden theorem. In Proceedings of American Mathematical
Society, volume 14, pages 685–686, 1963.

[19] Klaus Sutner. De bruijin graphs and linear cellular automata. Complex Systems, 5(1):19–30, February
1991.

[20] Alan Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings
of London Math. Soc., Ser. 2 42:230–265, 1936.

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203202

[21] John von Neumann. The theory of self-reproducing Automata, A. W. Burks ed. Univ. of Illinois Press,
Urbana and London, 1966.

[22] S. Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys., 55(3):601–644, July 1983.

[23] S. Wolfram. Universality and Complexity in cellular automata. Physica D, 10:1–35, 1984.

[24] S. Wolfram. Undecidability and intractability in theoretical physics. Phys. Rev. Lett., 54:735–738,
1985.

[25] S. Wolfram. Random sequence generation by cellular automata. Advances in Applied Mathematics,
pages 123–169, 1986.

[26] S. Wolfram. Cellular Automata and Complexity — Collected Papers. Addison Wesley, 1994.

[27] A. Wuensche and M. J. Lesser. The Global Dynamics of Cellular Automata; An Atlas of Basin of
Attraction Fields of One-Dimensional Cellular Automata. Santa Fe Institute Studies in the Science of
Complexity, Addison Wesley, 1992.

S. Das et al. / Electronic Notes in Theoretical Computer Science 252 (2009) 181–203 203

	Introduction
	Preliminaries of Cellular Automata
	Characterization of CA attractors
	Reachability tree characterizing attractors
	The attractor set
	Identification of PE bits
	CA Synthesis for specified PE-bits

	Synthesis of single cycle attractor CA
	Multi length cycle
	Single length cycle
	Synthesis of CA with single length cycles

	Design of CA based classifier
	Experimental setup
	Performance analysis

	Conclusion
	References

